
26 State Uncertainty

The multiagent models discussed so far in this part of the book have assumed that
all agents can observe the true state. Just as an MDP can be extended to include
partial observability, so can an MG be extended to produce a partially observable
Markov game (POMG).1 In fact, a POMG generalizes all the other problems pre-

1 A POMG is also called a partially
observable stochastic game (POSG).
POMGs are closely related to the
extensive form game with imper-
fect information. H. Kuhn, “Exten-
sive Games and the Problem of In-
formation,” in Contributions to the
Theory of Games II, H. Kuhn and A.
Tucker, eds., Princeton University
Press, 1953, pp. 193–216. Themodel
was later introduced to the artifi-
cial intelligence community. E.A.
Hansen, D. S. Bernstein, and S. Zil-
berstein, “Dynamic Programming
for Partially Observable Stochastic
Games,” in AAAI Conference on Ar-
tificial Intelligence (AAAI), 2004.

sented in this book. These complex problems can be used to represent domains
in which multiple agents receive partial or noisy observations of the environment.
This generality makes modeling and solving POMGs computationally challeng-
ing. This chapter defines the POMG, outlines policy representations, and presents
solution methods.

26.1 Partially Observable Markov Games

A POMG (algorithm 26.1) can be seen as either an extension of MGs to partial
observability or as an extension of POMDPs to multiple agents. Each agent i ∈ I
selects an action ai ∈ Ai based only on local observations oi made of a shared
state s. The true state of the system s ∈ S is shared by all agents, but it is not
necessarily fully observed. The initial state is drawn from a known initial state
distribution b. The likelihood of transitioning from state s to state s′ under their
joint action a follows T(s′ | s, a). A joint reward r is generated following Ri(s, a),
as in MGs. Each agent strives to maximize its own accumulated reward. After all
agents perform their joint action a, a joint observation is emitted by the environment
o = (o1, . . . , ok) from a joint observation spaceO = O1× · · · ×Ok. Each agent then
receives an individual observation oi from this joint observation. The crying baby
problem is extended to multiple agents in example 26.1.

In POMDPs, we were able to maintain a belief state, as discussed in chapter 19,
but this approach is not possible in POMGs. Individual agents cannot perform
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the same kind of belief updates as in POMDPs because the joint actions and
joint observations are not observed. Inferring a probability distribution over joint
actions requires that each agent reason about the other agents reasoning about
each other, who are in turn reasoning about each other, and so on. Inferring
a distribution over the other observations is just as complicated because the
observations depend on the actions of the other agents.2

2 The Interactive POMDP (I-
POMDP) model attempts to
capture this infinite regression.
P. J. Gmytrasiewicz and P. Doshi,
“A Framework for Sequential
Planning in Multi-Agent Settings,”
Journal of Artificial Intelligence
Research, vol. 24, no. 1, pp. 49–79,
2005. While this is a compu-
tationally complex framework
because it reasons in both time and
depth, algorithms for such models
have advanced tremendously
toward the goal of pragmatic
use cases. E. Sonu, Y. Chen, and
P. Doshi, “Decision-Theoretic
Planning Under Anonymity in
Agent Populations,” Journal of
Artificial Intelligence Research,
vol. 59, pp. 725–770, 2017.

Because of the difficulty of explicitly modeling beliefs in POMGs, we will focus
on policy representations that do not require a belief to determine an action.
We can use the tree-based conditional plan representation and the graph-based
controller representation introduced in the earlier chapters on POMDPs. As in
MGs, each agent in a POMG acts according to a policy πi, or equivalently, the
agents act together according to a joint policy π = (π1, . . . , πk).

struct POMG
γ # discount factor
ℐ # agents
𝒮 # state space
𝒜 # joint action space
𝒪 # joint observation space
T # transition function
O # joint observation function
R # joint reward function

end

Algorithm 26.1. Data structure for
a POMG.

