
24 Multiagent Reasoning

So far, we have focused on making rational decisions for a single agent. These
models have natural extensions to multiple agents. New challenges emerge as
agents interact; agents can aid each other or act in their own best interests. Multi-
agent reasoning is a subject of game theory.1 This chapter builds on the concepts

1 Game theory is a broad field. Sev-
eral standard introductory books
include D. Fudenberg and J. Tirole,
Game Theory. MIT Press, 1991. R. B.
Myerson, Game Theory: Analysis of
Conflict. Harvard University Press,
1997. Y. Shoham and K. Leyton-
Brown, Multiagent Systems: Algo-
rithmic, Game Theoretic, and Logical
Foundations. Cambridge University
Press, 2009.

introduced earlier, extending them to multiagent contexts. We will discuss the
foundational game theoretic approaches to compute decision strategies and mul-
tiagent equilibria.

24.1 Simple Games

A simple game (algorithm 24.1) is a fundamental model for multiagent reasoning.2 2 Simple games encompass normal
form games (also called standard
form games or matrix games),
finite-horizon repeated games,
and infinite-horizon discounted
repeated games. Y. Shoham and K.
Leyton-Brown, Multiagent Systems:
Algorithmic, Game Theoretic, and
Logical Foundations. Cambridge
University Press, 2009.

Each agent i ∈ I selects an action ai tomaximize their own accumulation of reward
ri. The joint action spaceA = A1 × · · · × Ak consists of all possible combinations of
the actions Ai available to each agent. The actions selected simultaneously across
agents can be combined to form a joint action a = (a1, . . . , ak) from this joint action
space.3 The joint reward function R(a) = (R1(a), . . . , Rk(a)) represents the reward

3 A joint action is also called an ac-
tion profile.

produced by the joint action a. The joint reward is written r = (r1, . . . , rk). Simple
games do not include states or transition functions. Example 24.1 introduces a
simple game.

struct SimpleGame
γ # discount factor
ℐ # agents
𝒜 # joint action space
R # joint reward function

end

Algorithm 24.1. Data structure for
a simple game.
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The prisoner’s dilemma is a two-agent, two-action game involving two pris-
oners that are on trial. They can choose to cooperate and remain silent about
their shared crime, or defect and blame the other for their crime. If they both
cooperate, they both serve a sentence of one year. If agent i cooperates and
the other agent defects, then i serves four years and the other serves no time.
If both defect, then they both serve three years.

Two-agent simple games can be represented by a table. Rows represent
actions for agent 1. Columns represent actions for agent 2. The rewards for
agent 1 and 2 are shown in each cell.

Example 24.1. A simple game
known as the prisoner’s dilemma.
Additional detail is provided in ap-
pendix F.10.
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A joint policy π specifies a probability distribution over joint actions taken
by the agents. Joint policies can be decomposed into individual agent policies.
The probability that agent i selects action a is given by πi(a). In game theory, a
deterministic policy is called a pure strategy and a stochastic policy is called a
mixed strategy. The utility of a joint policy π from the perspective of agent i is

Ui(π) = ∑
a∈A

Ri(a) ∏
j∈I

π j(aj) (24.1)

Algorithm 24.2 implements routines for representing policies and computing
their utility.

A zero-sum game is a type of simple game where the sum of rewards across
agents is zero. Here, any gain of an agent results as a loss to the other agents.
A zero-sum game with two agents I = {1, 2} has opposing reward functions
R1(a) = −R2(a). They are typically solved with algorithms specialized for this
reward structure. Example 24.2 describes such a game.

24.2 Response Models

Before exploring different concepts for solving for a joint policy, we will begin by
discussing how tomodel the response of a single agent i, given fixed policies for the
other agents.Wewill use the notation−i as shorthand for (1, . . . , i− 1, i+ 1, . . . , k).
Using this notation, a joint action is written as a = (ai, a−i), a joint reward is
written as R(ai, a−i), and a joint policy is written as π = (πi,π−i). This section
discusses various approaches for computing a response to a known π−i.
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Rock-paper-scissors is a zero-sum game for two agents. Each agent selects
rock, paper, or scissors. Rock wins against scissors, paper wins against rock,
and scissors wins against paper, with a reward of 1 for the winner and −1

for the loser. If the agents select the same action, both receive 0 reward.
Generally, two-agent repeated games can be represented as a sequence of
payoff matrices, as shown here:
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Example 24.2. The well-known
game of rock-paper-scissors is an
example of a zero-sum game. Ap-
pendix F.11 provides additional de-
tails.

24.2.1 Best Response
A best response of agent i to the policies of the other agents π−i is a policy πi that
satisfies

Ui(πi,π−i) ≥ Ui(πi ′,π−i) (24.2)
for all other policies πi ′ 6= πi. In other words, a best response for an agent is a
policy where there is no incentive for them to change their policy, given a fixed
set of policies for the other agents. There may be multiple best responses.

