
25 Sequential Problems

This chapter extends simple games to a sequential context with multiple states.
A Markov game (MG) can be viewed as a Markov decision process involving
multiple agents with their own reward functions.1 In this formulation, transitions

1 MGs, also called stochastic games,
were originally studied in the 1950s
around the same time as MDPs.
L. S. Shapley, “Stochastic Games,”
Proceedings of the National Academy
of Sciences, vol. 39, no. 10, pp. 1095–
1100, 1953. They were introduced
into the multiagent artificial intel-
ligence community decades later.
M. L. Littman, “Markov Games as
a Framework for Multi-Agent Re-
inforcement Learning,” in Interna-
tional Conference on Machine Learn-
ing (ICML), 1994.

depend on the joint action and all agents seek to maximize their own reward. We
generalize the response models and the Nash equilibrium solution concept from
simple games to take into account the state transition model. The last part of this
chapter discusses learning-based models, where the agents adapt their policies
based on information from observed interactions and knowledge of the reward
and transition functions.

25.1 Markov Games

An MG (algorithm 25.1) extends a simple game to include a shared state s ∈ S .
The likelihood of transitioning from a state s to a state s′ under a joint action a

is given by the transition distribution T(s′ | s, a). Each agent i receives a reward
according to its own reward function Ri(s, a), which now also depends on the
state. Example 25.1 sketches out how traffic routing can be framed as an MG.

struct MG
γ # discount factor
ℐ # agents
𝒮 # state space
𝒜 # joint action space
T # transition function
R # joint reward function

end

Algorithm 25.1. Data structure for
an MG.
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Consider commuters headed to work by car. Each car has a starting position
and a destination. Each car can take any of several available roads to get to
their destination, but these roads vary in the time it takes to drive them. The
more cars that drive on a given road, the slower they all move.

This problem is an MG. The agents are the commuters in their cars, the
states are the locations of all the cars on the roads, and the actions corre-
spond to decisions of which road to take next. The state transition moves
all car agents forward following their joint action. The negative reward is
proportional to the time spent driving on a road.

Example 25.1. Traffic routing as an
MG. The problem cannot be mod-
eled using a single agentmodel like
an MDP because we do not know
the behavior of other agents, only
their rewards. We can try to find
equilibria or learn policies through
interaction, similar to what we did
for simple games.

The joint policy π in an MG specifies a probability distribution over joint
actions, given the current state. As with MDPs, we will focus on policies that
depend on the current state rather than the past history because future states and
rewards are conditionally independent of the history, given the current state. In
addition, we will focus on stationary policies, which do not depend on time. The
probability that agent i selects action a at state s is given by πi(a | s). We will
often use π(s) to represent a distribution over joint actions.

The utility of a joint policy π from the perspective of agent i can be computed
using a variation of policy evaluation introduced in section 7.2 for MDPs. The
reward to agent i from state s when following joint policy π is

Ri(s,π(s)) = ∑
a

Ri(s, a) ∏
j∈I

π j(aj | s) (25.1)

The probability of transitioning from state s to s′ when following π is

T(s′ | s,π(s)) = ∑
a

T(s′ | s, a) ∏
j∈I

π j(aj | s) (25.2)

In an infinite-horizon discounted game, the utility for agent i from state s is

Uπ,i(s) = Ri(s,π(s)) + γ ∑
s′

T(s′ | s,π(s))Uπ,i(s′) (25.3)

which can be solved exactly (algorithm 25.2).
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struct MGPolicy
p # dictionary mapping states to simple game policies
MGPolicy(p::Base.Generator) = new(Dict(p))

end

(πi::MGPolicy)(s, ai) = πi.p[s](ai)
(πi::SimpleGamePolicy)(s, ai) = πi(ai)

probability(𝒫::MG, s, π, a) = prod(πj(s, aj) for (πj, aj) in zip(π, a))
reward(𝒫::MG, s, π, i) =

sum(𝒫.R(s,a)[i]*probability(𝒫,s,π,a) for a in joint(𝒫.𝒜))
transition(𝒫::MG, s, π, s′) =

sum(𝒫.T(s,a,s′)*probability(𝒫,s,π,a) for a in joint(𝒫.𝒜))

