
23 Controller Abstractions

This chapter introduces controller representations for POMDP policies, which
allow policies to maintain their own internal state. These representations can
improve scalability over previous methods that enumerate over belief points.
This chapter presents algorithms that construct controllers using policy iteration,
nonlinear programming, and gradient ascent.

23.1 Controllers

A controller is a policy representation that maintains its own internal state. It
is represented as a graph consisting of a finite set of nodes X.1 The active node 1 Such a policy representation is

also called a finite state controller.
Wewill refer to the controller states
as ‘‘nodes’’ rather than ‘‘states’’ to
reduce ambiguitywith the environ-
ment state.

changes as actions are taken and new observations are made. Having a finite set
of nodes makes these controllers more computationally tractable than belief-point
methods that must consider the reachable belief space.

Actions are selected according to an action distribution ψ(a | x) that depends
on the current node. When selecting an action, in addition to transitioning to an
unobserved s′ and receiving an observation o, the control state also advances
according to a successor distribution η(x′ | x, a, o). Figure 23.1 shows how these
distributions are used as a controller policy is followed. Algorithm 23.1 provides
an implementation, and example 23.1 shows a controller for the crying baby
problem.

Controllers generalize conditional plans, whichwere introduced in section 20.2.
Conditional plans represent policies as trees, with each node deterministically
assigning an action and each edge specifying a unique successor node. Controllers
represent policies as directed graphs, and actions may have stochastic transitions
to multiple successor nodes. Example 23.2 compares these two representations.

472 chapter 23. controller abstractions

x1

a1

o1

x2

a2

o2

x3

a3

o3

x4

ψ(a | x)

η(x′ | x, a, o)

ψ(a | x)

η(x′ | x, a, o)

ψ(a | x)

η(x′ | x, a, o) Figure 23.1. In a controller rep-
resentation, the action is sampled
from the action selection distribu-
tion. This action, as well as the sub-
sequent observation it produces,
are used alongside the previous
node x to produce the successor
node x′.

We can construct a simple controller for the crying baby problem (ap-
pendix F.7). This example is shown here as a graph with two nodes, x1

and x2. When in x1, the controller always ignores the baby. When in x2, the
controller always feeds the baby. If the baby cries, we always transition to x2,
and if the baby is quiet, we always transition to x1.

x1 x2

o = crying

o = quiet

o = quiet o = crying

ψ(ignore | x1) = 1 ψ(feed | x2) = 1

Example 23.1. A two-node con-
troller for the crying baby problem.
This compact representation cap-
tures a straightforward solution to
the crying baby problem (namely,
to react immediately to the most
recent observation).

mutable struct ControllerPolicy
𝒫 # problem
X # set of controller nodes
ψ # action selection distribution
η # successor selection distribution

end

function (π::ControllerPolicy)(x)
𝒜, ψ = π.𝒫.𝒜, π.ψ
dist = [ψ[x, a] for a in 𝒜]
return rand(SetCategorical(𝒜, dist))

end

function update(π::ControllerPolicy, x, a, o)
X, η = π.X, π.η
dist = [η[x, a, o, x′] for x′ in X]
return rand(SetCategorical(X, dist))

end

Algorithm 23.1. A finite state con-
troller policy representation for a
POMDP 𝒫. The nodes in X are an ab-
stract representation of reachable
beliefs. Actions and controller suc-
cessor nodes are selected stochasti-
cally. Given a node x, actions are se-
lected following the distribution ψ.
The function π(x) implements this
mechanism to stochastically select
actions. After performing action a
in node x and observing observa-
tion o, the successor is selected fol-
lowing the distribution η. The func-
tion update implements this mech-
anism to stochastically select suc-
cessor nodes.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

23.1 . controllers 473

Consider a three-step conditional plan (left) compared with the more gen-
eral, two-node finite state controller (right) from example 23.1. In this case,
actions and successors are selected deterministically. The deterministic ac-
tion is marked in the center of a node, and the outgoing edges represent the
deterministic successor nodes. This problem has two actions (a1 and a2) and
two observations (o1 and o2).

a1

a2

a1

o1

a2

o2

o1

a1

a2

o1

a1

o2

o2

a1 a2

o1

o1

o2 o2

o1 = quiet
o2 = crying
a1 = ignore
a2 = feed

The conditional plan performs action a1 first, toggles the previously cho-
sen action if it observes o1, and preserves the previously chosen action if it
observes o2. The controller performs the same logic, with five fewer controller
nodes. Moreover, the controller represents the described infinite horizon pol-
icy perfectly with only two nodes (compared to seven). The conditional plan
cannot capture this infinite horizon policy because it would require a tree of
infinite depth.

Example 23.2. A comparison of a
simple conditional plan with a sim-
ple deterministic controller.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

474 chapter 23. controller abstractions

Controllers have several advantages over conditional plans. First, controllers
can provide a more compact representation. The number of nodes in a conditional
plan grows exponentially with depth, but this need not be the case with finite state
controllers. The approximation methods from previous chapters might also not
be as efficient because they must maintain a large set of beliefs and corresponding
alpha vectors. Controllers can be much more compact, considering infinitely
many possible reachable beliefs with a small, finite number of nodes. Another
advantage of controllers is that they do not require that a belief be maintained.
Each controller node corresponds to a subset of the belief space. These subsets are
not necessarily mutually exclusive. A controller transitions between these subsets
that together cover the reachable belief space. The controller itself selects a new
node based on each observation rather than relying on a belief update, which can
be expensive for some domains.