If we restrict ourselves to deterministic policies, a deterministic best response to
opponent policies π−i is straightforward to compute. We simply iterate over all
of agent i’s actions and return the one that maximizes the utility as follows:

arg max
ai∈Ai

Ui(ai,π−i) (24.3)

Algorithm 24.3 provides an implementation of this.
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struct SimpleGamePolicy
p # dictionary mapping actions to probabilities

function SimpleGamePolicy(p::Base.Generator)
return SimpleGamePolicy(Dict(p))

end

function SimpleGamePolicy(p::Dict)
vs = collect(values(p))
vs ./= sum(vs)
return new(Dict(k => v for (k,v) in zip(keys(p), vs)))

end

SimpleGamePolicy(ai) = new(Dict(ai => 1.0))
end

(πi::SimpleGamePolicy)(ai) = get(πi.p, ai, 0.0)

function (πi::SimpleGamePolicy)()
D = SetCategorical(collect(keys(πi.p)), collect(values(πi.p)))
return rand(D)

end

joint(X) = vec(collect(product(X...)))

joint(π, πi, i) = [i == j ? πi : πj for (j, πj) in enumerate(π)]

function utility(𝒫::SimpleGame, π, i)
𝒜, R = 𝒫.𝒜, 𝒫.R
p(a) = prod(πj(aj) for (πj, aj) in zip(π, a))
return sum(R(a)[i]*p(a) for a in joint(𝒜))

end

Algorithm 24.2. A policy associ-
ated with an agent is represented
by a dictionary that maps actions
to probabilities. There are differ-
ent ways to construct a policy. One
way is to pass in a dictionary direc-
tory, inwhich case the probabilities
are normalized. Another way is to
pass in a generator that creates this
dictionary. We can also construct a
policy by passing in an action, in
which case it assigns probability 1
to that action. If we have an individ-
ual policy πi, we can call πi(ai)
to compute the probability the pol-
icy associates with action ai. If we
call πi(), then it will return a ran-
dom action according to that policy.
We can use joint(𝒜) to construct
the joint action space from 𝒜. We
can use utility(𝒫, π, i) to com-
pute the utility associated with ex-
ecuting joint policy π in the game
𝒫 from the perspective of agent i.

function best_response(𝒫::SimpleGame, π, i)
U(ai) = utility(𝒫, joint(π, SimpleGamePolicy(ai), i), i)
ai = argmax(U, 𝒫.𝒜[i])
return SimpleGamePolicy(ai)

end

Algorithm 24.3. For a simple game
𝒫, we can compute a determinis-
tic best response for agent i, given
that the other agents are playing
the policies in π.
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24.2.2 Softmax Response
We can use a softmax response to model how agent i will select their action.4 As 4 This kind of model is sometimes

referred to as a logit response or
quantal response. We introduced
similar softmax models earlier in
this book, in the context of directed
exploration strategies for reinforce-
ment learning (section 15.4).

discussed in section 6.7, humans are often not perfectly rational optimizers of
expected utility. The principle underlying the softmax response model is that
(typically human) agents are more likely to make errors in their optimization
when those errors are less costly. Given a precision parameter λ ≥ 0, this model
selects action ai according to

πi(ai) ∝ exp(λUi(ai,π−i)) (24.4)

As λ → 0, the agent is insensitive to differences in utility, and selects actions
uniformly at random. As λ → ∞, the policy converges to a deterministic best
response. We can treat λ as a parameter that can be learned from data using,
for example, maximum likelihood estimation (section 4.1). This learning-based
approach aims to be predictive of behavior rather than prescriptive of behav-
ior, though having a predictive model of other human agents can be useful in
building a system that prescribes optimal behavior. Algorithm 24.4 provides an
implementation of a softmax response.

function softmax_response(𝒫::SimpleGame, π, i, λ)
𝒜i = 𝒫.𝒜[i]
U(ai) = utility(𝒫, joint(π, SimpleGamePolicy(ai), i), i)
return SimpleGamePolicy(ai => exp(λ*U(ai)) for ai in 𝒜i)

end

Algorithm 24.4. For a simple game
𝒫 and a particular agent i, we can
compute the softmax response pol-
icy πi, given that the other agents
are playing the policies in π. This
computation requires specifying
the precision parameter λ.

24.3 Dominant Strategy Equilibrium

In some games, an agent has a dominant strategy, which is a policy that is a best
response against all other possible agent policies. For example, in the prisoner’s
dilemma (example 24.1), the best response of agent 1 is to defect regardless of
the policy of agent 2, making defect a dominant strategy for agent 1. A joint
policy where all the agents use dominant strategies is called a dominant strategy
equilibrium. In the prisoner’s dilemma, a joint policy where both agents defect is a
dominant strategy equilibrium.5 Many games do not have a dominant strategy

5 Interestingly, having both agents
act greedily with respect to their
own utility function results in a
worse outcome for both of them.
If they had both cooperated, then
they would both get a sentence of
one year instead of three years.

equilibrium. For example, in rock-paper-scissors (example 24.2), the best response
of agent 1 depends on the strategy of agent 2.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com



498 chapter 24. multiagent reasoning

24.4 Nash Equilibrium

In contrast with the dominant strategy equilibrium concept, a Nash equilibrium6 6 Named for the American math-
ematician John Forbes Nash, Jr.
(1928–2015) who formalized
the concept. J. Nash, “Non-
Cooperative Games,” Annals of
Mathematics, pp. 286–295, 1951.

always exists for games with a finite action space.7 A Nash equilibrium is a joint

7 Exercise 24.1 explores the case
where the action space is infinite.

policy π in which all agents are following a best response. In other words, a Nash
equilibrium is a joint policy in which no agents have an incentive to unilaterally
switch their policy.

