
20 Exact Belief State Planning

The objective in a POMDP is to choose actions that maximize the accumulation
of reward while interacting with the environment. In contrast with MDPs, states
are not directly observable, requiring the agent to use its past history of actions
and observations to inform a belief. As discussed in the previous chapter, beliefs
can be represented as probability distributions over states. There are different
approaches for computing an optimal policy that maps beliefs to actions given
models of the transitions, observations, and rewards.1 One approach is to convert 1 A discussion of exact solution

methods is provided by L. P. Kael-
bling, M. L. Littman, and A.R.
Cassandra, “Planning and Acting
in Partially Observable Stochas-
tic Domains,” Artificial Intelligence,
vol. 101, no. 1–2, pp. 99–134, 1998.

a POMDP into an MDP and apply dynamic programming. Other approaches
include representing policies as conditional plans or as piecewise linear value
functions over the belief space. The chapter concludes with an algorithm for
computing an optimal policy that is analogous to value iteration for MDPs.

20.1 Belief-State Markov Decision Processes

Any POMDP can be viewed as an MDP that uses beliefs as states, also called a
belief-state MDP.2 The state space of a belief-state MDP is the set of all beliefs B. 2 K. J. Åström, “Optimal Control of

Markov Processes with Incomplete
State Information,” Journal of Math-
ematical Analysis and Applications,
vol. 10, no. 1, pp. 174–205, 1965.

The action space is identical to that of the POMDP.
The reward function for a belief-state MDP depends on the belief and action

taken. It is simply the expected value of the reward. For a discrete state-space, it
is given by

R(b, a) = ∑
s

R(s, a)b(s) (20.1)
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If the state and observation spaces are discrete, the belief-state transition func-
tion for a belief-state MDP is given by

T(b′ | b, a) = P(b′ | b, a) (20.2)
= ∑

o

P(b′ | b, a, o)P(o | b, a) (20.3)

= ∑
o

P(b′ | b, a, o)∑
s

P(o | b, a, s)P(s | b, a) (20.4)

= ∑
o

P(b′ | b, a, o)∑
s

P(o | b, a, s)b(s) (20.5)

= ∑
o

P(b′ | b, a, o)∑
s′

∑
s

P(o | b, a, s, s′)P(s′ | b, s, a)b(s) (20.6)

= ∑
o

(

b′ = Update(b, a, o)
)

∑
s′

O(o | a, s′)∑
s

T(s′ | s, a)b(s) (20.7)

In equation (20.7), Update(b, a, o) returns the updated belief using the determin-
istic process discussed in the previous chapter.3 For continuous problems, we 3 As a reminder, we use the conven-

tion where a logical statement in
parentheses is treated numerically
as 1 when true and 0 when false.

replace the summations with integrals.
Solving belief-state MDPs is challenging because the state space is continuous.

We can use the approximate dynamic programming techniques presented in
earlier chapters, but we can often do better by taking advantage of the structure
of the belief-state MDP, as will be discussed in the remainder of this chapter.

20.2 Conditional Plans
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Figure 20.1. A three-step condi-
tional plan.

There are a number of ways to represent policies for POMDPs. One approach
is to use a conditional plan represented as a tree. Figure 20.1 shows an example
of a three-step conditional plan with binary action and observation spaces. The
nodes correspond to belief states. The edges are annotated with observations, and
the nodes are annotated with actions. If we have a plan π, the action associated
with the root is denoted as π() and the subplan associated with observation o is
denoted as π(o). Algorithm 20.1 provides an implementation of this.

A conditional plan tells us what to do in response to our observations up to
the horizon represented by the tree. To execute a conditional plan, we start with
the root node and execute the action associated with it. We proceed down the
tree according to our observations, taking the actions associated with the nodes
through which we pass.
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struct ConditionalPlan
a # action to take at root
subplans # dictionary mapping observations to subplans

end

ConditionalPlan(a) = ConditionalPlan(a, Dict())

(π::ConditionalPlan)() = π.a
(π::ConditionalPlan)(o) = π.subplans[o]

Algorithm 20.1. The conditional
plan data structure consisting of an
action and a mapping from obser-
vations to subplans. The subplans
field is a Dict from observations to
conditional plans. For convenience,
we have created a special construc-
tor for plans that consist of a single
node.