function policy_evaluation(𝒫::MG, π, i)
𝒮, 𝒜, R, T, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.R, 𝒫.T, 𝒫.γ
p(s,a) = prod(πj(s, aj) for (πj, aj) in zip(π, a))
R′ = [sum(R(s,a)[i]*p(s,a) for a in joint(𝒜)) for s in 𝒮]
T′ = [sum(T(s,a,s′)*p(s,a) for a in joint(𝒜)) for s in 𝒮, s′ in 𝒮]
return (I - γ*T′)\R′

end

Algorithm 25.2. An MG policy
is a mapping from states to sim-
ple game policies, introduced in
the previous chapter. We can con-
struct it by passing in a genera-
tor to construct the dictionary. The
probability that a policy (either
for an MG or a simple game) as-
signs to taking action ai from state
s is πi(s, ai). Functions are also
provided for computing Ri(s,π(s))
and T(s′ | s,π(s)). The policy eval-
uation function will compute a vec-
tor representing Uπ,i .

25.2 Response Models

We can generalize the response models introduced in the previous chapter to
MGs. Doing so requires taking into account the state transition model.

25.2.1 Best Response
A response policy for agent i is a policy πi that maximizes expected utility, given
the fixed policies of other agents π−i. If the policies of the other agents are fixed,
then the problem reduces to an MDP. This MDP has state space S and action
space Ai. We can define the transition and reward functions as follows:

T′(s′ | s, ai) = T(s′ | s, ai,π−i(s)) (25.4)
R′(s, ai) = Ri(s, ai,π−i(s)) (25.5)

Because this is a best response for agent i, the MDP only uses reward Ri. Solving
this MDP results in a best response policy for agent i. Algorithm 25.3 provides an
implementation of this.
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function best_response(𝒫::MG, π, i)
𝒮, 𝒜, R, T, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.R, 𝒫.T, 𝒫.γ
T′(s,ai,s′) = transition(𝒫, s, joint(π, SimpleGamePolicy(ai), i), s′)
R′(s,ai) = reward(𝒫, s, joint(π, SimpleGamePolicy(ai), i), i)
πi = solve(MDP(γ, 𝒮, 𝒜[i], T′, R′))
return MGPolicy(s => SimpleGamePolicy(πi(s)) for s in 𝒮)

end

Algorithm 25.3. For an MG 𝒫, we
can compute a deterministic best
response policy for agent i, given
that the other agents are playing
policies in π. We can solve theMDP
exactly using one of the methods
from chapter 7.

25.2.2 Softmax Response
Similar to what was done in the previous chapter, we can define a softmax response
policy, which assigns a stochastic response to the policies of the other agents at
each state. As we did in the construction of a deterministic best response policy,
we solve an MDP where the agents with the fixed policies π−i are folded into the
environment. We then extract the action value function Q(s, a) using one-step
lookahead. The softmax response is

πi(ai | s) ∝ exp(λQ(s, ai)) (25.6)

with precision parameter λ ≥ 0. Algorithm 25.4 provides an implementation. This
approach can be used to generate hierarchical softmax solutions (section 24.7).
In fact, we can use algorithm 24.9 directly.

function softmax_response(𝒫::MG, π, i, λ)
𝒮, 𝒜, R, T, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.R, 𝒫.T, 𝒫.γ
T′(s,ai,s′) = transition(𝒫, s, joint(π, SimpleGamePolicy(ai), i), s′)
R′(s,ai) = reward(𝒫, s, joint(π, SimpleGamePolicy(ai), i), i)
mdp = MDP(γ, 𝒮, joint(𝒜), T′, R′)
πi = solve(mdp)
Q(s,a) = lookahead(mdp, πi.U, s, a)
p(s) = SimpleGamePolicy(a => exp(λ*Q(s,a)) for a in 𝒜[i])
return MGPolicy(s => p(s) for s in 𝒮)

end

Algorithm 25.4. The softmax re-
sponse of agent i to joint policy π
with precision parameter λ.