Multiple Nash equilibria can exist in a single game (exercise 24.2). Sometimes
Nash equilibria may involve deterministic policies, but this is not always the case
(see example 24.3). Computing a Nash equilibrium is PPAD-complete, a class that
is distinct from NP-complete (appendix C.2) but also has no known polynomial
time algorithm.8

8 C. Daskalakis, P.W. Goldberg,
and C.H. Papadimitriou, “The
Complexity of Computing a Nash
Equilibrium,” Communications of
the ACM, vol. 52, no. 2, pp. 89–97,
2009.The problem of finding a Nash equilibrium can be framed as an optimization

problem:
minimize
π,U

∑
i

(

Ui −Ui(π)
)

subject to Ui ≥ Ui(ai,π−i) for all i, ai

∑
ai

πi(ai) = 1 for all i

πi(ai) ≥ 0 for all i, ai

(24.5)

The optimization variables correspond to the parameters of π and U. At conver-
gence, the objective will be 0, with Ui matching the utilities associated with policy
π as computed in equation (24.1) for each agent i. The first constraint ensures that
no agent will do better by unilaterally changing their action. Like the objective,
this first constraint is nonlinear because it involves a product of the parameters in
the optimization variable π. The last two constraints are linear, ensuring that π
represents a valid set of probability distributions over actions. Algorithm 24.5
implements this optimization procedure.

24.5 Correlated Equilibrium

The correlated equilibrium generalizes the Nash equilibrium concept by relaxing the
assumption that the agents act independently. The joint action in this case comes
from a full joint distribution. A correlated joint policy π(a) is a single distribution
over the joint actions of all agents. Consequently, the actions of the various agents
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24.5. correlated equilibrium 499

Suppose that we wish to find a Nash equilibrium for the prisoner’s dilemma
from example 24.1. If both agents always defect, both receive −3 reward.
Any deviation by any agent will result in a −4 reward for that agent; hence,
there is no incentive to deviate. Having both agents defect is thus a Nash
equilibrium for the prisoner’s dilemma.

Suppose that we now wish to find a Nash equilibrium for the rock-paper-
scissors scenario from example 24.2. Any deterministic strategy by one agent
can be easily countered by the other agent. For example, if agent 1 plays
rock, then agent 2’s best response is paper. Because there is no deterministic
Nash equilibrium for rock-paper-scissors, we know that there must be one
involving stochastic policies. Suppose that each agent selects from the actions
uniformly at random. This solution produces an expected utility of 0 for both
agents:
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Any deviation by an agent would decrease their expected payoff, meaning
that we have found a Nash equilibrium.

Example 24.3. Deterministic and
stochastic Nash equilibria.
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struct NashEquilibrium end

function tensorform(𝒫::SimpleGame)
ℐ, 𝒜, R = 𝒫.ℐ, 𝒫.𝒜, 𝒫.R
ℐ′ = eachindex(ℐ)
𝒜′ = [eachindex(𝒜[i]) for i in ℐ]
R′ = [R(a) for a in joint(𝒜)]
return ℐ′, 𝒜′, R′

end

function solve(M::NashEquilibrium, 𝒫::SimpleGame)
ℐ, 𝒜, R = tensorform(𝒫)
model = Model(Ipopt.Optimizer)
@variable(model, U[ℐ])
@variable(model, π[i=ℐ, 𝒜[i]] ≥ 0)
@NLobjective(model, Min,

sum(U[i] - sum(prod(π[j,a[j]] for j in ℐ) * R[y][i]
for (y,a) in enumerate(joint(𝒜))) for i in ℐ))

@NLconstraint(model, [i=ℐ, ai=𝒜[i]],
U[i] ≥ sum(

prod(j==i ? (a[j]==ai ? 1.0 : 0.0) : π[j,a[j]] for j in ℐ)
* R[y][i] for (y,a) in enumerate(joint(𝒜))))

@constraint(model, [i=ℐ], sum(π[i,ai] for ai in 𝒜[i]) == 1)
optimize!(model)
πi′(i) = SimpleGamePolicy(𝒫.𝒜[i][ai] => value(π[i,ai]) for ai in 𝒜[i])
return [πi′(i) for i in ℐ]

end

Algorithm 24.5. This nonlinear
program computes a Nash equilib-
rium for a simple game 𝒫.
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may be correlated, preventing the policies from being decoupled into individual
policies πi(ai). Algorithm 24.6 shows how to represent such a policy.

mutable struct JointCorrelatedPolicy
p # dictionary mapping from joint actions to probabilities
JointCorrelatedPolicy(p::Base.Generator) = new(Dict(p))

end

(π::JointCorrelatedPolicy)(a) = get(π.p, a, 0.0)

function (π::JointCorrelatedPolicy)()
D = SetCategorical(collect(keys(π.p)), collect(values(π.p)))
return rand(D)

end

Algorithm 24.6. A joint correlated
policy is represented by a dictio-
nary that maps joint actions to
probabilities. If π is a joint corre-
lated policy, evaluating π(a) will
return the probability associated
with the joint action a.

A correlated equilibrium is a correlated joint policy where no agent i can increase
their expected utility by deviating from their current action ai to another action
ai ′:

∑
a−i

Ri(ai, a−i)π(ai, a−i) ≥∑
a−i

Ri(ai ′, a−i)π(ai, a−i) (24.6)

Example 24.4 demonstrates this concept.
Every Nash equilibrium is a correlated equilibrium because we can always

form a joint policy from independent policies:

π(a) =
k

∏
i=1

πi(ai) (24.7)

If the individual policies satisfy equation (24.2), then the joint policy will satisfy
equation (24.6). Not all correlated equilibria, however, are Nash equilibria.

