
2 Representation

Computationally accounting for uncertainty requires a formal representation.
This chapter discusses how to represent uncertainty.1 We begin by introducing

1 A detailed discussion of a vari-
ety of approaches to representing
uncertainty is provided by F. Cuz-
zolin, The Geometry of Uncertainty.
Springer, 2021.

the notion of degree of belief and show how a set of axioms results in our ability
to use probability distributions to quantify our uncertainty.2 We discuss several

2 For a more comprehensive elabo-
ration, see E. T. Jaynes, Probability
Theory: The Logic of Science. Cam-
bridge University Press, 2003.

useful forms of distributions over both discrete and continuous variables. Because
many important problems involve probability distributions over a large number
of variables, we discuss a way to represent joint distributions efficiently that takes
advantage of conditional independence between variables.

2.1 Degrees of Belief and Probability

In problems involving uncertainty, it is essential to be able to compare the plausi-
bility of different statements. We would like to be able to represent, for example,
that proposition A is more plausible than proposition B. If A represents ‘‘my
actuator failed,’’ and B represents ‘‘my sensor failed,’’ thenwewouldwrite A ≻ B.
Using this basic relation ≻, we can define several other relations:

A ≺ B if and only if B ≻ A (2.1)
A ∼ B if and only if neither A ≻ B nor B ≻ A (2.2)
A � B if and only if A ≻ B or A ∼ B (2.3)
A � B if and only if B ≻ A or A ∼ B (2.4)

We want to make certain assumptions about the relationships induced by
the operators ≻, ∼, and ≺. The assumption of universal comparability requires
exactly one of the following to hold: A ≻ B, A ∼ B, or A ≺ B. The assumption of
transitivity requires that if A � B and B � C, then A � C. Universal comparability
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and transitivity assumptions lead to an ability to represent plausibility by a real-
valued function P that has the following two properties:3 3 See discussion in E. T. Jaynes,

Probability Theory: The Logic of Sci-
ence. Cambridge University Press,
2003.

P(A) > P(B) if and only if A ≻ B (2.5)
P(A) = P(B) if and only if A ∼ B (2.6)

If we make a set of additional assumptions4 about the form of P, then we can 4 The axiomatization of subjective
probability is given by P.C. Fish-
burn, “The Axioms of Subjec-
tive Probability,” Statistical Science,
vol. 1, no. 3, pp. 335–345, 1986.
A more recent axiomatization is
contained in M. J. Dupré and F. J.
Tipler, “New Axioms for Rigor-
ous Bayesian Probability,” Bayesian
Analysis, vol. 4, no. 3, pp. 599–606,
2009.

show that P must satisfy the basic axioms of probability (see appendix A.2). If we
are certain of A, then P(A) = 1. If we believe that A is impossible, then P(A) = 0.
Uncertainty in the truth of A is represented by values between the two extrema.
Hence, probability masses must lie between 0 and 1, with 0 ≤ P(A) ≤ 1.

2.2 Probability Distributions

A probability distribution assigns probabilities to different outcomes.5 There are 5 For an introduction to probability
theory, see D. P. Bertsekas and J.N.
Tsitsiklis, Introduction to Probability.
Athena Scientific, 2002.

different ways to represent probability distributions depending on whether they
involve discrete or continuous outcomes.

2.2.1 Discrete Probability Distributions
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Figure 2.1. A probability mass
function for a distribution over
1 : 6.

A discrete probability distribution is a distribution over a discrete set of values. We
can represent such a distribution as a probability mass function, which assigns
a probability to every possible assignment of its input variable to a value. For
example, suppose that we have a variable X that can take on one of n values:
1, . . . , n, or, using colon notation, 1 : n.6 Adistribution associatedwith X specifies the

6 We will often use this colon nota-
tion for compactness. Other texts
sometimes use the notation [1 . . n]
for integer intervals from 1 to n.
We will also use this colon nota-
tion to index into vectors and ma-
trices. For example x1:n represents
x1, . . . , xn. The colon notation is
sometimes used in programming
languages, such as Julia and MAT-
LAB.

n probabilities of the various assignments of values to that variable, in particular
P(X = 1), . . . , P(X = n). Figure 2.1 shows an example of a discrete distribution.