25.3 Nash Equilibrium

The Nash equilibrium concept can be generalized to MGs.2 As with simple games,

2 Because we assume that policies
are stationary, in that they do not
vary over time, the Nash equilibria
covered here are stationary Markov
perfect equilibria.

all agents perform a best response to one another and have no incentive to deviate.
All finite MGs with a discounted infinite horizon have a Nash equilibrium.3

3 A.M. Fink, “Equilibrium in a
Stochastic n-Person Game,” Journal
of Science of the Hiroshima University,
Series A-I, vol. 28, no. 1, pp. 89–93,
1964.
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We can find a Nash equilibrium by solving a nonlinear optimization problem
similar to the one that we solved in the context of simple games. This problem
minimizes the sum of the lookahead utility deviations and constrains the policies
to be valid distributions:

minimize
π,U

∑
i∈I

∑
s

(

Ui(s)−Qi(s,π(s))
)

subject to Ui(s) ≥ Qi(s, ai,π−i(s)) for all i, s, ai

∑
ai

πi(ai | s) = 1 for all i, s

πi(ai | s) ≥ 0 for all i, s, ai

(25.7)

where
Qi(s,π(s)) = Ri(s,π(s)) + γ ∑

s′
T(s′ | s,π(s))Ui(s′) (25.8)

This nonlinear optimization problem is implemented and solved in algorithm25.5.4 4 J. A. Filar, T.A. Schultz, F. Thui-
jsman, and O. Vrieze, “Nonlin-
ear Programming and Stationary
Equilibria in Stochastic Games,”
Mathematical Programming, vol. 50,
no. 1–3, pp. 227–237, 1991.

25.4 Fictitious Play

Aswedid in the context of simple games,we can take a learning-based approach to
arrive at joint policies by running agents in simulation. Algorithm 25.6 generalizes
the simulation loop introduced in the previous chapter to handle state transitions.
The various policies run in simulation update themselves based on the state
transitions and the actions taken by the various agents.

One approach for updating policies is to use a generalization of fictitious
play (algorithm 25.7) from the previous chapter,5 which involves maintaining 5 W. Uther and M. Veloso, “Adver-

sarial Reinforcement Learning,”
Carnegie Mellon University, Tech.
Rep. CMU-CS-03-107, 1997. M.
Bowling and M. Veloso, “An Anal-
ysis of Stochastic Game Theory for
Multiagent Reinforcement Learn-
ing,” Carnegie Mellon University,
Tech. Rep. CMU-CS-00-165, 2000.

a maximum-likelihood model over the policies of the other agents. The maxi-
mum likelihood model tracks the state in addition to the action being taken by
each agent. We track the number of times that agent j takes action aj in state s,
storing it in table N(j, aj, s), typically initialized to 1. Then, we can compute the
best response, assuming that each agent j follows the state-dependent stochastic
policy:

π j(aj | s) ∝ N(j, aj, s) (25.9)
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function tensorform(𝒫::MG)
ℐ, 𝒮, 𝒜, R, T = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.R, 𝒫.T
ℐ′ = eachindex(ℐ)
𝒮′ = eachindex(𝒮)
𝒜′ = [eachindex(𝒜[i]) for i in ℐ]
R′ = [R(s,a) for s in 𝒮, a in joint(𝒜)]
T′ = [T(s,a,s′) for s in 𝒮, a in joint(𝒜), s′ in 𝒮]
return ℐ′, 𝒮′, 𝒜′, R′, T′

end

function solve(M::NashEquilibrium, 𝒫::MG)
ℐ, 𝒮, 𝒜, R, T = tensorform(𝒫)
𝒮′, 𝒜′, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.γ
model = Model(Ipopt.Optimizer)
@variable(model, U[ℐ, 𝒮])
@variable(model, π[i=ℐ, 𝒮, ai=𝒜[i]] ≥ 0)
@NLobjective(model, Min,

sum(U[i,s] - sum(prod(π[j,s,a[j]] for j in ℐ)
* (R[s,y][i] + γ*sum(T[s,y,s′]*U[i,s′] for s′ in 𝒮))
for (y,a) in enumerate(joint(𝒜))) for i in ℐ, s in 𝒮))

@NLconstraint(model, [i=ℐ, s=𝒮, ai=𝒜[i]],
U[i,s] ≥ sum(

prod(j==i ? (a[j]==ai ? 1.0 : 0.0) : π[j,s,a[j]] for j in ℐ)
* (R[s,y][i] + γ*sum(T[s,y,s′]*U[i,s′] for s′ in 𝒮))
for (y,a) in enumerate(joint(𝒜))))