A correlated equilibrium can be computed using linear programming (algo-
rithm 24.7):

maximize
π

∑
i

∑
a

Ri(a)π(a)

subject to ∑
a−i

Ri(ai, a−i)π(ai, a−i) ≥∑
a−i

Ri(ai ′, a−i)π(ai, a−i) for all i, ai, ai ′

∑
a

π(a) = 1

π(a) ≥ 0 for all a

(24.8)
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Consider again the rock-paper-scissors scenario from example 24.2. In exam-
ple 24.3, we found that a Nash equilibrium involves both agents selecting
their actions uniformly at random. In correlated equilibria, we use a cor-
related joint policy π(a), meaning that we need to find a distribution over
(rock, rock), (rock, paper), (rock, scissors), (paper, rock), and so on. There
are nine possible joint actions.

First, consider the joint policy in which agent 1 selects rock and agent 2

selects scissors. The utilities are
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9
+ · · · = −1

If agent 2 switched to paper, it would receive a utility of 1. Hence, this is not
a correlated equilibrium.

Consider instead a correlated joint policy in which the joint action was
chosen uniformly at random, with π(a) = 1/9:
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+ · · · = 0

Any deviation from this results in one agent gaining utility and the other
losing utility. This is a correlated equilibrium for rock-paper-scissors.

Example 24.4. Computing cor-
related equilibria in rock-paper-
scissors.
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Although linear programs can be solved in polynomial time, the size of the joint
action space grows exponentially with the number of agents. The constraints
enforce a correlated equilibrium. The objective, however, can be used to select
among different valid correlated equilibria. Table 24.1 provides several common
choices for the objective function.

struct CorrelatedEquilibrium end

function solve(M::CorrelatedEquilibrium, 𝒫::SimpleGame)
ℐ, 𝒜, R = 𝒫.ℐ, 𝒫.𝒜, 𝒫.R
model = Model(Ipopt.Optimizer)
@variable(model, π[joint(𝒜)] ≥ 0)
@objective(model, Max, sum(sum(π[a]*R(a) for a in joint(𝒜))))
@constraint(model, [i=ℐ, ai=𝒜[i], ai′=𝒜[i]],

sum(R(a)[i]*π[a] for a in joint(𝒜) if a[i]==ai)
≥ sum(R(joint(a,ai′,i))[i]*π[a] for a in joint(𝒜) if a[i]==ai))

@constraint(model, sum(π) == 1)
optimize!(model)
return JointCorrelatedPolicy(a => value(π[a]) for a in joint(𝒜))

end

Algorithm 24.7. Correlated equi-
libria are a more general notion
of optimality for a simple game 𝒫
than a Nash equilibrium. They can
be computed using a linear pro-
gram. The resulting policies are cor-
related, meaning that the agents
stochastically select their joint ac-
tions.

Name Description Objective Function
Utilitarian Maximize the net utility. maximizeπ ∑i ∑a Ri(a)π(a)

Egalitarian Maximize the minimum
of all agents’ utilities.

maximizeπ minimizei ∑a Ri(a)π(a)

Plutocratic Maximize the maximum
of all agents’ utilities.

maximizeπ maximizei ∑a Ri(a)π(a)

Dictatorial Maximize agent i’s util-
ity.

maximizeπ ∑a Ri(a)π(a)

Table 24.1. Alternative objec-
tive functions for equation (24.8),
which select for various correlated
equilibria. These descriptions were
adapted from A. Greenwald and K.
Hall, “Correlated Q-Learning,” in
International Conference on Machine
Learning (ICML), 2003.

24.6 Iterated Best Response

Because computing a Nash equilibrium can be computationally expensive, an
alternative approach is to iteratively apply best responses in a series of repeated
games. In iterated best response (algorithm 24.8), we randomly cycle between
agents, solving for each agent’s best response policy in turn. This process may
converge to a Nash equilibrium, but there are guarantees only for certain classes
of games.9 In many problems, it is common to observe cycles.

9 Iterated best response will con-
verge, for example, for a class
known as potential games, as dis-
cussed in Theorem 19.12 of the text-
book by N. Nisan, T. Roughgar-
den, É. Tardos, and V.V. Vazirani,
eds.,Algorithmic Game Theory. Cam-
bridge University Press, 2007.
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struct IteratedBestResponse
k_max # number of iterations
π # initial policy

end

function IteratedBestResponse(𝒫::SimpleGame, k_max)
π = [SimpleGamePolicy(ai => 1.0 for ai in 𝒜i) for 𝒜i in 𝒫.𝒜]
return IteratedBestResponse(k_max, π)

end

function solve(M::IteratedBestResponse, 𝒫)
π = M.π
for k in 1:M.k_max

π = [best_response(𝒫, π, i) for i in 𝒫.ℐ]
end
return π

end

Algorithm 24.8. Iterated best re-
sponse involves cycling through
the agents and applying their best
response to the other agents. The
algorithm starts with some initial
policy and stops after k_max iter-
ations. For convenience, we have
a constructor that takes as input a
simple game and creates an initial
policy that has each agent select
actions uniformly at random. The
same solve function will be reused
in the next chapter in the context of
more complicated forms of games.