There are constraints on the probability masses associated with discrete distri-
butions. The masses must sum to 1:

n

∑
i=1

P(X = i) = 1 (2.7)

and 0 ≤ P(X = i) ≤ 1 for all i.
For notational convenience, we will use lowercase letters and superscripts as

shorthand when discussing the assignment of values to variables. For example,
P(x3) is shorthand for P(X = 3). If X is a binary variable, it can take on the value of
true or false.7 Wewill use 0 to represent false and 1 to represent true. For example, 7 Julia, like many other program-

ming languages, similarly treats
Boolean values as 0 and 1 in nu-
merical operations.

we use P(x0) to represent the probability that X is false.
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The parameters of a distribution govern the probabilities associated with differ-
ent assignments. For example, if we use X to represent the outcome of a roll of
a six-sided die, then we would have P(x1) = θ1, . . . , P(x6) = θ6, with θ1:6 being
the six parameters of the distribution. However, we need only five independent pa-
rameters to uniquely specify the distribution over the outcomes of the roll because
we know that the distribution must sum to 1.

2.2.2 Continuous Probability Distributions
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p
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)

Figure 2.2. Probability density
functions are used to represent con-
tinuous probability distributions.
If p(x) is a probability density, then
p(x)dx indicated by the area of the
blue rectangle is the probability
that a sample from the random
variable falls within the interval
(x, x + dx) as dx → 0.

A continuous probability distribution is a distribution over a continuous set of values.
Representing a distribution over a continuous variable is a little less straightfor-
ward than for a discrete variable. For instance, in many continuous distributions,
the probability that a variable takes on a particular value is infinitesimally small.
One way to represent a continuous probability distribution is to use a probability
density function (see figure 2.2), represented with lowercase letters. If p(x) is a
probability density function over X, then p(x)dx is the probability that X falls
within the interval (x, x + dx) as dx → 0. Similar to how the probability masses as-
sociated with a discrete distribution must sum to 1, a probability density function
p(x) must integrate to 1:

∫ ∞

−∞
p(x)dx = 1 (2.8)
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Figure 2.3. The probability density
function and cumulative distribu-
tion function for a standard Gaus-
sian distribution.

Another way to represent a continuous distribution is with a cumulative distri-
bution function (see figure 2.3), which specifies the probability mass associated
with values below some threshold. If we have a cumulative distribution function
P associated with variable X, then P(x) represents the probability mass associ-
ated with X taking on a value less than or equal to x. A cumulative distribution
function can be defined in terms of a probability density function p as follows:

cdfX(x) = P(X ≤ x) =
∫ x

−∞
p(x′)dx′ (2.9)

Related to the cumulative distribution function is the quantile function, also
called the inverse cumulative distribution function (see figure 2.4). The value of
quantileX(α) is the value x such that P(X ≤ x) = α. In other words, the quantile
function returns the minimum value of x whose cumulative distribution value is
greater than or equal to α. Of course, we have 0 ≤ α ≤ 1.
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Figure 2.4. The quantile function
for a standard Gaussian distribu-
tion.

There are many different parameterized families of distributions. We outline
several in appendix B. A simple distribution family is the uniform distribution
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U (a, b), which assigns probability density uniformly between a and b, and zero
elsewhere. Hence, the probability density function is p(x) = 1/(b− a) for x in
the interval [a, b]. We can use U (x | a, b) to represent the density at x.8 The support 8 Some texts use a semicolon to sep-

arate the parameters of the distri-
bution. For example, one can also
write U (x; a, b).

of a distribution is the set of values that are assigned nonzero density. In the case
of U (a, b), the support is the interval [a, b]. See example 2.1.