Consider a multiagent POMG generalization of the crying baby problem.
We have two caregivers taking care of a baby. As in the POMDP version, the
states are the baby being hungry or sated. Each caregiver’s actions are to feed,
sing, or ignore the baby. If both caregivers choose to perform the same action,
the cost is halved. For example, if both caregivers feed the baby, then the
reward is only −2.5 instead of −5. However, the caregivers do not perfectly
observe the state of the baby. Instead, they rely on the noisy observations
of the baby crying, both with the same observation. As a consequence of
the reward structure, there is a trade-off between helping each other and
greedily choosing a less costly action.

Example 26.1. The multicaregiver
crying baby problem as a POMG.
Appendix F.14 provides additional
details.
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26.2 Policy Evaluation

This section discusses how to evaluate joint policies represented as either tree-
based conditional plans or graph-based controllers. As in the context of POMDPs,
we use conditional plans to represent deterministic policies and controllers to
represent stochastic policies.

26.2.1 Evaluating Conditional Plans
Recall that a conditional plan (section 20.2) is a tree where actions are associated
with nodes and observations are associated with edges. Each agent has its own
tree and initially selects the action associated with its root. After making an
observation, each agent proceeds down the tree, taking the edge associated with
their observation. The process of taking actions and selecting edges based on
observations continues until reaching the end of the tree. Example 26.2 shows a
joint policy consisting of a conditional plan for each agent.

Here is a joint policy π = (π1, π2) represented as two-step conditional plans
for the multicaregiver crying baby problem:
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2 = crying a2
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Example 26.2. A two-agent, two-
step joint policy using conditional
plans for the multicaregiver crying
baby problem.
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We can compute the joint utility function Uπ recursively, similar to what was
done in equation (20.8) for POMDPs when starting in state s:

Uπ(s) = R(s,π()) + γ

[

∑
s′

T
(

s′ | s,π()
)

∑
o

O
(

o | π(), s′
)

Uπ(o)(s′)

]

(26.1)

where π() is the vector of actions at the root of the tree associated with π and
π(o) is the vector of subplans associated with the various agents observing their
components of the joint observation o.

The utility associated with policy π from initial state distribution b is given by

Uπ(b) = ∑
s

b(s)Uπ(s) (26.2)

Algorithm 26.2 provides an implementation of this.

function lookahead(𝒫::POMG, U, s, a)
𝒮, 𝒪, T, O, R, γ = 𝒫.𝒮, joint(𝒫.𝒪), 𝒫.T, 𝒫.O, 𝒫.R, 𝒫.γ
u′ = sum(T(s,a,s′)*sum(O(a,s′,o)*U(o,s′) for o in 𝒪) for s′ in 𝒮)
return R(s,a) + γ*u′

end

function evaluate_plan(𝒫::POMG, π, s)
a = Tuple(πi() for πi in π)
U(o,s′) = evaluate_plan(𝒫, [πi(oi) for (πi, oi) in zip(π,o)], s′)
return isempty(first(π).subplans) ? 𝒫.R(s,a) : lookahead(𝒫, U, s, a)

end

function utility(𝒫::POMG, b, π)
u = [evaluate_plan(𝒫, π, s) for s in 𝒫.𝒮]
return sum(bs * us for (bs, us) in zip(b, u))

end

Algorithm 26.2. Conditional
plans represent policies in a
finite-horizon POMG. They are
defined for a single agent in algo-
rithm 20.1. We can compute the
utility associated with executing a
joint policy π represented by con-
ditional plans when starting from
a state s. Computing the utility
from an initial state distribution b
involves taking a weighted average
of utilities when starting from
different states.

26.2.2 Evaluating Stochastic Controllers
A controller (section 23.1) is represented as a stochastic graph. The controller
associated with agent i is defined by the action distribution ψi(ai | xi) and succes-
sor distribution ηi(xi ′ | xi, ai, oi). The utility of being in state s with joint node x

active and following joint policy π is

Uπ(x, s) = ∑
a

∏
i

ψi(ai | xi)

(

R(s, a) + γ ∑
s′

T(s′ | s, a)∑
o

O(o | a, s′)∑
x′

∏
i

ηi(xi ′ | xi, ai, oi)Uπ(x′, s′)

)

(26.3)
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Policy evaluation in this context involves solving this system of linear equations.
Alternatively, we can use iterative policy evaluation similar to algorithm 23.2 for
POMDPs. The utility when starting from an initial state distribution b and joint
controller state x is

Uπ(x, b) = ∑
s

b(s)U(x, s) (26.4)

Example 26.3 shows a joint stochastic controller.