The utility of following a controller policy can be computed by forming a
product MDP whose state space is X× S . The value of being in state s with node
x active is

U(x, s) = ∑
a

ψ(a | x)

(

R(s, a) + γ ∑
s′

T(s′ | s, a)∑
o

O(o | a, s′)∑
x′

η(x′ | x, a, o)U(x′, s′)

)

(23.1)

Policy evaluation involves solving the system of linear equations given in equa-
tion (23.1). Alternatively, we can apply iterative policy evaluation as shown in
algorithm 23.2.

If a belief is known, then the current value is

U(x, b) = ∑
s

b(s)U(x, s) (23.2)

We can think of U(x, s) as defining a set of alpha vectors, one for each node x in
X. Each alpha vector αx is defined by αx(s) = U(x, s). The current value for a
given alpha vector is U(x, b) = b⊤αx.

Given a controller and an initial belief, we can select an initial node by maxi-
mizing as follows:

x∗ = arg max
x

U(x, b) = arg max
x

b⊤αx (23.3)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

23.2. policy iteration 475

function utility(π::ControllerPolicy, U, x, s)
𝒮, 𝒜, 𝒪 = π.𝒫.𝒮, π.𝒫.𝒜, π.𝒫.𝒪
T, O, R, γ = π.𝒫.T, π.𝒫.O, π.𝒫.R, π.𝒫.γ
X, ψ, η = π.X, π.ψ, π.η
U′(a,s′,o) = sum(η[x,a,o,x′]*U[x′,s′] for x′ in X)
U′(a,s′) = T(s,a,s′)*sum(O(a,s′,o)*U′(a,s′,o) for o in 𝒪)
U′(a) = R(s,a) + γ*sum(U′(a,s′) for s′ in 𝒮)
return sum(ψ[x,a]*U′(a) for a in 𝒜)

end

function iterative_policy_evaluation(π::ControllerPolicy, k_max)
𝒮, X = π.𝒫.𝒮, π.X
U = Dict((x, s) => 0.0 for x in X, s in 𝒮)
for k in 1:k_max

U = Dict((x, s) => utility(π, U, x, s) for x in X, s in 𝒮)
end
return U

end

Algorithm 23.2. An algorithm for
performing iterative policy evalu-
ation to compute the utility of a fi-
nite state controller π with k_max
iterations. The utility function per-
forms a single-step evaluation for
the current controller node x and
state s following equation (23.1).
This algorithm was adapted from
algorithm 7.3, which applies itera-
tive policy evaluation to MDPs.

23.2 Policy Iteration

Section 20.5 showed how to incrementally add nodes in a conditional plan to
arrive at optimal finite horizon policy (algorithm 20.8). This section shows how to
incrementally add nodes to a controller to optimize for infinite horizon problems.
Although the policy representation is different, the version of policy iteration for
partially observable problems introduced in this section2 has some similarities

2 The policy iterationmethod given
here was given by E.A. Hansen,
“Solving POMDPs by Searching
in Policy Space,” in Conference on
Uncertainty in Artificial Intelligence
(UAI), 1998.with the policy iteration algorithm for fully observed problems (section 7.4).

Policy iteration (algorithm 23.3) begins with any initial controller and then
iterates between policy evaluation and policy improvement. In policy evaluation,
we evaluate the utilities U(x, s) by solving equation (23.1). In policy improvement,
we introduce new nodes to our controller. Specifically, we introduce a new node
x′ for every combination of deterministic action assignments ψ(ai | x′) = 1

and deterministic successor selection distributions η(x | x′, a, o). This process
adds |A||X(k)||O| new controller nodes to the set of nodes X(k) at iteration k.3 An

3 Adding all possible combina-
tions is often not feasible. An
alternative algorithm called
bounded policy iteration adds only
one node. P. Poupart and C.
Boutilier, “Bounded Finite State
Controllers,” in Advances in Neural
Information Processing Systems
(NIPS), 2003. Algorithms can
also add a number in between.
Monte Carlo value iteration, for
example, adds O(n|A||X(k)|)
new nodes at each iteration k,
where n is a parameter. H. Bai,
D. Hsu, W. S. Lee, and V.A. Ngo,
“Monte Carlo Value Iteration
for Continuous-State POMDPs,”
in International Workshop on the
Algorithmic Foundations of Robotics
(WAFR), 2011.

improvement step is demonstrated in example 23.3.
Policy improvement cannot worsen the expected value of the controller policy.