Suppose we have a conditional plan π, and we want to compute its expected
utility when starting from state s. This computation can be done recursively:

Uπ(s) = R(s, π()) + γ

[

∑
s′

T
(

s′ | s, π()
)

∑
o

O
(

o | π(), s′
)

Uπ(o)(s′)

]

(20.8)

An implementation for this procedure is given in algorithm 20.2.

function lookahead(𝒫::POMDP, U, s, a)
𝒮, 𝒪, T, O, R, γ = 𝒫.𝒮, 𝒫.𝒪, 𝒫.T, 𝒫.O, 𝒫.R, 𝒫.γ
u′ = sum(T(s,a,s′)*sum(O(a,s′,o)*U(o,s′) for o in 𝒪) for s′ in 𝒮)
return R(s,a) + γ*u′

end

function evaluate_plan(𝒫::POMDP, π::ConditionalPlan, s)
U(o,s′) = evaluate_plan(𝒫, π(o), s′)
return isempty(π.subplans) ? 𝒫.R(s,π()) : lookahead(𝒫, U, s, π())

end

Algorithm 20.2. A method for
evaluating a conditional plan π for
MDP 𝒫 starting at state s. Plans are
represented as tuples consisting of
an action and a dictionary map-
ping observations to subplans.

We can compute the utility of our belief b as follows:

Uπ(b) = ∑
s

b(s)Uπ(s) (20.9)

Example 20.1 shows how to compute the utility associated with a three-step
conditional plan.

Now that we have a way to evaluate conditional plans up to a horizon h, we
can compute the optimal h-step value function:

U∗(b) = max
π

Uπ(b) (20.10)

An optimal action can be generated from the action associated with the root of a
maximizing π.
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Consider the following three-step conditional plan for the crying baby prob-
lem:

ignore

feed

ignore

feed

ignore

feed

ignore

cryi
ng

quiet

crying

quiet

crying

quiet

In this plan, we begin by ignoring the baby. If we observe any crying, we
feed the baby. If we do not observe any crying, we ignore the baby. Our third
action again feeds if there is crying.

The expected utility for this plan in belief space is plotted alongside a
three-step plan that always feeds the baby and one that always ignores the
baby.
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We find that the given plan is not universally better than either always
ignoring or always feeding the baby.

Example 20.1. A conditional plan
for the three-step crying baby prob-
lem (appendix F.7), evaluated and
compared to two simpler condi-
tional plans.
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Solving an h-step POMDP by directly enumerating all h-step conditional plans
is generally computationally intractable, as shown in figure 20.2. There are (|O|h−
1)/(|O| − 1) nodes in an h-step plan. In general, any action can be inserted into
any node, resulting in |A|(|O|h−1)/(|O|−1) possible h-step plans. This exponential
growth means that enumerating over all plans is intractable even for modest
values of h. As will be discussed later in this chapter, there are alternatives to
explicitly enumerating over all possible plans. 5 10
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Figure 20.2. Even for small
POMDPs with only two actions
and two observations, the number
of possible plans grows extremely
quickly with the planning horizon.
We can often significantly prune
the set of alpha vectors at each
iteration and only consider far
fewer plans.

20.3 Alpha Vectors

We can rewrite equation (20.9) in vector form:

Uπ(b) = ∑
s

b(s)Uπ(s) = α⊤π b (20.11)

The vector απ , called an alpha vector, contains the expected utility under plan π

for each state. As with belief vectors, alpha vectors have dimension |S|. Unlike
beliefs, the components in alpha vectors represent utilities, not probability masses.
Algorithm 20.3 shows how to compute an alpha vector.

function alphavector(𝒫::POMDP, π::ConditionalPlan)
return [evaluate_plan(𝒫, π, s) for s in 𝒫.𝒮]

end

Algorithm 20.3. We can generate
an alpha vector from a conditional
plan by calling evaluate_plan
from all possible initial states.

Each alpha vector defines a hyperplane in belief space. The optimal value
function given in equation (20.11) is the maximum over these hyperplanes:

U∗(b) = max
π
α⊤π b (20.12)

making the value function piecewise-linear and convex.4 4 The optimal value function for
continuous-state POMDPs is also
convex, as can be seen by approxi-
mating the POMDP through state
space discretization and taking the
limit as the number of discrete
states approaches infinity.