@constraint(model, [i=ℐ, s=𝒮], sum(π[i,s,ai] for ai in 𝒜[i]) == 1)
optimize!(model)
π′ = value.(π)
πi′(i,s) = SimpleGamePolicy(𝒜′[i][ai] => π′[i,s,ai] for ai in 𝒜[i])
πi′(i) = MGPolicy(𝒮′[s] => πi′(i,s) for s in 𝒮)
return [πi′(i) for i in ℐ]

end

Algorithm 25.5. This nonlinear
program computes a Nash equilib-
rium for an MG 𝒫.
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function randstep(𝒫::MG, s, a)
s′ = rand(SetCategorical(𝒫.𝒮, [𝒫.T(s, a, s′) for s′ in 𝒫.𝒮]))
r = 𝒫.R(s,a)
return s′, r

end

function simulate(𝒫::MG, π, k_max, b)
s = rand(b)
for k = 1:k_max

a = Tuple(πi(s)() for πi in π)
s′, r = randstep(𝒫, s, a)
for πi in π

update!(πi, s, a, s′)
end
s = s′

end
return π

end

Algorithm 25.6. Functions for tak-
ing a random step and running full
simulations in MGs. The simulate
function will simulate the joint pol-
icy π for k_max steps starting from
a state randomly sampled from b.

After observing joint action a in states s, we update

N(j, aj, s)← N(j, aj, s) + 1 (25.10)

for each agent j.
As the distributions of the other agents’ actions change, we must update the

utilities. The utilities in MGs are significantly more difficult to compute than
simple games because of the state dependency. As described in section 25.2.1, any
assignment of fixed policies of others π−i induces an MDP. In fictitious play, π−i

is determined by equation (25.9). Instead of solving an MDP at each update, it is
common to apply the update periodically, a strategy adopted from asynchronous
value iteration. An example of fictitious play is given in example 25.2.

Our policy πi(s) for a state s is derived from a given opponent model π−i and
computed utility Ui. We then select a best response:

arg max
a

Qi(s, a,π−i) (25.11)

In the implementation here, we use the property that each state of an MG policy
is a simple game policy whose reward is the corresponding Qi.
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mutable struct MGFictitiousPlay
𝒫 # Markov game
i # agent index
Qi # state-action value estimates
Ni # state-action counts

end

function MGFictitiousPlay(𝒫::MG, i)
ℐ, 𝒮, 𝒜, R = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.R
Qi = Dict((s, a) => R(s, a)[i] for s in 𝒮 for a in joint(𝒜))
Ni = Dict((j, s, aj) => 1.0 for j in ℐ for s in 𝒮 for aj in 𝒜[j])
return MGFictitiousPlay(𝒫, i, Qi, Ni)

end

function (πi::MGFictitiousPlay)(s)
𝒫, i, Qi = πi.𝒫, πi.i, πi.Qi
ℐ, 𝒮, 𝒜, T, R, γ = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.T, 𝒫.R, 𝒫.γ
πi′(i,s) = SimpleGamePolicy(ai => πi.Ni[i,s,ai] for ai in 𝒜[i])
πi′(i) = MGPolicy(s => πi′(i,s) for s in 𝒮)
π = [πi′(i) for i in ℐ]
U(s,π) = sum(πi.Qi[s,a]*probability(𝒫,s,π,a) for a in joint(𝒜))
Q(s,π) = reward(𝒫,s,π,i) + γ*sum(transition(𝒫,s,π,s′)*U(s′,π)

for s′ in 𝒮)
Q(ai) = Q(s, joint(π, SimpleGamePolicy(ai), i))
ai = argmax(Q, 𝒫.𝒜[πi.i])
return SimpleGamePolicy(ai)

end

function update!(πi::MGFictitiousPlay, s, a, s′)
𝒫, i, Qi = πi.𝒫, πi.i, πi.Qi
ℐ, 𝒮, 𝒜, T, R, γ = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.T, 𝒫.R, 𝒫.γ
for (j,aj) in enumerate(a)

πi.Ni[j,s,aj] += 1
end
πi′(i,s) = SimpleGamePolicy(ai => πi.Ni[i,s,ai] for ai in 𝒜[i])
πi′(i) = MGPolicy(s => πi′(i,s) for s in 𝒮)
π = [πi′(i) for i in ℐ]
U(π,s) = sum(πi.Qi[s,a]*probability(𝒫,s,π,a) for a in joint(𝒜))
Q(s,a) = R(s,a)[i] + γ*sum(T(s,a,s′)*U(π,s′) for s′ in 𝒮)
for a in joint(𝒜)