The value of any nodes in X(k) remain unchanged, as they and their reachable
successor nodes remain unchanged. It is guaranteed that if X(k) is not an optimal
controller, then at least one of the new nodes introduced in policy improvement

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

476 chapter 23. controller abstractions

struct ControllerPolicyIteration
k_max # number of iterations
eval_max # number of evaluation iterations

end

function solve(M::ControllerPolicyIteration, 𝒫::POMDP)
𝒜, 𝒪, k_max, eval_max = 𝒫.𝒜, 𝒫.𝒪, M.k_max, M.eval_max
X = [1]
ψ = Dict((x, a) => 1.0 / length(𝒜) for x in X, a in 𝒜)
η = Dict((x, a, o, x′) => 1.0 for x in X, a in 𝒜, o in 𝒪, x′ in X)
π = ControllerPolicy(𝒫, X, ψ, η)
for i in 1:k_max

prevX = copy(π.X)
U = iterative_policy_evaluation(π, eval_max)
policy_improvement!(π, U, prevX)
prune!(π, U, prevX)

end
return π

end

function policy_improvement!(π::ControllerPolicy, U, prevX)
𝒮, 𝒜, 𝒪 = π.𝒫.𝒮, π.𝒫.𝒜, π.𝒫.𝒪
X, ψ, η = π.X, π.ψ, π.η
repeatX𝒪 = fill(X, length(𝒪))
assign𝒜X′ = vec(collect(product(𝒜, repeatX𝒪...)))
for ax′ in assign𝒜X′

x, a = maximum(X) + 1, ax′[1]
push!(X, x)
successor(o) = ax′[findfirst(isequal(o), 𝒪) + 1]
U′(o,s′) = U[successor(o), s′]
for s in 𝒮

U[x, s] = lookahead(π.𝒫, U′, s, a)
end
for a′ in 𝒜

ψ[x, a′] = a′ == a ? 1.0 : 0.0
for (o, x′) in product(𝒪, prevX)

η[x, a′, o, x′] = x′ == successor(o) ? 1.0 : 0.0
end

end
end
for (x, a, o, x′) in product(X, 𝒜, 𝒪, X)

if !haskey(η, (x, a, o, x′))
η[x, a, o, x′] = 0.0

end
end

end

Algorithm 23.3. Policy iteration
for a POMDP 𝒫 given a fixed
number of iterations k_max and
number of policy evaluation it-
erations eval_max. The algorithm
iteratively applies policy evalua-
tion (algorithm 23.2) and policy
improvement. Pruning is imple-
mented in algorithm 23.4.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

23.2. policy iteration 477

We can apply policy improvement to the crying baby controller from ex-
ample 23.1. The actions are A = {feed, sing, ignore} and observations
are O = {crying,quiet}. The policy improvement backup step results in
|A||X(1)||O| = 3× 22 = 12 new nodes. The new controller policy has nodes
{x1, . . . , x14} and distributions as follows:

Node Action Successors (for all a below)
x3 ψ(feed | x3) = 1 η(x1 | x3, a, crying) = η(x1 | x3, a,quiet) = 1

x4 ψ(feed | x4) = 1 η(x1 | x4, a, crying) = η(x2 | x4, a,quiet) = 1

x5 ψ(feed | x5) = 1 η(x2 | x5, a, crying) = η(x1 | x5, a,quiet) = 1

x6 ψ(feed | x6) = 1 η(x2 | x6, a, crying) = η(x2 | x6, a,quiet) = 1

x7 ψ(sing | x7) = 1 η(x1 | x7, a, crying) = η(x1 | x7, a,quiet) = 1

x8 ψ(sing | x8) = 1 η(x1 | x8, a, crying) = η(x2 | x8, a,quiet) = 1
...

...
...

We have the following controller, with the new nodes in blue and the original
two nodes in black:

feed

feed

feed

feed

sing

sing

...

ignore

feed

quiet

crying

cryingquiet

crying
quiet

crying
quiet

crying
quiet

crying
quiet

crying
quiet

crying
quiet

Example 23.3. An illustration of an
improvement step as part of policy
iteration on the crying baby prob-
lem with a controller policy repre-
sentation.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

478 chapter 23. controller abstractions

will have better expected values for some states, and thus the overall controller
must be improved.

Many of the nodes added during policy improvement tend not to improve
the policy. Pruning is conducted after policy evaluation to eliminate unnecessary
nodes. Doing so does not degrade the optimal value function of the controller.
Pruning methods can help reduce the exponential growth in nodes that comes
with the improvement step. In some cases, pruning can enable loops to form,
resulting in compact controllers.

We prune any new nodes that are identical to existing nodes. We also prune
any new nodes that are dominated by other nodes. A node x is dominated by
another node x′ when

U(x, s) ≤ U(x′, s) for all s (23.4)

Existing nodes can be pruned as well. Whenever a new node dominates an
existing node, we prune the existing node from the controller. Any transitions
to the deleted node are instead rerouted to the dominating node. This process is
identical to pruning the new node instead and updating the dominated node’s
action and successor links to those of the new node. Example 23.4 demonstrates
evaluation, expansion, and pruning on the crying baby problem.

23.3 Nonlinear Programming

The policy improvement problem can be framed as a single, large, nonlinear pro-
gramming formulation (algorithm 23.5) that involves simultaneously optimizing
ψ and η across all nodes.4 This formulation allows general-purpose solvers to 4 C. Amato, D. S. Bernstein,

and S. Zilberstein, “Optimizing
Fixed-Size Stochastic Controllers
for POMDPs and Decentralized
POMDPs,” Autonomous Agents and
Multi-Agent Systems, vol. 21, no. 3,
pp. 293–320, 2010.

be applied. The nonlinear programming method directly searches the space of
controllers to maximize the utility of a given initial belief while satisfying the
Bellman expectation equation, equation (23.1). There is no alternating between
policy evaluation and policy improvement steps, and the controller node count
remains fixed.