Here is a joint controller policy π = (π1, π2) for the two caregivers in the
crying baby problem. Each controller has two nodes, Xi = {xi

1, xi
2}:

a2 a1

o1

o1, o2

o2 a1 a2

o2

o1

o1 o2

agent 1’s policy π1 agent 2’s policy π2

o1 = quiet a1 = ignore
o1 = hungry a1 = feed

Example 26.3. A two-agent joint
policy using controllers for the
multicaregiver crying baby prob-
lem.

26.3 Nash Equilibrium

As with simple games and MGs, aNash equilibrium for a POMG is when all agents
act according to a best response policy to each other, such that no agents have
an incentive to deviate from their policy. Nash equilibria for POMGs tend to
be incredibly computationally difficult to solve. Algorithm 26.3 computes a d-
step Nash equilibrium for a POMG. It enumerates all of its possible d-step joint
conditional plans to construct a simple game, as shown in example 26.4. A Nash
equilibrium for this simple game is also a Nash equilibrium for the POMG.

The simple game has the same agents as the POMG. There is a joint action
in the simple game for every joint conditional plan in the POMG. The reward
received for each action is equal to the utilities under the joint conditional plan in
the POMG. A Nash equilibrium of this constructed simple game can directly be
applied as a Nash equilibrium of the POMG.
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struct POMGNashEquilibrium
b # initial belief
d # depth of conditional plans

end

function create_conditional_plans(𝒫, d)
ℐ, 𝒜, 𝒪 = 𝒫.ℐ, 𝒫.𝒜, 𝒫.𝒪
Π = [[ConditionalPlan(ai) for ai in 𝒜[i]] for i in ℐ]
for t in 1:d

Π = expand_conditional_plans(𝒫, Π)
end
return Π

end

function expand_conditional_plans(𝒫, Π)
ℐ, 𝒜, 𝒪 = 𝒫.ℐ, 𝒫.𝒜, 𝒫.𝒪
return [[ConditionalPlan(ai, Dict(oi => πi for oi in 𝒪[i]))

for πi in Π[i] for ai in 𝒜[i]] for i in ℐ]
end

function solve(M::POMGNashEquilibrium, 𝒫::POMG)
ℐ, γ, b, d = 𝒫.ℐ, 𝒫.γ, M.b, M.d
Π = create_conditional_plans(𝒫, d)
U = Dict(π => utility(𝒫, b, π) for π in joint(Π))
𝒢 = SimpleGame(γ, ℐ, Π, π -> U[π])
π = solve(NashEquilibrium(), 𝒢)
return Tuple(argmax(πi.p) for πi in π)

end

Algorithm 26.3. A Nash equilib-
rium is computed for a POMG 𝒫
with initial state distribution b by
creating a simple game of all con-
ditional plans to some depth d. We
solve for a Nash equilibrium in this
simple game using algorithm 24.5.
For simplicity, we select the most
probable joint policy. Alternatively,
we can randomly select the joint
policy at the start of execution.
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Consider the multicaregiver crying baby problem with a two-step horizon.
Recall that for each agent i, there are three actions

Ai = {ai
1, ai

2, ai
3} = {feed, sing, ignore}

and two observations

Oi = {oi
1, oi

2} = {cry, silent}

Converting this POMG to a simple game results in the following game table.
Each caregiver selects simple game actions that correspond to a complete con-
ditional plan. The simple game reward for each agent is the utility associated
with the joint policy.
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Example 26.4. Computing a Nash
equilibrium for the multicaregiver
crying baby problem by convert-
ing it into a simple game where the
actions correspond to conditional
plans.
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26.4 Dynamic Programming

The approach taken in the previous section for computing a Nash equilibrium is
typically extremely computationally expensive because the actions correspond
to all possible conditional plans to some depth. We can adapt the value iteration
approach for POMDPs (section 20.5), where we iterated between expanding the
depth of the set of considered conditional plans and pruning suboptimal plans.
While the worst-case computational complexity is the same as that of the full
expansion of all policy trees, this incremental approach can lead to significant
savings.