24.7 Hierarchical Softmax

An area known as behavioral game theory aims to model human agents. When
building decision-making systems that must interact with humans, computing
the Nash equilibrium is not always helpful. Humans often do not play a Nash
equilibrium strategy. First, it may be unclear which equilibrium to adopt if there
are many different equilibria in the game. For games with only one equilibrium,
it may be difficult for a human to compute the Nash equilibrium because of
cognitive limitations. Even if human agents can compute the Nash equilibrium,
they may doubt that their opponents can perform that computation.

There are many behavioral models in the literature,10 but one approach is to 10 C. F. Camerer, Behavioral Game
Theory: Experiments in Strategic Inter-
action. Princeton University Press,
2003.

combine the iterated approach from the previous section with a softmax model.
This hierarchical softmax approach (algorithm 24.9)11 models the depth of rationality

11 This approach is sometimes
called quantal-level-k or logit-level-k.
D.O. Stahl and P.W. Wilson, “Ex-
perimental Evidence on Players’
Models of Other Players,” Journal
of Economic Behavior & Organization,
vol. 25, no. 3, pp. 309–327, 1994.

of an agent by a level of k ≥ 0. A level 0 agent plays its actions uniformly at
random. A level 1 agent assumes the other players adopt level 0 strategies and
selects actions according to a softmax response with precision λ. A level k agent
selects actions according to a softmax model of the other players playing level
k− 1. Figure 24.1 illustrates this approach for a simple game.

We can learn the k and λ parameters of this behavioral model from data. If
we have a collection of joint actions played by different agents, we can compute
the associated likelihood for a given k and λ. We can then use an optimization
algorithm to attempt to find values of k and λ that maximize likelihood. This
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struct HierarchicalSoftmax
λ # precision parameter
k # level
π # initial policy

end

function HierarchicalSoftmax(𝒫::SimpleGame, λ, k)
π = [SimpleGamePolicy(ai => 1.0 for ai in 𝒜i) for 𝒜i in 𝒫.𝒜]
return HierarchicalSoftmax(λ, k, π)

end

function solve(M::HierarchicalSoftmax, 𝒫)
π = M.π
for k in 1:M.k

π = [softmax_response(𝒫, π, i, M.λ) for i in 𝒫.ℐ]
end
return π

end

Algorithm 24.9. The hierarchical
softmax model with precision pa-
rameter λ and level k. By default,
it starts with an initial joint policy
that assigns uniform probability to
all individual actions.

optimization typically cannot be done analytically, but we can use numerical
methods to perform this optimization.12 Alternatively, we can use a Bayesian

12 J. R. Wright and K. Leyton-
Brown, “Beyond Equilibrium:
Predicting Human Behavior in
Normal Form Games,” in AAAI
Conference on Artificial Intelligence
(AAAI), 2010.

approach to parameter learning.13

13 J. R. Wright and K. Leyton-
Brown, “Behavioral Game
Theoretic Models: A Bayesian
Framework for Parameter Analy-
sis,” in International Conference on
Autonomous Agents and Multiagent
Systems (AAMAS), 2012.

24.8 Fictitious Play

An alternative approach for computing policies for different agents is to have them
play each other in simulation and learn how to best respond. Algorithm 24.10
provides an implementation of the simulation loop. At each iteration, we evaluate
the various policies to obtain a joint action, and then this joint action is used by the
agents to update their policies.We can use a number of ways to update the policies
in response to observed joint actions. This section focuses on fictitious play, where
the agents use maximum likelihood estimates (as described in section 16.1) of the
policies followed by the other agents. Each agent follows its own best response,
assuming that the other agents act according to those estimates.14 14 G.W. Brown, “Iterative Solution

of Games by Fictitious Play,” Activ-
ity Analysis of Production and Alloca-
tion, vol. 13, no. 1, pp. 374–376, 1951.
J. Robinson, “An Iterative Method
of Solving a Game,”Annals of Math-
ematics, pp. 296–301, 1951.

To compute a maximum likelihood estimate, agent i tracks the number of
times that agent j takes action aj, storing it in table Ni(j, aj). These counts can be
initialized to any value, but they are often initialized to 1 to create initial uniform
uncertainty. Agent i computes its best response, assuming that each agent j follows
the stochastic policy:

π j(aj) ∝ Ni(j, aj) (24.9)
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Figure 24.1. The hierarchical soft-
max model applied to the trav-
eler’s dilemma (described in ap-
pendix F.12) for various depths of
rationality k and precision param-
eters λ. People tend to select ac-
tions between $97 and $100, even
though the Nash equilibrium is
only $2.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com



24.8. f ictit ious play 507

function simulate(𝒫::SimpleGame, π, k_max)
for k = 1:k_max

a = [πi() for πi in π]
for πi in π

update!(πi, a)
end

end
return π

end

Algorithm 24.10. A simulation of
a joint policy in simple game 𝒫 for
k_max iterations. The joint policy π
is a vector of policies that can be
individually updated through calls
to update!(πi, a).