We use x1 to denote the initial node corresponding to the given initial belief b.
The optimization problem is then

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

23.3. nonlinear programming 479

function prune!(π::ControllerPolicy, U, prevX)
𝒮, 𝒜, 𝒪, X, ψ, η = π.𝒫.𝒮, π.𝒫.𝒜, π.𝒫.𝒪, π.X, π.ψ, π.η
newX, removeX = setdiff(X, prevX), []
prune dominated from previous nodes
dominated(x,x′) = all(U[x,s] ≤ U[x′,s] for s in 𝒮)
for (x,x′) in product(prevX, newX)

if x′ ∉ removeX && dominated(x, x′)
for s in 𝒮

U[x,s] = U[x′,s]
end
for a in 𝒜

ψ[x,a] = ψ[x′,a]
for (o,x′′) in product(𝒪, X)

η[x,a,o,x′′] = η[x′,a,o,x′′]
end

end
push!(removeX, x′)

end
end
prune identical from new nodes
identical_action(x,x′) = all(ψ[x,a] ≈ ψ[x′,a] for a in 𝒜)
identical_successor(x,x′) = all(η[x,a,o,x′′] ≈ η[x′,a,o,x′′]

for a in 𝒜, o in 𝒪, x′′ in X)
identical(x,x′) = identical_action(x,x′) && identical_successor(x,x′)
for (x,x′) in product(prevX, newX)

if x′ ∉ removeX && identical(x,x′)
push!(removeX, x′)

end
end
prune dominated from new nodes
for (x,x′) in product(X, newX)

if x′ ∉ removeX && dominated(x′,x) && x ≠ x′
push!(removeX, x′)

end
end
update controller
π.X = setdiff(X, removeX)
π.ψ = Dict(k => v for (k,v) in ψ if k[1] ∉ removeX)
π.η = Dict(k => v for (k,v) in η if k[1] ∉ removeX)

end

Algorithm 23.4. The pruning step
of policy iteration. It reduces the
number of nodes in the current
policy π, using the utilities U com-
puted by policy evaluation and
the previous node list, prevX. Its
first step replaces any point-wise
dominated previous nodes by their
improved nodes, marking the re-
dundant node as now dominated.
The second step marks any newly
added nodes that are identical to
previous nodes. The third step
marks any point-wise dominated
new nodes. Finally, all marked
nodes are pruned.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

480 chapter 23. controller abstractions

Recall example 23.3. Here, we show the first iteration of policy iteration using
the same initial controller. It consists of the two main steps: policy evaluation
(left) and policy improvement (center), as well as the optional pruning step
(right).

0 0.2 0.4 0.6 0.8 1
−50

−40

−30

−20

−10

P(hungry)

U
(x

,s
)

policy evaluation 1

0 0.2 0.4 0.6 0.8 1
−50

−40

−30

−20

−10

P(hungry)

policy improvement 1

0 0.2 0.4 0.6 0.8 1
−50

−40

−30

−20

−10

P(hungry)

pruning 1

The second iteration of policy iteration follows the same pattern:

0 0.2 0.4 0.6 0.8 1
−50

−40

−30

−20

−10

P(hungry)

U
(x

,s
)

policy evaluation 2

0 0.2 0.4 0.6 0.8 1
−50

−40

−30

−20

−10

P(hungry)

policy improvement 2

0 0.2 0.4 0.6 0.8 1
−50

−40

−30

−20

−10

P(hungry)

pruning 2

The utility has greatly improved after the second iteration, to near-optimal
values. We see that the prune step removes dominated and duplicate nodes
from previous iterations, as well as the current iteration’s new nodes.

Example 23.4. Policy iteration, il-
lustrating the evaluation, improve-
ment, and pruning steps on the cry-
ing baby domain with a controller
policy representation.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

23.4. gradient ascent 481

maximize
U,ψ,η

∑
s

b(s)U(x1, s)

subject to U(x, s) = ∑
a

ψ(a | x)

(

R(s, a) + γ ∑
s′

T(s′ | s, a)∑
o

O(o | a, s′)∑
x′

η(x′ | x, a, o)U(x′, s′)

)

for all x, s

ψ(a | x) ≥ 0 for all x, a

∑
a

ψ(a | x) = 1 for all x

η(x′ | x, a, o) ≥ 0 for all x, a, o, x′

∑
x′

η(x′ | x, a, o) = 1 for all x, a, o

(23.5)

This problem can be written as a quadratically constrained linear program (QCLP),
which can be solved effectively using a dedicated solver.5 Example 23.5 demon- 5 Solving a general QCLP is NP-

hard, but dedicated solvers offer
efficient approximations.strates this approach.

23.4 Gradient Ascent

A fixed-size controller policy can be iteratively improved using gradient ascent
(covered in appendix A.11).6 Although the gradient is challenging to compute, 6 N. Meuleau, K.-E. Kim, L. P. Kael-

bling, and A.R. Cassandra, “Solv-
ing POMDPs by Searching the
Space of Finite Policies,” in Confer-
ence on Uncertainty in Artificial Intel-
ligence (UAI), 1999.

this opens up controller optimization to a wide variety of gradient-based opti-
mization techniques. Algorithm 23.6 implements controller gradient ascent using
algorithm 23.7.