The uniform distribution U (0, 10) assigns equal probability to all values in
the range [0, 10] with a probability density function:

U (x | 0, 10) =







1/10 if 0 ≤ x ≤ 10

0 otherwise
(2.10)

The probability that a random sample from this distribution is equal to
the constant π is essentially zero. However, we can define nonzero probabili-
ties for samples being within some interval, such as [3, 5]. For example, the
probability that a sample lies between 3 and 5 given the distribution plotted
here is:

∫ 5

3
U (x | 0, 10)dx =

5− 3

10
=

1

5
(2.11)

The support of this distribution is the interval [0, 10].
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Example 2.1. An example of a
uniform distribution with a lower
bound of 0 and an upper bound of
10.

Another common distribution for continuous variables is the Gaussian distribu-
tion (also called the normal distribution). The Gaussian distribution is parameter-
ized by a mean µ and variance σ2:

p(x) = N (x | µ, σ2) (2.12)

Here, σ is the standard deviation, which is the square root of the variance. The
variance is also commonly denoted by ν. We use N (µ, σ2) to represent a Gaus-
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sian distribution with parameters µ and σ2 and N (x | µ, σ2) to represent the
probability density at x, as given by

N (x | µ, σ2) =
1

σ
φ

(

x− µ

σ

)

(2.13)

where φ is the standard normal density function:

φ(x) =
1√
2π

exp

(

− x2

2

)

(2.14)

Appendix B shows plots of Gaussian density functions with different parameters.
Although a Gaussian distribution is often convenient because it is defined by

only two parameters and makes computation and derivation easy, it has some
limitations. It assigns nonzero probability to large positive and negative values,
whichmaynot be appropriate for the quantitywe are trying tomodel. For example,
we might not want to assign nonzero probabilities for aircraft flying below the
ground or at infeasible altitudes. We can use a truncated Gaussian distribution (see
figure 2.5) to bound the support of possible values; that is, the range of values
assigned nonzero probabilities. The density function is given by

N (x | µ, σ2, a, b) =

1
σ φ
(

x−µ
σ

)

Φ
(

b−µ
σ

)

−Φ
(

a−µ
σ

) (2.15)

when x is within the interval (a, b).
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Figure 2.5. The probability density
functions for a unit Gaussian distri-
bution and the same distribution
truncated between −1 and 2.

The function Φ is the standard normal cumulative distribution function, as given
by

Φ(x) =
∫ x

−∞
φ(x′)dx′ (2.16)

The Gaussian distribution is unimodal, meaning that there is a point in the
distribution at which the density increases on one side and decreases on the
other side. There are different ways to represent continuous distributions that
are multimodal. One way is to use a mixture model, which is a mixture of multiple
distributions. We mix together a collection of unimodal distributions to obtain
a multimodal distribution. A Gaussian mixture model is a mixture model that is
simply a weighted average of various Gaussian distributions. The parameters of
a Gaussian mixture model include the parameters of the Gaussian distribution
components µ1:n, σ2

1:n, as well as their weights ρ1:n. The density is given by

p(x | µ1:n, σ2
1:n, ρ1:n) =

n

∑
i=1

ρiN (x | µi, σ2
i ) (2.17)
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where the weights must sum to 1. Example 2.2 shows a Gaussian mixture model
with two components.

We can create a Gaussian mixture model with components µ1 = 5, σ1 = 2

and µ2 = −5, σ2 = 4, weighted according to ρ1 = 0.6 and ρ2 = 0.4. Here we
plot the density of two components scaled by their weights:
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mixture density

Example 2.2. An example of a
Gaussian mixture model.

Another approach to representing multimodal continuous distributions is
through discretization. For example, we can represent a distribution over a con-
tinuous variable as a piecewise-uniform density. The density is specified by the
bin edges, and a probability mass is associated with each bin. Such a piecewise-
uniform distribution is a type of mixture model where the components are uni-
form distributions.

2.3 Joint Distributions

A joint distribution is a probability distribution over multiple variables. A distribu-
tion over a single variable is called a univariate distribution, and a distribution over
multiple variables is called amultivariate distribution. If we have a joint distribution
over two discrete variables X and Y, then P(x, y) denotes the probability that
both X = x and Y = y.