An alternative to using a conditional plan to represent a policy is to use a set
of alpha vectors Γ, each annotated with an action. Although it is not practical,
one way to generate set Γ is to enumerate the set of h-step conditional plans and
then compute their alpha vectors. The action associated with an alpha vector
is the action at the root of the associated conditional plan. We execute a policy
represented by Γ by updating our belief state and performing the action associated
with the dominating alpha vector at the new belief b. The dominating alpha vector
α at b is the one that maximizes α⊤b. This strategy can be used to select actions
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412 chapter 20. exact belief state planning

beyond the horizon of the original conditional plans. Algorithm 20.4 provides an
implementation.

struct AlphaVectorPolicy
𝒫 # POMDP problem
Γ # alpha vectors
a # actions associated with alpha vectors

end

function utility(π::AlphaVectorPolicy, b)
return maximum(α⋅b for α in π.Γ)

end

function (π::AlphaVectorPolicy)(b)
i = argmax([α⋅b for α in π.Γ])
return π.a[i]

end

Algorithm 20.4. An alpha vector
policy is defined in terms of a set
of alpha vectors Γ and an array of
associated actions a. Given the cur-
rent belief b, it will find the alpha
vector that gives the highest value
at that belief point. It will return
the associated action.

Ifwe use one-step lookahead, we do not have to keep track of the actions associated
with the alpha vectors in Γ. The one-step lookahead action from belief b using
the value function represented by Γ, denoted as UΓ, is

πΓ(b) = arg max
a

[

R(b, a) + γ ∑
o

P(o | b, a)UΓ(Update(b, a, o))

]

(20.13)

where

P(o | b, a) = ∑
s

P(o | s, a)b(s) (20.14)

P(o | s, a) = ∑
s′

T(s′ | s, a)O(o | s′, a) (20.15)

Algorithm 20.5 provides an implementation of this. Example 20.2 demonstrates
using one-step lookahead on the crying baby problem.

20.4 Pruning

If we have a collection of alpha vectors Γ, we may want to prune alpha vectors
that do not contribute to our representation of the value function or plans that
are not optimal for any belief. Removing such alpha vectors or plans can improve
computational efficiency. We can check whether an alpha vector α is dominated by
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function lookahead(𝒫::POMDP, U, b::Vector, a)
𝒮, 𝒪, T, O, R, γ = 𝒫.𝒮, 𝒫.𝒪, 𝒫.T, 𝒫.O, 𝒫.R, 𝒫.γ
r = sum(R(s,a)*b[i] for (i,s) in enumerate(𝒮))
Posa(o,s,a) = sum(O(a,s′,o)*T(s,a,s′) for s′ in 𝒮)
Poba(o,b,a) = sum(b[i]*Posa(o,s,a) for (i,s) in enumerate(𝒮))
return r + γ*sum(Poba(o,b,a)*U(update(b, 𝒫, a, o)) for o in 𝒪)

end

function greedy(𝒫::POMDP, U, b::Vector)
u, a = findmax(a->lookahead(𝒫, U, b, a), 𝒫.𝒜)
return (a=a, u=u)

end

struct LookaheadAlphaVectorPolicy
𝒫 # POMDP problem
Γ # alpha vectors

end

function utility(π::LookaheadAlphaVectorPolicy, b)
return maximum(α⋅b for α in π.Γ)

end

function greedy(π, b)
U(b) = utility(π, b)
return greedy(π.𝒫, U, b)

end

(π::LookaheadAlphaVectorPolicy)(b) = greedy(π, b).a

Algorithm 20.5. A policy repre-
sented by a set of alpha vectors Γ.
It uses one-step lookahead to pro-
duce an optimal action and asso-
ciated utility. Equation (20.13) is
used to compute the lookahead.
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414 chapter 20. exact belief state planning

Consider using one-step lookahead on the crying baby problem with a value
function given by the alpha vectors [−3.7,−15] and [−2,−21]. Suppose that
our current belief is b = [0.5, 0.5], meaning that we believe it is equally likely
the baby is hungry as not hungry. We apply equation (20.13)

b

γP(crying | b, feed)U(Update(b, feed, crying)) = −0.18

γP(quiet | b, feed)U(Update(b, feed,quiet)) = −1.62

R(b, feed) = −10

→ Q(b, feed) = −11.8

γP(crying | b, ignore)U(Update(b, ignore, crying)) = −6.09

γP(quiet | b, ignore)U(Update(b, ignore,quiet)) = −2.81

R(b, ignore) = −5

→ Q(b, ignore) = −13.9

γP(crying | b, sing)U(Update(b, sing, crying)) = −6.68

γP(quiet | b, sing)U(Update(b, sing,quiet)) = −1.85

R(b, sing) = −5.5

→ Q(b, sing) = −14.0

We use Q(b, a) to represent the action value function from a belief state.
The policy predicts that feeding the baby will result in the highest expected
utility, so it takes that action.