Consider an explicit description of the nonlinear problem from section 23.3.
For initial belief b and an arbitrary initial controller node x1, we seek to maximize
as follows:

∑
s

b(s)U(x1, s) (23.6)

with the utility U(x, s) defined by the Bellman optimality equation for all x and s:

U(x, s) = ∑
a

ψ(a | x)

(

R(s, a) + γ ∑
s′

T(s′ | s, a)∑
o

O(o | a, s′)∑
x′

η(x′ | x, a, o)U(x′, s′)

)

(23.7)

In addition, ψ and η must be proper probability distributions. To apply gradient
ascent, it is more convenient to rewrite this problem using linear algebra.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

482 chapter 23. controller abstractions

struct NonlinearProgramming
b # initial belief
ℓ # number of nodes

end

function tensorform(𝒫::POMDP)
𝒮, 𝒜, 𝒪, R, T, O = 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, 𝒫.R, 𝒫.T, 𝒫.O
𝒮′ = eachindex(𝒮)
𝒜′ = eachindex(𝒜)
𝒪′ = eachindex(𝒪)
R′ = [R(s,a) for s in 𝒮, a in 𝒜]
T′ = [T(s,a,s′) for s in 𝒮, a in 𝒜, s′ in 𝒮]
O′ = [O(a,s′,o) for a in 𝒜, s′ in 𝒮, o in 𝒪]
return 𝒮′, 𝒜′, 𝒪′, R′, T′, O′

end

function solve(M::NonlinearProgramming, 𝒫::POMDP)
x1, X = 1, collect(1:M.ℓ)
𝒫, γ, b = 𝒫, 𝒫.γ, M.b
𝒮, 𝒜, 𝒪, R, T, O = tensorform(𝒫)
model = Model(Ipopt.Optimizer)
@variable(model, U[X,𝒮])
@variable(model, ψ[X,𝒜] ≥ 0)
@variable(model, η[X,𝒜,𝒪,X] ≥ 0)
@objective(model, Max, b⋅U[x1,:])
@NLconstraint(model, [x=X,s=𝒮],

U[x,s] == (sum(ψ[x,a]*(R[s,a] + γ*sum(T[s,a,s′]*sum(O[a,s′,o]
*sum(η[x,a,o,x′]*U[x′,s′] for x′ in X)
for o in 𝒪) for s′ in 𝒮)) for a in 𝒜)))

@constraint(model, [x=X], sum(ψ[x,:]) == 1)
@constraint(model, [x=X,a=𝒜,o=𝒪], sum(η[x,a,o,:]) == 1)
optimize!(model)
ψ′, η′ = value.(ψ), value.(η)
return ControllerPolicy(𝒫, X,

Dict((x, 𝒫.𝒜[a]) => ψ′[x, a] for x in X, a in 𝒜),
Dict((x, 𝒫.𝒜[a], 𝒫.𝒪[o], x′) => η′[x, a, o, x′]

for x in X, a in 𝒜, o in 𝒪, x′ in X))
end

Algorithm 23.5. A nonlinear pro-
gramming approach to compute
the optimal fixed-size controller
policy for POMDP 𝒫 starting at ini-
tial belief b. The size of the finite
state controller is specified by the
number of nodes ℓ.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

23.4. gradient ascent 483

Here are optimal fixed-size controllers computed using nonlinear program-
ming for the crying baby problem with b0 = [0.5, 0.5]. The top node is x1.

ignorecrying, quiet

0 0.2 0.4 0.6 0.8 1

−60

−40

−20

P(hungry)

U
(x

,s
)

controller utility (k = 1)

ignore

feed

quiet

crying crying, quiet

0 0.2 0.4 0.6 0.8 1

−60

−40

−20

P(hungry)

U
(x

,s
)

controller utility (k = 2)

ignore

feed

feedquiet

crying crying, quiet

crying, quiet

0 0.2 0.4 0.6 0.8 1

−60

−40

−20

P(hungry)

U
(x

,s
)

controller utility (k = 3)

With k = 1, the optimal policy is to simply ignore forever. With k = 2, the
optimal policy is to ignore until crying is observed, at which point the best
action is to feed the baby, and then return to ignoring. This policy is close to
optimal for the infinite horizon crying baby POMDP. With k = 3, the optimal
policy essentially remains unchanged from when k = 2.

Example 23.5. The nonlinear
programming algorithm for con-
trollers with a fixed size of k set
to 1, 2, and 3. Each row shows the
policy and its corresponding utili-
ties (alpha vectors) on the left and
right, respectively. The stochastic
controllers are shown as circles,
with the most likely action in the
middle. The outgoing edges show
successor node selections given an
observation. The stochasticity in
node actions and successors are
shown as opacity (more opaque is
higher probability, more transpar-
ent is lower probability).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

484 chapter 23. controller abstractions

We define the transition function with a controller, which has a state space
X × S . For any fixed-size controller policy parameterized by θ = (ψ, η), the
transition matrix Tθ ∈ R

|X×S|×|X×S| is

Tθ((x, s), (x′, s′)) = ∑
a

ψ(x, a)T(s, a, s′)∑
o

O(a, s′, o)η(x, a, o, x′) (23.8)

The reward for a parameterized policy is represented as vector rθ ∈ R
|X×S|:

rθ((x, s)) = ∑
a

ψ(x, a)R(s, a) (23.9)

The Bellman expectation equation for utility uθ ∈ R
|X×S| is then

uθ = rθ + γTθuθ (23.10)