From a joint distribution, we can compute a marginal distribution of a variable
or a set of variables by summing out all other variables using what is known as
the law of total probability:9 9 If our distribution is continuous,

thenwe integrate out the other vari-
ables when marginalizing. For ex-
ample:

p(x) =
∫

p(x, y)dy

P(x) = ∑
y

P(x, y) (2.18)

This property is used throughout this book.
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Real-world decision making often requires reasoning about joint distributions
involving many variables. Sometimes there are complex relationships between
the variables that are important to represent. We may use different strategies to
represent joint distributions depending on whether the variables involve discrete
or continuous values.

2.3.1 Discrete Joint Distributions
If the variables are discrete, the joint distribution can be represented by a table like
the one shown in table 2.1. That table lists all the possible assignments of values
to three binary variables. Each variable can only be 0 or 1, resulting in 23 = 8

possible assignments. As with other discrete distributions, the probabilities in
the table must sum to 1. It follows that although there are eight entries in the
table, only seven of them are independent. If θi represents the probability in the
ith row in the table, then we only need the parameters θ1, . . . , θ7 to represent the
distribution because we know that θ8 = 1− (θ1 + . . . + θ7).

Table 2.1. Example of a joint distri-
bution involving binary variables
X, Y, and Z.

X Y Z P(X, Y, Z)

0 0 0 0.08
0 0 1 0.31
0 1 0 0.09
0 1 1 0.37
1 0 0 0.01
1 0 1 0.05
1 1 0 0.02
1 1 1 0.07

If we have n binary variables, then we need as many as 2n − 1 independent
parameters to specify the joint distribution. This exponential growth in the num-
ber of parameters makes storing the distribution in memory difficult. In some
cases, we can assume that our variables are independent, which means that the
realization of one does not affect the probability distribution of the other. If X

and Y are independent, which is sometimes written as X⊥Y, then we know that
P(x, y) = P(x)P(y) for all x and y. Suppose we have binary variables X1, . . . , Xn

that are all independent of each other, resulting in P(x1:n) = ∏i P(xi). This fac-
torization allows us to represent this joint distribution with only n independent
parameters instead of the 2n − 1 required when we cannot assume independence
(see table 2.2). Independence can result in an enormous savings in terms of
representational complexity, but it is often a poor assumption.

Table 2.2. If we know the variables
in table 2.1 are independent,we can
represent P(x, y, z) using the prod-
uct P(x)P(y)P(z). This representa-
tion requires only one parameter
for each of the three univariate dis-
tributions.

X P(X)

0 0.85
1 0.15

Y P(Y)

0 0.45
1 0.55

Z P(Z)

0 0.20
1 0.80

We can represent joint distributions in terms of factors. A factor φ over a set of
variables is a function from assignments of those variables to the real numbers. In
order to represent a probability distribution, the real numbers in the factor must
be nonnegative. A factor with nonnegative values can be normalized such that it
represents a probability distribution. Algorithm 2.1 provides an implementation
for discrete factors, and example 2.3 demonstrates how they work.

Another approach to reduce the storage required to represent joint distributions
with repeated values is to use a decision tree. A decision tree involving three discrete
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struct Variable
name::Symbol
r::Int # number of possible values

end

const Assignment = Dict{Symbol,Int}
const FactorTable = Dict{Assignment,Float64}

struct Factor
vars::Vector{Variable}
table::FactorTable

end

variablenames(ϕ::Factor) = [var.name for var in ϕ.vars]

select(a::Assignment, varnames::Vector{Symbol}) =
Assignment(n=>a[n] for n in varnames)

function assignments(vars::AbstractVector{Variable})
names = [var.name for var in vars]
return vec([Assignment(n=>v for (n,v) in zip(names, values))

for values in product((1:v.r for v in vars)...)])
end

function normalize!(ϕ::Factor)
z = sum(p for (a,p) in ϕ.table)
for (a,p) in ϕ.table