Example 20.2. Applying a looka-
head policy to the crying baby
problem.
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the alpha vectors in a set Γ by solving a linear program to maximize the utility
gap δ that vector achieves over all other vectors:5 5 Constraints of the form a ≥ b are

elementwise. That is, wemean ai ≥
bi for all i.maximize

δ, b
δ

subject to b ≥ 0

1⊤b = 1

α⊤b ≥ α′⊤b + δ, α′ ∈ Γ

(20.16)

The first two constraints ensure that b is a categorical distribution, and the final
set of constraints ensures that we find a belief vector for which α has a higher
expected reward than all alpha vectors in Γ. If, after solving the linear program,
the utility gap δ is negative, then α is dominated. If δ is positive, then α is not
dominated and b is a belief at which α is not dominated. Algorithm 20.6 provides
an implementation for solving equation (20.16) to determine a belief, if one exists,
where δ is most positive.

function find_maximal_belief(α, Γ)
m = length(α)
if isempty(Γ)

return fill(1/m, m) # arbitrary belief
end
model = Model(GLPK.Optimizer)
@variable(model, δ)
@variable(model, b[i=1:m] ≥ 0)
@constraint(model, sum(b) == 1.0)
for a in Γ

@constraint(model, (α-a)⋅b ≥ δ)
end
@objective(model, Max, δ)
optimize!(model)
return value(δ) > 0 ? value.(b) : nothing

end

Algorithm 20.6. Amethod for find-
ing the belief vector b for which
the alpha vector α improves the
most compared to the set of alpha
vectors Γ. Nothing is returned if
no such belief exists. The packages
JuMP.jl and GLPK.jl provide a
mathematical optimization frame-
work and a solver for linear pro-
grams, respectively.

Algorithm 20.7 shows a procedure that uses algorithm 20.6 to find the domi-
nating alpha vectors in a set Γ. Initially, all the alpha vectors are candidates for
being dominating. We then choose one of these candidates and determine the
belief b where the candidate leads to the greatest improvement in value compared
to all other alpha vectors in the dominating set. If the candidate does not bring
improvement, we remove it from the set. If it does bring improvement, we move
an alpha vector from the candidate set that brings the greatest improvement
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416 chapter 20. exact belief state planning

at b to the dominating set. The process continues until there are no longer any
candidates. We can prune away any alpha vectors and associated conditional
plans that are not dominating at any belief point. Example 20.3 demonstrates
pruning on the crying baby problem.

function find_dominating(Γ)
n = length(Γ)
candidates, dominating = trues(n), falses(n)
while any(candidates)

i = findfirst(candidates)
b = find_maximal_belief(Γ[i], Γ[dominating])
if b === nothing

candidates[i] = false
else

k = argmax([candidates[j] ? b⋅Γ[j] : -Inf for j in 1:n])
candidates[k], dominating[k] = false, true

end
end
return dominating

end

function prune(plans, Γ)
d = find_dominating(Γ)
return (plans[d], Γ[d])

end

Algorithm 20.7. A method for
pruning dominated alpha vec-
tors and associated plans. The
find_dominating function identi-
fies all the dominating alpha vec-
tors in set Γ. It uses binary vec-
tors candidates and dominating
to track which alpha vectors are
candidates for inclusion in the
dominating set and which are cur-
rently in the dominating set, re-
spectively.

20.5 Value Iteration

The value iteration algorithm for MDPs can be adapted for POMDPs.6 POMDP 6 This section describes a version
of value iteration in terms of con-
ditional plans and alpha vectors.
For a version that only uses alpha
vectors, see A.R. Cassandra, M. L.
Littman, and N. L. Zhang, “Incre-
mental Pruning: A Simple, Fast, Ex-
act Method for Partially Observ-
able Markov Decision Processes,”
in Conference on Uncertainty in Arti-
ficial Intelligence (UAI), 1997.

value iteration (algorithm 20.8) begins by constructing all one-step plans. We
prune any plans that are never optimal for any initial belief. Then, we expand all
combinations of one-step plans to produce two-step plans. Again, we prune any
suboptimal plans from consideration. This procedure of alternating between ex-
pansion and pruning is repeated until the desired horizon is reached. Figure 20.3
demonstrates value iteration on the crying baby problem.
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We can construct all two-step plans for the crying baby problem. There are
33 = 27 such plans.