We can consider an initial node-belief vector β ∈ R
|X×S| with βxs = b(s) if

x = x1, and βxs = 0 otherwise. A utility vector uθ ∈ R
|X×S| is also defined over

the nodes X and states S for any of these fixed-size parameterized controller
policies θ = (ψ, η). We now seek to maximize as follows:

β⊤uθ (23.11)

We begin by rewriting equation (23.10):

uθ = rθ + γTθuθ (23.12)
(I− γTθ)uθ = rθ (23.13)

uθ = (I− γTθ)
−1rθ (23.14)

uθ = Z−1rθ (23.15)

with Z = I− γTθ for convenience. To perform gradient ascent, we need to know
the partial derivatives of equation (23.15) with respect to the policy parameters:

∂uθ
∂θ

=
∂Z−1

∂θ
rθ + Z−1 ∂rθ

∂θ
(23.16)

= −Z−1 ∂Z

∂θ
Z−1rθ + Z−1 ∂rθ

∂θ
(23.17)

= Z−1

(

∂rθ
∂θ
− ∂Z

∂θ
Z−1rθ

)

(23.18)

with ∂θ referring to both ∂ψ(x̂, â) and ∂η(x̂, â, ô, x̂′) for convenience.
Computing the partial derivatives of Z and rθ results in four equations:

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

23.4. gradient ascent 485

∂rθ((x, s))

∂ψ(x̂, â)
=

{

R(s, a) if x = x̂

0 otherwise (23.19)

∂rθ((x, s))

∂η(x̂, â, ô, x̂′)
= 0 (23.20)

∂Z((x, s), (x′, s′))
∂ψ(x̂, â)

=

{

−γT(s, â, s′)∑o O(â, s′, o)η(x̂, â, o, x′) if x = x̂

0 otherwise (23.21)

∂Z((x, s), (x′, s′))
∂η(x̂, â, ô, x̂′)

=

{

−γψ(x̂, â)T(s, â, s′)O(â, s′, ô)η(x̂, â, ô, x′) if x = x̂ and x′ = x̂′

0 otherwise (23.22)

Finally, these four gradients are substituted into equation (23.18) as follows:
∂uθ

∂ψ(x̂, â)
= Z−1

(

∂rθ
∂ψ(x̂, â)

− ∂Z

∂ψ(x̂, â)
Z−1rθ

)

(23.23)

∂uθ
∂η(x̂, â, ô, x̂′)

= Z−1

(

∂rθ
∂η(x̂, â, ô, x̂′)

− ∂Z

∂η(x̂, â, ô, x̂′)
Z−1rθ

)

(23.24)

We finally can return to the original objective in equation (23.11). Controller
gradient ascent starts with a fixed number of nodes in X and an arbitrary policy
ψ and η. At iteration k, it updates these parameters as follows:

ψk+1(x, a) = ψk(x, a) + αβ⊤
∂u
θk

∂ψk(x̂, â)
(23.25)

ηk+1(x, a, o, x′) = ηk(x, a, o, x′) + αβ⊤
∂u
θk

∂ηk(x̂, â, ô, x̂′)
(23.26)

with gradient step size α > 0. After this update, ψk+1 and ηk+1 may no longer
be valid distributions. To make them valid, we project them onto the probability
simplex. One approach to projecting a vector y onto the probability simplex is to
find the closest distribution according to the L2-norm:

minimize
b

1

2
‖y− b‖2

2

subject to b ≥ 0

1⊤b = 1

(23.27)

This optimization can be solved exactly through a simple algorithm included
in algorithm 23.6.7 Example 23.6 demonstrates the process of updating the con-

7 J. Duchi, S. Shalev-Shwartz, Y.
Singer, and T. Chandra, “Efficient
Projections onto the ℓ1-Ball for
Learning in High Dimensions,” in
International Conference on Machine
Learning (ICML), 2008.troller.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

486 chapter 23. controller abstractions

The optimization objective in equation (23.6) is not necessarily convex.8 Hence, 8 This objective is distinct from the
utility U(x, b) = ∑s b(s)U(x, s),
which is guaranteed to be piece-
wise linear and convex with re-
spect to the belief state b, as dis-
cussed in section 20.3.

normal gradient ascent can converge to a local optimum depending on the initial
controller. Adaptive gradient algorithms can be applied to help smooth and speed
convergence.

23.5 Summary

• Controllers are policy representations that do not rely on exploring or main-
taining beliefs.

• Controllers consist of nodes, an action selection function, and a successor
selection function.

• Nodes and the controller graph are abstract; however, they can be interpreted
as sets of the countably infinite reachable beliefs.

• The value function for a controller node can be interpreted as an alpha vector.

• Policy iteration alternates between policy evaluation, which computes the
utilities for each node, and policy improvement, which adds new nodes.

• Pruning during policy iteration can help reduce the exponential growth in
nodes with each improvement step.

• Nonlinear programming reformulates finding the optimal fixed-sized con-
troller as a general optimization problem, allowing off-the-shelf solvers and
techniques to be used.

• Controller gradient ascent climbs in the space of policies to improve the value
function directly, benefiting from an explicit, POMDP-based gradient step.

23.6 Exercises
Exercise 23.1. List any advantages that a controller policy representation has over tree-
based conditional plan and belief-based representations.
Solution: Unlike tree-based conditional plans, controllers can represent policies that can be
executed indefinitely. They do not have to grow exponentially in size with the horizon.