Algorithm 26.4 implements this dynamic programming approach. It begins
by constructing all one-step plans. We prune any plans that are dominated by
another plan, and we then expand all combinations of one-step plans to produce
two-step plans. This procedure of alternating between expansion and pruning is
repeated until the desired horizon is reached.

The pruning step eliminates all dominated policies. A policy πi belonging to
an agent i can be pruned if there exists another policy πi ′ that always performs at
least as well as πi. Although computationally expensive, this condition can be
checked by solving a linear program. This process is related to controller node
pruning in POMDPs (algorithm 23.4).

It would be computationally intractable to solve a separate linear program for
every possible combination of the other agent’s policies π−i. Instead, we can take
a much more efficient approach that will never prune an optimal policy but may
not be able to prune all suboptimal policies. A policy πi is dominated by πi ′ if
there is no b(π−i, s) between other joint policies π−i and states s such that

∑
π−i

∑
s

b(π−i, s)Uπi ′ ,π−i ,i(s) ≥ ∑
π−i

∑
s

b(π−i, s)Uπi ,π−i ,i(s) (26.5)

Here, b is a joint distribution over the policies of other agents and the state. As
mentioned at the start of this chapter, it is generally infeasible to compute a
belief state, but equation (26.5) checks the space of beliefs for individual policy
domination.

We can construct a single linear program to check equation (26.5).3 If the linear 3 A similar linear program was
created to prune alpha vectors in
POMDPs in equation (20.16).
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struct POMGDynamicProgramming
b # initial belief
d # depth of conditional plans

end

function solve(M::POMGDynamicProgramming, 𝒫::POMG)
ℐ, 𝒮, 𝒜, R, γ, b, d = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.R, 𝒫.γ, M.b, M.d
Π = [[ConditionalPlan(ai) for ai in 𝒜[i]] for i in ℐ]
for t in 1:d

Π = expand_conditional_plans(𝒫, Π)
prune_dominated!(Π, 𝒫)

end
𝒢 = SimpleGame(γ, ℐ, Π, π -> utility(𝒫, b, π))
π = solve(NashEquilibrium(), 𝒢)
return Tuple(argmax(πi.p) for πi in π)

end

function prune_dominated!(Π, 𝒫::POMG)
done = false
while !done

done = true
for i in shuffle(𝒫.ℐ)

for πi in shuffle(Π[i])
if length(Π[i]) > 1 && is_dominated(𝒫, Π, i, πi)

filter!(πi′ -> πi′ ≠ πi, Π[i])
done = false
break

end
end

end
end

end

function is_dominated(𝒫::POMG, Π, i, πi)
ℐ, 𝒮 = 𝒫.ℐ, 𝒫.𝒮
jointΠnoti = joint([Π[j] for j in ℐ if j ≠ i])
π(πi′, πnoti) = [j==i ? πi′ : πnoti[j>i ? j-1 : j] for j in ℐ]
Ui = Dict((πi′, πnoti, s) => evaluate_plan(𝒫, π(πi′, πnoti), s)[i]

for πi′ in Π[i], πnoti in jointΠnoti, s in 𝒮)
model = Model(Ipopt.Optimizer)
@variable(model, δ)
@variable(model, b[jointΠnoti, 𝒮] ≥ 0)
@objective(model, Max, δ)
@constraint(model, [πi′=Π[i]],

sum(b[πnoti, s] * (Ui[πi′, πnoti, s] - Ui[πi, πnoti, s])
for πnoti in jointΠnoti for s in 𝒮) ≥ δ)