πi.Qi[s,a] = Q(s,a)
end

end

Algorithm 25.7. Fictitious play for
agent i in an MG 𝒫 that main-
tains counts Ni of other agent ac-
tion selections over time for each
state and averages them, assuming
that this is their stochastic policy.
It then computes a best response
to this policy and performs the cor-
responding utility-maximizing ac-
tion.
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The predator-prey hex world MG (appendix F.13) has one predator (red)
and one prey (blue). If the predator catches the prey, it receives a reward of
10 and the prey receives a reward of −100. Otherwise, both agents receive a
−1 reward. The agents move simultaneously. We apply fictitious play with
resets to the initial state every 10 steps.

We observe that the predator learns to chase the prey and the prey learns
to flee. Interestingly, the predator also learns that the prey runs to the east
corner and waits. The prey learns that if it waits at this corner, it can flee
from the predator immediately as it jumps toward the prey. Here, the prey
evades the predator by moving west when the predator moves north east.

Here is a plot of the learned opponent model of the highlighted state (both
predator and prey hex locations) for both the predator and the prey:
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Example 25.2. Fictitious play on
the predator-prey hex world prob-
lem. Stochasticity was introduced
when initializing the policies to bet-
ter show learning trends.
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25.5 Gradient Ascent

We can use gradient ascent (algorithm 25.8) to learn policies in a way similar to
what was done in the previous chapter for simple games. The state must now be
considered and requires learning the action value function. At each time step t,
all agents perform joint actions at in a state st. As in gradient ascent for simple
games, an agent i assumes that the agents’ policies π−i

t are the observed actions
a−i

t . The gradient is

∂Uπt ,i(st)

∂πi
t(ai | st)

=
∂

∂πi(ai | st)

(

∑
a

∏
j

π j(aj | st)Q
πt ,i(st, at)

)

(25.12)

= Qπt ,i(st, ai, a−i
t ) (25.13)

The gradient step follows a similar pattern as in the previous chapter, except the
state s is included and the expected utility estimate Qi

t is used:

πi
t+1(ai | st) = πi

t(ai | st) + αi
tQ

i(st, ai, a−i) (25.14)

Again, this update may require projection to ensure that the policy πi
t+1 at st is a

valid probability distribution.
As with fictitious play in the previous section, we must estimate Qi

t. We can
use Q-learning:

Qi
t+1(st, at) = Qi

t(st, at) + αt

(

Ri(st, at) + γ max
ai ′

Qi
t(st+1, ai ′, a−i

t )−Qi
t(st, at)

)

(25.15)

We can use the inverse square root learning rate αt = 1/
√

t. Exploration is also
necessary. We can use an ǫ-greedy strategy, perhaps also with ǫt = 1/

√
t.

25.6 Nash Q-Learning

Another learning-based approach is Nash Q-learning (algorithm 25.9), which
borrows inspiration from Q-learning (section 17.2).6 The method maintains an 6 J. Hu and M.P. Wellman, “Nash

Q-Learning for General-Sum
Stochastic Games,” Journal of
Machine Learning Research, vol. 4,
pp. 1039–1069, 2003.

estimate of the action value function, which is adapted as the agents react to each
other’s changing policies. In the process of updating the action value function, it
computes a Nash equilibrium to model the behavior of the other agents.
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mutable struct MGGradientAscent
𝒫 # Markov game
i # agent index
t # time step
Qi # state-action value estimates
πi # current policy

end

function MGGradientAscent(𝒫::MG, i)
ℐ, 𝒮, 𝒜 = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜
Qi = Dict((s, a) => 0.0 for s in 𝒮, a in joint(𝒜))
uniform() = Dict(s => SimpleGamePolicy(ai => 1.0 for ai in 𝒫.𝒜[i])

for s in 𝒮)
return MGGradientAscent(𝒫, i, 1, Qi, uniform())

end

function (πi::MGGradientAscent)(s)
𝒜i, t = πi.𝒫.𝒜[πi.i], πi.t
ϵ = 1 / sqrt(t)
πi′(ai) = ϵ/length(𝒜i) + (1-ϵ)*πi.πi[s](ai)
return SimpleGamePolicy(ai => πi′(ai) for ai in 𝒜i)