Compared to belief-based representations, the number of parameters in a controller
representation tends to be far less than the number of alpha vectors for larger problems.
We can also optimize controllers more easily for a fixed amount of memory.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

23.6. exercises 487

struct ControllerGradient
b # initial belief
ℓ # number of nodes
α # gradient step
k_max # maximum iterations

end

function solve(M::ControllerGradient, 𝒫::POMDP)
𝒜, 𝒪, ℓ, k_max = 𝒫.𝒜, 𝒫.𝒪, M.ℓ, M.k_max
X = collect(1:ℓ)
ψ = Dict((x, a) => rand() for x in X, a in 𝒜)
η = Dict((x, a, o, x′) => rand() for x in X, a in 𝒜, o in 𝒪, x′ in X)
π = ControllerPolicy(𝒫, X, ψ, η)
for i in 1:k_max

improve!(π, M, 𝒫)
end
return π

end

function improve!(π::ControllerPolicy, M::ControllerGradient, 𝒫::POMDP)
𝒮, 𝒜, 𝒪, X, x1, ψ, η = 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, π.X, 1, π.ψ, π.η
n, m, z, b, ℓ, α = length(𝒮), length(𝒜), length(𝒪), M.b, M.ℓ, M.α
∂U′∂ψ, ∂U′∂η = gradient(π, M, 𝒫)
UIndex(x, s) = (s - 1) * ℓ + (x - 1) + 1
E(U, x1, b) = sum(b[s]*U[UIndex(x1,s)] for s in 1:n)
ψ′ = Dict((x, a) => 0.0 for x in X, a in 𝒜)
η′ = Dict((x, a, o, x′) => 0.0 for x in X, a in 𝒜, o in 𝒪, x′ in X)
for x in X

ψ′x = [ψ[x, a] + α * E(∂U′∂ψ(x, a), x1, b) for a in 𝒜]
ψ′x = project_to_simplex(ψ′x)
for (aIndex, a) in enumerate(𝒜)

ψ′[x, a] = ψ′x[aIndex]
end
for (a, o) in product(𝒜, 𝒪)

η′x = [(η[x, a, o, x′] +
α * E(∂U′∂η(x, a, o, x′), x1, b)) for x′ in X]

η′x = project_to_simplex(η′x)
for (x′Index, x′) in enumerate(X)

η′[x, a, o, x′] = η′x[x′Index]
end

end
end
π.ψ, π.η = ψ′, η′

end

function project_to_simplex(y)
u = sort(copy(y), rev=true)
i = maximum([j for j in eachindex(u)

if u[j] + (1 - sum(u[1:j])) / j > 0.0])
δ = (1 - sum(u[j] for j = 1:i)) / i
return [max(y[j] + δ, 0.0) for j in eachindex(u)]

end

Algorithm 23.6. An implementa-
tion of a controller gradient ascent
algorithm for POMDP 𝒫 at initial
belief b. The controller itself has a
fixed size of ℓ nodes. It is improved
over k_max iterations by following
the gradient of the controller, with
a step size of α, to maximally im-
prove the value of the initial belief.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

488 chapter 23. controller abstractions

function gradient(π::ControllerPolicy, M::ControllerGradient, 𝒫::POMDP)
𝒮, 𝒜, 𝒪, T, O, R, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, 𝒫.T, 𝒫.O, 𝒫.R, 𝒫.γ
X, x1, ψ, η = π.X, 1, π.ψ, π.η
n, m, z = length(𝒮), length(𝒜), length(𝒪)
X𝒮 = vec(collect(product(X, 𝒮)))
T′ = [sum(ψ[x, a] * T(s, a, s′) * sum(O(a, s′, o) * η[x, a, o, x′]

for o in 𝒪) for a in 𝒜) for (x, s) in X𝒮, (x′, s′) in X𝒮]
R′ = [sum(ψ[x, a] * R(s, a) for a in 𝒜) for (x, s) in X𝒮]
Z = 1.0I(length(X𝒮)) - γ * T′
invZ = inv(Z)
∂Z∂ψ(hx, ha) = [x == hx ? (-γ * T(s, ha, s′)

* sum(O(ha, s′, o) * η[hx, ha, o, x′]
for o in 𝒪)) : 0.0

for (x, s) in X𝒮, (x′, s′) in X𝒮]
∂Z∂η(hx, ha, ho, hx′) = [x == hx && x′ == hx′ ? (-γ * ψ[hx, ha]

* T(s, ha, s′) * O(ha, s′, ho)) : 0.0
for (x, s) in X𝒮, (x′, s′) in X𝒮]

∂R′∂ψ(hx, ha) = [x == hx ? R(s, ha) : 0.0 for (x, s) in X𝒮]
∂R′∂η(hx, ha, ho, hx′) = [0.0 for (x, s) in X𝒮]
∂U′∂ψ(hx, ha) = invZ * (∂R′∂ψ(hx, ha) - ∂Z∂ψ(hx, ha) * invZ * R′)
∂U′∂η(hx, ha, ho, hx′) = invZ * (∂R′∂η(hx, ha, ho, hx′)

- ∂Z∂η(hx, ha, ho, hx′) * invZ * R′)
return ∂U′∂ψ, ∂U′∂η

end

Algorithm 23.7. The gradient step
of the controller gradient ascent
method. It constructs the gradients
of the utility U with respect to the
policy gradients ∂U′∂ψ and ∂U′∂η.