The expected utility for each plan in belief space is plotted below. We find
that two plans dominate all others. These dominating plans are the only ones
that need to be considered as subplans for optimal three-step plans.
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Example 20.3. The expected util-
ity over the belief space for all
two-step plans for the crying baby
problem (appendix F.7). The thick
lines are optimal for some beliefs,
whereas the thin lines are domi-
nated.

function value_iteration(𝒫::POMDP, k_max)
𝒮, 𝒜, R = 𝒫.𝒮, 𝒫.𝒜, 𝒫.R
plans = [ConditionalPlan(a) for a in 𝒜]
Γ = [[R(s,a) for s in 𝒮] for a in 𝒜]
plans, Γ = prune(plans, Γ)
for k in 2:k_max

plans, Γ = expand(plans, Γ, 𝒫)
plans, Γ = prune(plans, Γ)

end
return (plans, Γ)

end

function solve(M::ValueIteration, 𝒫::POMDP)
plans, Γ = value_iteration(𝒫, M.k_max)
return LookaheadAlphaVectorPolicy(𝒫, Γ)

end

Algorithm 20.8. Value iteration for
POMDPs, which finds the domi-
nating h-step plans for a finite hori-
zon POMDP of horizon k_max by it-
eratively constructing optimal sub-
plans. The ValueIteration struc-
ture is the same as what was de-
fined in algorithm 7.8 in the con-
text of MDPs.
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Figure 20.3. POMDP value itera-
tion used to find the optimal value
function for the crying baby prob-
lem to various horizons.
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Figure 20.4. A (k + 1)-step plan
can be constructed using a new ini-
tial action leading to any combina-
tion of k-step subplans.

The expansion step (algorithm 20.9) in this process constructs all possible
(k + 1)-step plans from a set of k-step plans. New plans can be constructed using
a new first action and all possible combinations of the k-step plans as subplans, as
shown in figure 20.4. While plans can also be extended by adding actions to the
ends of subplans, top-level expansion allows alpha vectors constructed for the
k-step plans to be used to efficiently construct alpha vectors for the (k + 1)-step
plans.

Computing the alpha vector associatedwith a plan π from a set of alpha vectors
associated with its subplans can be done as follows. We use αo to represent the
alpha vector associated with subplan π(o). The alpha vector associated with π is
then

α(s) = R(s, π()) + γ ∑
s′

T(s′ | s, π())∑
o

O(o | π(), s′)αo(s
′) (20.17)

Even for relatively simple problems to shallow depths, computing alpha vectors
from subplans in this way is much more efficient than computing them from
scratch, as in algorithm 20.2.

20.6 Linear Policies

As discussed in section 19.3, the belief state in a problem with linear Gaussian
dynamics can be represented by a Gaussian distribution,N (µb, Σb). If the reward
function is quadratic, then it can be shown that the optimal policy can be computed
exactly offline using a process that is often called linear quadratic Gaussian (LQG)
control. The optimal action is obtained in an identical manner as in section 7.8,
but the µb computed using the linear Gaussian filter is treated as the true state.7 7 Our ability to simply use the

mean of the distribution is another
instance of the certainty equivalence
principle, originally introduced in
section 7.8.

With each observation, we simply use the filter to update our µb and obtain an
optimal action by multiplying µb with the policy matrix from algorithm 7.11.
Example 20.4 demonstrates this process.