At each iteration, we have each agent act according to a best response, assuming
these stochastic count-based policies for the other agents. We then update the
action counts for the actions taken. Algorithm 24.11 implements this simple
adaptive procedure. Figures 24.2 and 24.3 show how the policies evolve over
time using fictitious play. Fictitious play is not guaranteed to converge to a Nash
equilibrium.15

15 A concise background is pro-
vided by U. Berger, “Brown’s Orig-
inal Fictitious Play,” Journal of
Economic Theory, vol. 135, no. 1,
pp. 572–578, 2007.

mutable struct FictitiousPlay
𝒫 # simple game
i # agent index
N # array of action count dictionaries
πi # current policy

end

function FictitiousPlay(𝒫::SimpleGame, i)
N = [Dict(aj => 1 for aj in 𝒫.𝒜[j]) for j in 𝒫.ℐ]
πi = SimpleGamePolicy(ai => 1.0 for ai in 𝒫.𝒜[i])
return FictitiousPlay(𝒫, i, N, πi)

end

(πi::FictitiousPlay)() = πi.πi()

(πi::FictitiousPlay)(ai) = πi.πi(ai)

function update!(πi::FictitiousPlay, a)
N, 𝒫, ℐ, i = πi.N, πi.𝒫, πi.𝒫.ℐ, πi.i
for (j, aj) in enumerate(a)

N[j][aj] += 1
end
p(j) = SimpleGamePolicy(aj => u/sum(values(N[j])) for (aj, u) in N[j])
π = [p(j) for j in ℐ]
πi.πi = best_response(𝒫, π, i)

end

Algorithm 24.11. Fictitious play is
a simple learning algorithm for an
agent i of a simple game 𝒫 that
maintains counts of other agent ac-
tion selections over time and aver-
ages them, assuming that this is
their stochastic policy. It then com-
putes a best response to this pol-
icy and performs the correspond-
ing utility-maximizing action.
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Figure 24.2. Two fictitious play
agents learning and adapting to
one another in a prisoner’s dilem-
ma game. The first row illustrates
agent 1’s learned model of 2 (left)
and agent 1’s policy (right) over
iteration. The second row follows
the same pattern, but for agent
2. To illustrate variation in learn-
ing behavior, the initial counts for
each agent’s model over the other
agent’s action were assigned to a
random number between 1 and 10.
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Figure 24.3. A visualization of
two fictitious play agents learning
and adapting to one another in a
rock-paper-scissors game. The first
row illustrates agent 1’s learned
model of 2 (left) and agent 1’s
policy (right) over time. The sec-
ond row follows the same pat-
tern, but for agent 2. To illus-
trate variation in learning behavior,
the initial counts for each agent’s
model over the other agent’s ac-
tion were assigned to a random
number between 1 and 10. In
this zero-sum game, fictitious play
agents approach convergence to
their stochastic policy Nash equi-
librium.
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There are many variants of fictitious play. One variant, called smooth fictitious
play,16 selects a best response using expected utility plus a smoothing function, 16 D. Fudenberg and D. Levine,

“Consistency and Cautious Ficti-
tious Play,” Journal of Economic Dy-
namics and Control, vol. 19, no. 5–7,
pp. 1065–1089, 1995.

such as the entropy of the policy. Another variant is called rational learning or
Bayesian learning. Rational learning expands the model of fictitious play to be any
belief over other agents’ actions, formulated as a Bayesian prior. Bayes’ rule is then
used to update the beliefs, given the history of joint actions. Traditional fictitious
play can be seen as rational learning with a Dirichlet prior (section 4.2.2).

24.9 Gradient Ascent

Gradient ascent (algorithm 24.12) incrementally adjusts the agent’s policy in the
gradient with respect to its utility. At time t, the gradient for agent i is

∂Ui(πt)

∂πi
t(ai)

=
∂

∂πi
t

(

∑
a

Ri(a)∏
j

π
j
t(aj)

)

= ∑
a−i

Ri(ai, a−i)∏
j 6=i

π
j
t(aj) (24.10)

We can then use standard gradient ascent with

πi
t+1(ai) = πi

t(ai) + αi
t
∂Ui(πt)

∂πi
t(ai)

(24.11)

with learning rate αi
t.17 This πi

t+1 may need to be projected back to a valid proba-

17 The infinitesimal gradient ascent
method uses an inverse square root
learning rate of αi

t = 1/
√

t. It is re-
ferred to as infinitesimal because
αi

t → 0 as t→ ∞. We use this learn-
ing rate in our implementation.
S. Singh, M. Kearns, and Y. Man-
sour, “Nash Convergence of Gra-
dient Dynamics in General-Sum
Games,” in Conference on Uncer-
tainty in Artificial Intelligence (UAI),
2000.

bility distribution, just as in section 23.4 for POMDP policies.
In practice, however, an agent i knows only its own policy πi

t, not the policies
of the others, making the computation of the gradient difficult. But agents do
observe the joint actions at that are performed. Although we could try to estimate
their policies as done in fictitious play, one simple approach is to assume the
policy of the other agents is to replay their most recent action.18 The gradient

18 This approach is used in gener-
alized infinitesimal gradient ascent
(GIGA). M. Zinkevich, “Online
Convex Programming and Gener-
alized Infinitesimal Gradient As-
cent,” in International Conference on
Machine Learning (ICML), 2003. A
variation of the gradient update
rule to encourage convergence is
proposed by M. Bowling, “Con-
vergence and No-Regret in Multia-
gent Learning,” in Advances in Neu-
ral Information Processing Systems
(NIPS), 2005.

then simplifies to
∂Ui(πt)

∂πi
t(ai)

= Ri(ai, a−i) (24.12)

Figure 24.4 demonstrates this approach for a simple rock-paper-scissors game.