During execution, controllers will never divide by zero in the way that belief-based
policies can. Belief-based methods require maintaining a belief. The discrete state filter
from equation (19.7) will divide by zero if an impossible observation is made. This can
happen when a noisy observation from a sensor returns an observation that the models of
T(s, a, s′) and O(o | a, s′) does not accurately capture.

Exercise 23.2. Controller policy iteration only adds nodes with deterministic action selec-
tion functions and successor distributions. Does this mean that the resulting controller is
necessarily suboptimal?

Solution: Controller policy iteration is guaranteed to converge on an optimal policy in
the limit. However, the method cannot find more compact representations of optimal
controller policies that may require stochastic nodes.

Exercise 23.3. Prove that node pruning in policy iteration does not affect the utility.

Solution: Let x′ be the new node from some iteration i, and x be a previous node from
iteration i− 1.

By construction, η(x′, a, o, x) defines all new nodes x′ to only have a successor x from
the previous iteration. Thus, for each state s, U(i)(x′, s) only sums over the successors
U(i−1)(x, s′) in equation (23.1). This means that the other utilities in iteration i, including

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

23.6. exercises 489

Consider the catch problem (appendix F.9) with a uniform initial belief b1.
The diagrams here show the utility of the policy over gradient ascent iteration
applied to the catch problem with k = 3 nodes. The left node is x1.

At iteration 1, the policy is essentially random, both in action selection
and successor selection:

60 10 10

catch, drop

catch, drop

catch, drop
drop

catch, drop

drop
catch, drop

catch, drop

At iteration 50, the agent has determined a reasonable distance to throw
the ball (50) but still has not used its three nodes to remember anything
useful:

50 50 50

catch, drop

catch, drop
catch, drop

catch, drop
drop

catch, drop

catch, drop
catch, drop

catch, drop

At iteration 500, the policy has constructed a reasonable plan, given its
fixed three nodes of memory:

40 50 50

catch, drop

catch

drop
catch

catch

drop
catch, drop

It first tries throwing the ball at a distance of 40. If the child catches the
ball, then it increases the range to 50. It uses the final node to remember how
many times the child caught the ball (up to twice) to choose the distance.

Example 23.6. A demonstration of
the controller gradient algorithm
for controllers with a fixed size of
ℓ = 3. The policy is shown to re-
fine itself over the algorithm’s it-
erations. The agent incrementally
determines how to best use its fixed
number of nodes, resulting in a
reasonable and interpretable pol-
icy on convergence. The stochas-
tic controllers are shown as circles,
with the most likely action in the
middle. The outgoing edges show
successor node selections given an
observation. The stochasticity in
node actions and successors are
shown as opacity (more opaque is
higher probability, more transpar-
ent is lower probability).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

490 chapter 23. controller abstractions

a self-loop to x itself, do not affect the utility U(i)(x′, s). Since the initial node is chosen by
equation (23.3), we must ensure that the utility with and without the pruned node at all
beliefs is the same. A node is pruned in one of two ways.

First, x′ obtains a higher utility over all states than its pruned successor x. Formally,
U(i)(x, s) ≤ U(i−1)(x′, s) for all s. The pruning step replaces x with x′, including U, ψ, and
η. By construction, U has not decreased at any state s.

Second, x is identical to an existing previous node x′. Note that this means the transition
η(x, a, o, x′) = η(x′, a, o, x′). This means that the utility is identical except that x is reduced
by γ; in other words, γU(i)(x, s) = U(i−1)(x, s) by equation (23.1). Pruning x does not
affect the final utility.

Exercise 23.4. Devise an algorithm that uses the nonlinear program algorithm to find the
minimum fixed-sized controller required to obtain the optimality of a large fixed-sized
controller of size ℓ. You can assume that the nonlinear optimizer returns the optimal policy
in this case.

Solution: The idea is to create an outer loop that increments the fixed size of the controller,
after knowing the utility of the large fixed-sized controller. First, we must compute the
large fixed-sized controller’s utility U∗ = ∑s b1(s)U(x1, s) at initial node x1 and initial
belief b1. Next, we create a loop that increments the size ℓ of the controller. At each step, we
evaluate the policy and compute the utility Uℓ. By our assumption, the returned controller
produces a globally optimal utility for the fixed size ℓ. Once we arrive at a utility Uℓ, if we
see that Uℓ = U∗, then we stop and return the policy.

Exercise 23.5. Analyze the controller gradient ascent algorithm’s gradient step. Assume
that |S| is larger than |A| and |O|. What is the most computationally expensive part of the
gradient step? How might this be improved?

Solution: Computing the inverse Z−1 = (I− γTθ) is the most computationally expensive
part of the gradient step, as well as the entire gradient algorithm. The matrix Z is of size
|X× S|. Gauss–Jordan elimination requires O(|X× S|3) operations, though the 3 in the
exponent can be reduced to 2.3728639 using a state-of-the-art matrix inversion algorithm.9

9 F. L. Gall, “Powers of Tensors and
Fast Matrix Multiplication,” in In-
ternational Symposium on Symbolic
and Algebraic Computation (ISSAC),
2014.

The creation of the temporary matrix Tθ also requires O(|X× S|2|A ×O|) operations to
support computing the inverse. All other loops and other temporary array creations require
far fewer operations. This can be improved using an approximate inverse technique.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