20.7 Summary

• Exact solutions for POMDPs typically can be obtained only for finite horizon
discrete POMDPs.
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function ConditionalPlan(𝒫::POMDP, a, plans)
subplans = Dict(o=>π for (o, π) in zip(𝒫.𝒪, plans))
return ConditionalPlan(a, subplans)

end

function combine_lookahead(𝒫::POMDP, s, a, Γo)
𝒮, 𝒪, T, O, R, γ = 𝒫.𝒮, 𝒫.𝒪, 𝒫.T, 𝒫.O, 𝒫.R, 𝒫.γ
U′(s′,i) = sum(O(a,s′,o)*α[i] for (o,α) in zip(𝒪,Γo))
return R(s,a) + γ*sum(T(s,a,s′)*U′(s′,i) for (i,s′) in enumerate(𝒮))

end

function combine_alphavector(𝒫::POMDP, a, Γo)
return [combine_lookahead(𝒫, s, a, Γo) for s in 𝒫.𝒮]

end

function expand(plans, Γ, 𝒫)
𝒮, 𝒜, 𝒪, T, O, R = 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, 𝒫.T, 𝒫.O, 𝒫.R
plans′, Γ′ = [], []
for a in 𝒜

# iterate over all possible mappings from observations to plans
for inds in product([eachindex(plans) for o in 𝒪]...)

πo = plans[[inds...]]
Γo = Γ[[inds...]]
π = ConditionalPlan(𝒫, a, πo)
α = combine_alphavector(𝒫, a, Γo)
push!(plans′, π)
push!(Γ′, α)

end
end
return (plans′, Γ′)

end

Algorithm 20.9. The expansion
step in value iteration, which con-
structs all (k + 1)–step conditional
plans and associated alpha vectors
from a set of k-step conditional
plans and alpha vectors. The way
that we combine alpha vectors of
subplans follows equation (20.17).
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Consider a satellite navigating in two dimensions, neglecting gravity, drag,
and other external forces. The satellite can use its thrusters to accelerate in
any direction with linear dynamics:
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where ∆t is the duration of a time step and ǫ is zero-mean Gaussian noise
with covariance ∆t/20I.

We seek to place the satellite in its orbital slot at the origin, while mini-
mizing fuel use. Our quadratic reward function is

R(s, a) = −s⊤
[

I2×2 02×2

02×2 02×2

]

s− 2a⊤a

The satellite’s sensors measure its position according to:

o =
[

I2×2 02×2

]

s + ε

where ε is zero-mean Gaussian noise with covariance ∆t/10I.
Here are 50 trajectories from 10-step rollouts using the optimal policy for

∆t = 1 and a Kalman filter to track the belief. In each case, the satellite was
started at s = µb = [−5, 2, 0, 1] with Σb = [I 0; 0 0.25I].

−4 −2 0 2

0

2

x

y

Example 20.4. An optimal pol-
icy used for a POMDP with linear
Gaussian dynamics and quadratic
reward.
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• Policies for these problems can be represented as conditional plans, which are
trees that describe the actions to take based on the observations.

• Alpha vectors contain the expected utility when starting from different states
and following a particular conditional plan.

• Alpha vectors can also serve as an alternative representation of a POMDP
policy.

• POMDP value iteration can avoid the computational burden of enumerating
all conditional plans by iteratively computing subplans and pruning those that
are suboptimal.

• Linear Gaussian problems with quadratic reward can be solved exactly using
methods very similar to those derived for the fully observable case.

20.8 Exercises
Exercise 20.1. Can every POMDP be framed as an MDP?

Solution: Yes. Any POMDP can equivalently be viewed as a belief-state MDP whose state
space is the space of beliefs in the POMDP, whose action space is the same as that of the
POMDP and whose transition function is given by equation (20.2).

Exercise 20.2. What are the alpha vectors for the one-step crying baby problem (ap-
pendix F.7)? Are all the available actions dominant?

Solution: There are three one-step conditional plans, one for each action, resulting in three
alpha vectors. The optimal one-step policy must choose between these actions, given the
current belief. The one-step alpha vectors for a POMDP can be obtained from the optimal
one-step belief value function:

U∗(b) = max
a

∑
s

b(s)R(s, a)

Feeding the baby yields an expected reward:

R(hungry, feed)P(hungry) + R(sated, feed)P(sated)
= −15P(hungry)− 5(1− P(hungry))

= −10P(hungry)− 5
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Singing to the baby yields an expected reward:

R(hungry, sing)P(hungry) + R(sated, sing)P(sated)
= −10.5P(hungry)− 0.5(1− P(hungry))

= −10P(hungry)− 0.5

Ignoring the baby yields an expected reward:

R(hungry, ignore)P(hungry) + R(sated, ignore)P(sated)
= −10P(hungry)

The expected reward for each action is plotted as follows over the belief space:

feed

sing

ignore

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

P(hungry)

U
(b
)

We find that under a one-step horizon, it is never optimal to feed or sing to the baby. The
ignore action is dominant.