24.10 Summary

• In simple games, multiple agents compete to maximize expected reward.
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mutable struct GradientAscent
𝒫 # simple game
i # agent index
t # time step
πi # current policy

end

function GradientAscent(𝒫::SimpleGame, i)
uniform() = SimpleGamePolicy(ai => 1.0 for ai in 𝒫.𝒜[i])
return GradientAscent(𝒫, i, 1, uniform())

end

(πi::GradientAscent)() = πi.πi()

(πi::GradientAscent)(ai) = πi.πi(ai)

function update!(πi::GradientAscent, a)
𝒫, ℐ, 𝒜i, i, t = πi.𝒫, πi.𝒫.ℐ, πi.𝒫.𝒜[πi.i], πi.i, πi.t
jointπ(ai) = [SimpleGamePolicy(j == i ? ai : a[j]) for j in ℐ]
r = [utility(𝒫, jointπ(ai), i) for ai in 𝒜i]
π′ = [πi.πi(ai) for ai in 𝒜i]
π = project_to_simplex(π′ + r / sqrt(t))
πi.t = t + 1
πi.πi = SimpleGamePolicy(ai => p for (ai, p) in zip(𝒜i, π))

end

Algorithm 24.12. An implementa-
tion of gradient ascent for an agent
i of a simple game 𝒫. The algorithm
updates its distribution over ac-
tions incrementally following gra-
dient ascent to improve the ex-
pected utility. The projection func-
tion from algorithm 23.6 is used
to ensure that the resulting policy
remains a valid probability distri-
bution.
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Figure 24.4. Two gradient ascent
agents with randomly initialized
policies in a rock-paper-scissors
game. We use a variation of algo-
rithm 24.12 with a learning rate of
0.1/
√

t. Shown here are 20 policy
updates. Although different simu-
lation traces will converge because
the step size goes to 0, different
samples from the stochastic poli-
cies may result in convergence to
different policies.
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• Optimality is not as straightforward in the multiagent setting, with multiple
possible solution concepts for extracting policies from a reward specification.

• A best response of an agent to a fixed set of policies of the other agents is one
where there is no incentive to deviate.

• A Nash equilibrium is a joint policy where all agents follow a best response.

• A correlated equilibrium is the same as a Nash equilibrium, except that all the
agents follow a single joint action distribution that allows correlation between
agents.

• Iterated best response can quickly optimize a joint policy by iteratively applying
best responses, but there are no general guarantees of convergence.

• Hierarchical softmax attempts to model agents in terms of their depth of
rationality and precision, which can be learned from past joint actions.

• Fictitious play is a learning algorithm that uses maximum-likelihood action
models for other agents to find best response policies, with the potential to
converge to a Nash equilibrium.

• Gradient ascent, followed by projection onto the probability simplex, can be
used to learn policies.

24.11 Exercises
Exercise 24.1. Give an example of a game with two agents and an infinite number of
actions such that a Nash equilibrium does not exist.

Solution: Suppose that the action space of each agent consists of the negative real numbers
and their reward is equal to their action. Since no greatest negative number exists, a Nash
equilibrium cannot exist.

Exercise 24.2. Give an example of a game with two agents, two actions, and two Nash
equilibria involving deterministic policies.

Solution: Here is one example.19 Suppose that we have two aircraft on a collision course, 19 This example comes from M. J.
Kochenderfer, Decision Making Un-
der Uncertainty: Theory and Applica-
tion. MIT Press, 2015.

and the pilots of each aircraft must choose between climb or descend to avoid collision. If
the pilots both choose the same maneuver, then there is a crash, with utility −4 to both
pilots. Because climbing requires more fuel than descending, there is an additional penalty
of −1 to any pilot who decides to climb.
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Exercise 24.3. Given a stationary joint policy π that is a Nash equilibrium for a simple
game with a horizon of 1, prove that it is also a Nash equilibrium for the same simple
game repeated to any finite or infinite horizon.

Solution: By definition of a Nash equilibrium, all agents i are performing a best response
πi to all other policies πi ′ 6= πi following equation (24.2):

Ui(πi,π−i) ≥ Ui(πi ′,π−i)

By definition of Ui, we have

Ui(π) = ∑
a∈A

Ri(a)
k

∏
j=1

π j(aj)

The joint policy remains constant over time for all agents. Apply any horizon n, with
any discount factor (γ = 1 for n < ∞; γ < 1 for n→ ∞). The utility of agent i after n steps
is

Ui,n(π) =
n

∑
t=1

γt−1 ∑
a∈A

Ri(a)
k

∏
j=1

π j(aj)

= ∑
a∈A

Ri(a)
k

∏
j=1

π j(aj)
n

∑
t=1

γt−1

= Ui(π)
n

∑
t=1

γt−1

= Ui(π)c
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The discount factor becomes a constant multiplier c > 0. Therefore, any constant multi-
plication of equation (24.2) on both sides results in the same inequality, completing the
proof:

Ui(πi,π−i) ≥ Ui(πi ′,π−i)

Ui(πi,π−i)c ≥ Ui(πi ′,π−i)c

Ui(πi,π−i)
n

∑
t=1

γt−1 ≥ Ui(πi ′,π−i)
n

∑
t=1

γt−1

n

∑
t=1

γt−1Ui(πi,π−i) ≥
n

∑
t=1

γt−1Ui(πi ′,π−i)

Ui,n(πi,π−i) ≥ Ui,n(πi ′,π−i)

Exercise 24.4. Prove that a Nash equilibrium is a correlated equilibrium.