@constraint(model, sum(b) == 1)
optimize!(model)
return value(δ) ≥ 0

end

Algorithm 26.4. Dynamic pro-
gramming computes a Nash equi-
librium π for a POMG 𝒫, given an
initial belief b and horizon depth
d. It iteratively computes the pol-
icy trees and their expected utilities
at each step. The pruning phase
at each iteration removes domi-
nated policies, which are policy
trees that result in lower expected
utility than at least one other avail-
able policy tree.
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program is feasible, then that means πi is not dominated by any other πi ′:

maximize
δ,b

δ

subject to b(π−i, s) ≥ 0 for all π−i, s

∑
π−i

∑
s

b(π−i, s) = 1

∑
π−i

∑
s

b(π−i, s)
(

Uπi ′ ,π−i ,i(s)−Uπi ,π−i ,i(s)
)

≥ δ for all πi ′

(26.6)

The pruning step removes dominated policies by randomly selecting an agent i

and checking for domination of each of its policies. This process repeats until a
pass over all agents fails to find any dominated policies. Example 26.5 shows this
process on the multicaregiver crying baby problem.

26.5 Summary

• POMGs generalize POMDPs to multiple agents and MGs to partial observabil-
ity.

• Because agents generally cannot maintain beliefs in POMGs, policies typically
take the form of conditional plans or finite state controllers.

• Nash equilibria, in the form of d-step conditional plans for POMGs, can be
obtained by finding Nash equilibria for simple games whose joint actions
consist of all possible POMG joint policies.

• Dynamic programming approaches can be used to compute Nash equilibria
more efficiently by iteratively constructing sets of deeper conditional plans
while pruning dominated plans to restrict the search space.

26.6 Exercises
Exercise 26.1. Show that a POMG generalizes both a POMDP and an MG.
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Consider the multicaregiver crying baby problem solved by dynamic pro-
gramming. Initially, the policies at depth d = 2 are
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After the pruning step, the agent policies are
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In this case, the pruning step finds the best joint policy. This approach signif-
icantly reduces the number of possible joint policies that the next iteration of
the algorithm needs to consider.

Example 26.5. Dynamic program-
ming and a single pruning step
for the multicaregiver crying baby
problem.
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Solution: For any POMDP, we can define a POMG with one agent I = {1}. States S are
identical, as are actions A = (A1) and observations O = (O1). Thus, the state transition,
observation function, and rewards of the POMG directly follow. The Nash equilibrium
optimization has only one agent, so it results in a simple maximization of expected value,
which is identical to a POMDP.

For any MG, we can define a POMG with the same agents I , states S , joint actions A,
transitions T, and joint rewards R. The individual observations are assigned to be states
Oi = S . The observation function then deterministically provides each agent with the true
state O(o | a, s′) = 1 if o = (s′, . . . , s′), and 0 otherwise.

Exercise 26.2. How can we incorporate communication between agents into the POMG
framework?

Solution: The action space for the agents can be augmented to include communication
actions. The other agents can observe these communication actions according to their
observation model.

Exercise 26.3. Do agents always have an incentive to communicate?

Solution:Agents in POMGs are often competitive, in which case there would be no incentive
to communicate with others. If their rewards are aligned to some degree, they may be
inclined to communicate.

Exercise 26.4. How many possible joint conditional plans are there of depth d?

Solution: Recall that there are |A|(|O|d−1)/(|O|−1) possible d-step single-agent conditional
plans. We can construct a joint policy of conditional plans using every combination of these
single-agent conditional plans across agents. The number of d-step multiagent conditional
plans is

∏
i∈I
|Ai|(|Oi |d−1)/(|Oi |−1)

Exercise 26.5. Define the best response for a POMG in terms of an agent i’s utilities Uπ,i.
Propose the iterated best response for POMGs.

Solution: The best response πi of agent i to other agents’ policies π−i is defined following
equation (24.2) for an initial belief b:

Uπi ,π−i ,i(b) ≥ Uπi ′ ,π−i ,i(b)

with any other policy πi ′. For conditional plans, Uπ,i is defined by equations (26.1)
and (26.2).

The implementation of iterated best response follows from section 24.2.1. First, the
conditional plans and simple game can be created, as in algorithm 26.3. Then, we can
iterate best response using algorithm 24.8.
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