end

function update!(πi::MGGradientAscent, s, a, s′)
𝒫, i, t, Qi = πi.𝒫, πi.i, πi.t, πi.Qi
ℐ, 𝒮, 𝒜i, R, γ = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜[πi.i], 𝒫.R, 𝒫.γ
jointπ(ai) = Tuple(j == i ? ai : a[j] for j in ℐ)
α = 1 / sqrt(t)
Qmax = maximum(Qi[s′, jointπ(ai)] for ai in 𝒜i)
πi.Qi[s, a] += α * (R(s, a)[i] + γ * Qmax - Qi[s, a])
u = [Qi[s, jointπ(ai)] for ai in 𝒜i]
π′ = [πi.πi[s](ai) for ai in 𝒜i]
π = project_to_simplex(π′ + u / sqrt(t))
πi.t = t + 1
πi.πi[s] = SimpleGamePolicy(ai => p for (ai, p) in zip(𝒜i, π))

end

Algorithm 25.8. Gradient ascent
for an agent i of an MG 𝒫. The
algorithm incrementally updates
its distributions of actions at vis-
ited states following gradient as-
cent to improve the expected utility.
The projection function from algo-
rithm 23.6 is used to ensure that
the resulting policy remains a valid
probability distribution.
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An agent following Nash Q-learning maintains an estimate of a joint action
value function Q(s, a). This action value function is updated after every state
transition using a Nash equilibrium computed from a simple game constructed
from this value function. After a transition from s to s′ following the joint action
a, we construct a simple game with the same number of agents and the same joint
action space, but the reward function is equal to the estimated value of s′ such
that R(a′) = Q(s′, a′). The agent computes a Nash equilibrium policy π′ over the
next action a′. Under the derived policy, the expected utility of the successor state
is

U(s′) = ∑
a′

Q(s′, a′) ∏
j∈I

π j ′(aj ′) (25.16)

The agent then updates its value function:

Q(s, a)← Q(s, a) + α
(

R(s, a) + γU(s′)−Q(s, a)
) (25.17)

where the learning rate α is typically a function of the state-action count α =

1/
√

N(s, a).
As with regular Q-learning, we need to adopt an exploration strategy to ensure

that all states and actions are tried often enough. In algorithm 25.9, the agent
follows an ǫ-greedy policy. With probability ǫ = 1/ ∑a(N(s, a)), it selects an
action uniformly at random. Otherwise, it will use the result from the Nash
equilibrium.

25.7 Summary

• MGs are an extension of MDPs to multiple agents or an extension of simple
games to sequential problems. In these problems, multiple agents compete
and individually receive rewards over time.

• The Nash equilibrium can be formulated for MGs, but it must now consider
all actions for all agents in all states.

• The problem of finding a Nash equilibrium can be formulated as a nonlinear
optimization problem.

• We can generalize fictitious play to MGs by using a known transition function
and incorporating estimates of action values.
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mutable struct NashQLearning
𝒫 # Markov game
i # agent index
Q # state-action value estimates
N # history of actions performed

end

function NashQLearning(𝒫::MG, i)
ℐ, 𝒮, 𝒜 = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜
Q = Dict((j, s, a) => 0.0 for j in ℐ, s in 𝒮, a in joint(𝒜))
N = Dict((s, a) => 1.0 for s in 𝒮, a in joint(𝒜))
return NashQLearning(𝒫, i, Q, N)

end

function (πi::NashQLearning)(s)
𝒫, i, Q, N = πi.𝒫, πi.i, πi.Q, πi.N
ℐ, 𝒮, 𝒜, 𝒜i, γ = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒜[πi.i], 𝒫.γ
M = NashEquilibrium()
𝒢 = SimpleGame(γ, ℐ, 𝒜, a -> [Q[j, s, a] for j in ℐ])
π = solve(M, 𝒢)
ϵ = 1 / sum(N[s, a] for a in joint(𝒜))
πi′(ai) = ϵ/length(𝒜i) + (1-ϵ)*π[i](ai)
return SimpleGamePolicy(ai => πi′(ai) for ai in 𝒜i)

end

function update!(πi::NashQLearning, s, a, s′)
𝒫, ℐ, 𝒮, 𝒜, R, γ = πi.𝒫, πi.𝒫.ℐ, πi.𝒫.𝒮, πi.𝒫.𝒜, πi.𝒫.R, πi.𝒫.γ
i, Q, N = πi.i, πi.Q, πi.N
M = NashEquilibrium()
𝒢 = SimpleGame(γ, ℐ, 𝒜, a′ -> [Q[j, s′, a′] for j in ℐ])
π = solve(M, 𝒢)
πi.N[s, a] += 1
α = 1 / sqrt(N[s, a])
for j in ℐ