Solution: Consider any uncorrelated joint policy π(a). For any agent i:

π(a) =
k

∏
j=1

π j(aj) = πi(ai)∏
j 6=i

π j(aj) (24.13)

It is sufficient to show that a correlated equilibrium under this constraint forms the exact
definition of Nash equilibrium. Begin by applying equation (24.13) to the definition of a
correlated equilibrium. For all i, any ai with nonzero probability20 in π, and all ai ′: 20 That is, ∑a−i π(ai , a−i) > 0. If it

is zero, then the inequality trivially
becomes true with 0 ≥ 0.∑

a−i

Ri(ai, a−i)π(ai, a−i) ≥∑
a−i

Ri(ai ′, a−i)π(ai, a−i)

∑
a−i

Ri(ai, a−i)πi(ai)∏
j 6=i

π j(aj) ≥∑
a−i

Ri(ai ′, a−i)πi(ai)∏
j 6=i

π j(aj)

∑
a−i

Ri(ai, a−i)∏
j 6=i

π j(aj) ≥∑
a−i

Ri(ai ′, a−i)∏
j 6=i

π j(aj) (24.14)

Now consider the definition of utility:

Ui(πi,π−i) = ∑
a

Ri(ai, a−i)
k

∏
j=1

π j(aj) = ∑
ai

πi(ai)



∑
a−i

Ri(ai, a−i)∏
j 6=i

π j(aj)





Next apply equation (24.14) to the terms inside the parentheses:

Ui(πi,π−i) ≥∑
ai

πi(ai)



∑
a−i

Ri(ai ′, a−i)∏
j 6=i

π j(aj)



 =



∑
a−i

Ri(ai ′, a−i)∏
j 6=i

π j(aj)



∑
ai

πi(ai) = ∑
a−i

Ri(ai ′, a−i)∏
j 6=i

π j(aj)
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This equation holds for any action ai ′. Consequently, applying any probability weighting
preserves the right side of this inequality. Consider any other policy πi ′ as a weighting:

Ui(πi,π−i) ≥∑
ai

πi ′(ai)∑
a−i

Ri(ai, a−i)∏
j 6=i

π j(aj) = Ui(πi ′,π−i)

This inequality is the definition of a best response. It must hold for all agents i and thus
forms the definition of a Nash equilibrium. In summary, a Nash equilibrium is a special
kind of correlated equilibrium that is constrained to an uncorrelated joint policy.

Exercise 24.5. Give an example of a two-agent game, each with two actions, for which the
correlated equilibria cannot be represented as a Nash equilibrium.

Solution: Consider the following game, in which two people want to go on a date but have
a conflicting preference on what kind of date (in this case, a dinner or a movie):
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en
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There is a stochasticNash equilibrium.Agent 1 follows π1(dinner) = 2/3 and π1(movie) =
1/3. Agent 2 follows π2(dinner) = 1/3 and π2(movie) = 2/3. The utilities are:

U1(π) =
2

3
· 1

3
· 2 + 2

3
· 2

3
· 0 + 1

3
· 1

3
· 0 + 1

3
· 2

3
· 1 =

2

9
· 2 + 2

9
· 1 =

2

3

U2(π) =
2

3
· 1

3
· 1 + 2

3
· 2

3
· 0 + 1

3
· 1

3
· 0 + 1

3
· 2

3
· 2 =

2

9
· 1 + 2

9
· 2 =

2

3

However, if the two agents correlated their actions on a fair coin flip π(movie,movie) =
π(dinner,dinner) = 0.5, then they could coordinate either both going to dinner or both
going to the movie. The utilities are:

U1(π) = 0.5 · 2 + 0.0 · 0 + 0.0 · 0 + 0.5 · 1 = 0.5 · 2 + 0.5 · 1 =
3

2

U2(π) = 0.5 · 1 + 0.0 · 0 + 0.0 · 0 + 0.5 · 2 = 0.5 · 1 + 0.5 · 2 =
3

2

This is not possible with a Nash equilibrium. Intuitively, in this example, this is because the
probabilistic weight is spread out over each row independently for each player. Conversely,
a correlated equilibrium can be targeted toward a specific cell (in this case, with a higher
payoff).
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Exercise 24.6. Algorithms such as iterated best response and fictitious play do not converge
in every game. Construct a game that demonstrates this nonconvergence.

Solution: Iterated best response diverges in rock-paper-scissors. Here is an example of the
first 10 iterations with random initialization:

Iteration Agent 1’s Action Agent 2’s Action Rewards
1 paper rock 1.0, −1.0

2 paper scissors −1.0, 1.0

3 rock scissors 1.0, −1.0

4 rock paper −1.0, 1.0

5 scissors paper 1.0, −1.0

6 scissors rock −1.0, 1.0

7 paper rock 1.0, −1.0

8 paper scissors −1.0, 1.0

9 rock scissors 1.0, −1.0

10 rock paper −1.0, 1.0

Fictitious play also will not converge in almost-rock-paper-scissors:21

21 This game and many others
are discussed in greater detail
by Y. Shoham and K. Leyton-
Brown, Multiagent Systems: Algo-
rithmic, Game Theoretic, and Logical
Foundations. Cambridge University
Press, 2009.
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Here is an example of fictitious play agents playing this game for 60 iterations:
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Exercise 24.7. What does iterated best response converge to in the traveler’s dilemma
(appendix F.12)?

Solution: It converges to the Nash equilibrium of $2.
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