Exercise 20.3. Why does the implementation of value iteration in algorithm 20.8 call
expand in algorithm 20.9 rather than evaluating the plan in algorithm 20.2 to obtain alpha
vectors for each new conditional plan?

Solution: The plan evaluation method applies equation (20.8) recursively to evaluate the
expected utility for a conditional plan. Conditional plans grow very large as the horizon
increases. POMDP value iteration can save computation by using the alpha vectors for the
subplans from the previous iteration:

Uπ(s) = R(s, π()) + γ

[

∑
s′

T
(

s′ | s, π()
)

∑
o

O
(

o | π(), s′
)

α
π(o)
s′

]

Exercise 20.4. Does the number of conditional plans increase faster with the number of
actions or with the number of observations?
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424 chapter 20. exact belief state planning

Solution: Recall that there are |A|(|O|h−1)/(|O|−1) possible h-step plans. Exponential growth
(nx) is faster than polynomial growth (xn), and we have better-than exponential growth
in |O| and polynomial growth in |A|. The number of plans thus increases faster with
respect to the number of observations. To demonstrate, let us use |A| = 3, |O| = 3, and
h = 3 as a baseline. The baseline has 1,594,323 plans. Incrementing the number of actions
results in 67,108,864 plans, whereas incrementing the number of observations results in
10,460,353,203 plans.

Exercise 20.5. Suppose that we have a patient and we are unsure whether they have a
particular disease. We do have three diagnostic tests, each with different probabilities that
they will correctly indicate whether the disease is present. While the patient is in our office,
we have the option to administer multiple diagnostic tests in sequence. We observe the
outcome of each diagnostic test immediately. In addition, we can repeat any diagnostic
test multiple times, with the outcomes of all tests being conditionally independent of each
other, given the presence or absence of the disease. When we are done with the tests, we
decide whether to treat the disease or send the patient home without treatment. Explain
how you would define the various components of a POMDP formulation.

Solution: We have three states:
1. sno-disease: the patient does not have the disease
2. sdisease: the patient has the disease
3. sterminal: the interaction is over (terminal state)
We have five actions:
1. a1: administer test 1

2. a2: administer test 2

3. a3: administer test 3

4. atreat: administer treatment and send patient home
5. astop: send patient home without treatment
We have three observations:
1. ono-disease: the outcome of the test (if administered) indicates the patient does not have the disease
2. odisease: the outcome of the test (if administered) indicates the patient has the disease
3. oterminal: a test was not administered
The transition model would be deterministic, with

T(s′ | s, a) =















1 if a ∈ {atreat, astop} ∧ s′ = sterminal
1 if s = s′

0 otherwise
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The reward function would be a function of the cost of administering treatment and each
test, as well as the cost of not treating the disease if it is indeed present. The reward available
from sterminal is 0. The observation model assigns probabilities to correct and incorrect
observations of the disease state as a result of a diagnostic test from one of the nonterminal
states. The initial belief would assign our prior probability to whether the patient has the
disease, with zero probability assigned to the terminal state.

Exercise 20.6. Why might we want to perform the same test multiple times in the previous
exercise?

Solution: Depending on the probability of incorrect results, we may want to perform the
same test multiple times to improve our confidence in whether the patient has the disease.
The results of the tests are independent given the disease state.

Exercise 20.7. Suppose we have three alpha vectors, [1, 0], [0, 1], and [θ, θ], for a constant
θ. Under what conditions on θ can we prune alpha vectors?

Solution: We can prune alpha vectors if θ < 0.5 or θ > 1. If θ < 0.5, then [θ, θ] is dominated
by the other two alpha vectors. If θ > 1, then [θ, θ] dominates the other two alpha vectors.

Exercise 20.8. We have Γ = {[1, 0], [0, 1]} and α = [0.7, 0.7]. What belief b maximizes the
utility gap δ, as defined by the linear program in equation (20.16)?

Solution: The alpha vectors in Γ are shown in blue and the alpha vector α is shown in red.
We care only about the region where 0.3 ≤ b2 ≤ 0.7, where α dominates the alpha vectors
in Γ; in other words, where the red line is above the blue lines. The point where the gap
between the red line and the maximum of the blue lines occurs at b2 = 0.5, with a gap of
δ = 0.2. Hence, the belief that maximizes this gap is b = [0.5, 0.5].
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