πi.Q[j,s,a] += α*(R(s,a)[j] + γ*utility(𝒢,π,j) - Q[j,s,a])
end

end

Algorithm 25.9. Nash Q-learning
for an agent i in an MG 𝒫. The al-
gorithm performs joint-action Q-
learning to learn a state-action
value function for all agents. A sim-
ple game is built with Q, and we
compute a Nash equilibrium using
algorithm 24.5. The equilibrium
is then used to update the value
function. This implementation also
uses a variable learning rate pro-
portional to the number of times
state-joint-action pairs are visited,
which is stored in N. In addition,
it uses ǫ-greedy exploration to en-
sure that all states and actions are
explored.
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• Gradient ascent approaches iteratively improve a stochastic policy, and they
do not need to assume a model.

• Nash Q-learning adapts traditional Q-learning to multiagent problems and
involves solving for a Nash equilibrium of a simple game constructed from
models of the other players.

25.8 Exercises
Exercise 25.1. Show that MGs are extensions of both MDPs and simple games. Show this
by formulating an MDP as an MG and by formulating a simple game as an MG.

Solution: MGs generalize simple games. For any simple game with I , A, and R, we can
construct an MG by just having a single state that self-loops. In other words, this MG has
S = {s1}, T(s1 | s1, a) = 1, and R(s1, a) = R(a).

MGs generalize MDPs. For any MDP with S , A, T, and R, we can construct an MG
by just assigning the agents to be this single agent. In other words, this MG has I = {1},
A1 = A, T(s′ | s, a) = T(s′ | s′, a), and R(s, a) = R(s, a).

Exercise 25.2. For an agent i, given the fixed policies of other agents π−i, can there be a
stochastic best response that yields a greater utility than a deterministic best response?
Why do we consider stochastic policies in a Nash equilibrium?

Solution: No, if given fixed policies of other agents π−i, a deterministic best response is
sufficient to obtain the highest utility. The best response can be formulated as solving an
MDP, as described in section 25.2. It has been shown that deterministic policies are sufficient
to provide optimal utility maximization. Hence, the same is true for a best response in an
MG.

In a Nash equilibrium, a best response has to hold for all agents. Although a determin-
istic best response might be equal in utility to a stochastic one, an equilibrium may require
stochastic responses in order to prevent other agents from wanting to deviate.

Exercise 25.3. This chapter discussed only stationary Markov policies. What other cate-
gories of policies are there?

Solution: A so-called behavioral policy πi(ht) is one that has a dependence on the complete
history ht = (s1:t, a1:t−1). Such policies depend on the history of play of other agents. A
nonstationary Markov policy πi(s, t) is one that depends on the time step t, but not on the
complete history. For example, in the predator-prey hex world domain, for the first 10 time
steps, the action at a hex might be to go east, and after 10 time steps, to go west.

There can be Nash equilibria that are in the space of nonstationary, non-Markov joint
policies; stationary, non-Markov joint policies; and so forth. However, it has been proven
that every stationary MG has a stationary Markov Nash equilibrium.
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Exercise 25.4. In MGs, fictitious play requires the utilities to be estimated. List different
approaches to compute utilities, with their benefits and drawbacks.

Solution:Algorithm 25.7 performs a single backup for the visited state s and all joint actions
a. This approach has the benefit of being relatively efficient because it is a single backup.
Updating all joint actions at that state results in exploring actions that were not observed.
The drawback of this approach is that we may need to do this update at all states many
times to obtain a suitable policy.

An alternative is only to update the visited state and the joint action that was actually
taken, which results in a faster update step. The drawback is that it requires many more
steps to explore the full range of joint actions.

Another alternative is to perform value iteration at all states s until convergence at every
update step. Recall that the model of the opponent changes on each update. This induces a
new MDP, as described for deterministic best response in section 25.2.1. Consequently, we
would need to rerun value iteration after each update. The benefit of this approach is that
it can result in the most informed decision at each step because the utilities Qi consider all
states over time. The drawback is that the update step is very computationally expensive.
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