ϕ.table[a] = p/z
end
return ϕ

end

Algorithm 2.1. Types and func-
tions relevant to working with fac-
tors over a set of discrete variables.
A variable is given a name (repre-
sented as a symbol) and may take
on an integer from 1 to m. An as-
signment is a mapping from vari-
able names to values represented
as integers. A factor is defined by
a factor table, which assigns val-
ues to different assignments in-
volving a set of variables and is
a mapping from assignments to
real values. This mapping is repre-
sented by a dictionary. Any assign-
ments not contained in the dictio-
nary are set to 0. Also included in
this algorithm block are some util-
ity functions for returning the vari-
able names associatedwith a factor,
selecting a subset of an assignment,
enumerating possible assignments,
and normalizing factors. As dis-
cussed in appendix G.3.3, product
produces the Cartesian product of
a set of collections. It is imported
from Base.Iterators.

We can instantiate the table from table 2.1 using the Factor type using the
following code:
# requires convenience functions from appendix G.5
X = Variable(:x, 2)
Y = Variable(:y, 2)
Z = Variable(:z, 2)
ϕ = Factor([X, Y, Z], FactorTable(

(x=1, y=1, z=1) => 0.08, (x=1, y=1, z=2) => 0.31,
(x=1, y=2, z=1) => 0.09, (x=1, y=2, z=2) => 0.37,
(x=2, y=1, z=1) => 0.01, (x=2, y=1, z=2) => 0.05,
(x=2, y=2, z=1) => 0.02, (x=2, y=2, z=2) => 0.07,

))

Example 2.3. Constructing a dis-
crete factor. The construction of the
factor table using named tuples takes
advantage of the utility functions de-
fined in appendix G.5.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com



2.3. joint distributions 27

variables is shown in example 2.4. Although the savings in this example in terms of
the number of parameters may not be significant, it can become quite substantial
when there are many variables and many repeated values.

Suppose we have the following table representing a joint probability dis-
tribution. We can use the decision tree to the right of it to more compactly
represent the values in the table. Red arrows are followed when a variable is
0, and blue arrows are followed when a variable is 1. Instead of storing eight
probabilities, we store only five, along with a representation of the tree.

X Y Z P(X, Y, Z)

0 0 0 0.01
0 0 1 0.01
0 1 0 0.50
0 1 1 0.38
1 0 0 0.02
1 0 1 0.03
1 1 0 0.02
1 1 1 0.03

X

Y Z

0.01 Z 0.02 0.03

0.50 0.38

Example 2.4. A decision tree can
be a more efficient representation
of a joint distribution than a table.

2.3.2 Continuous Joint Distributions
We can also define joint distributions over continuous variables. A rather simple
distribution is the multivariate uniform distribution, which assigns a constant prob-
ability density everywhere there is support. We can use U (a, b) to represent a
uniform distribution over a box, which is a Cartesian product of intervals, with
the ith interval being [ai, bi]. This family of uniform distributions is a special type
of multivariate product distribution, which is a distribution defined in terms of the
product of univariate distributions. In this case,

U (x | a, b) = ∏
i

U (xi | ai, bi) (2.19)
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We can create a mixture model from a weighted collection of multivariate
uniform distributions, just as we can with univariate distributions. If we have a
joint distribution over n variables and k mixture components, we need to define
k(2n + 1)− 1 independent parameters. For each of the k components, we need
to define the upper and lower bounds for each of the variables as well as their
weights. We can subtract 1 because the weights must sum to 1. Figure 2.6 shows
an example that can be represented by five components.
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x
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Figure 2.6. A density function for
a mixture of multivariate uniform
distributions.

It is also common to represent piecewise constant density functions by dis-
cretizing each of the variables independently. The discretization is represented
by a set of bin edges for each variable. These bin edges define a grid over the
variables. We then associate a constant probability density with each grid cell.
The bin edges do not have to be uniformly separated. In some cases, it may be
desirable to have increased resolution around certain values. Different variables
might have different bin edges associated with them. If there are n variables and
m bins for each variable, then we need mn − 1 independent parameters to define
the distribution—in addition to the values that define the bin edges.

In some cases, it may be more memory efficient to represent a continuous
joint distribution as a decision tree in a manner similar to what we discussed
for discrete joint distributions. The internal nodes compare variables against
thresholds and the leaf nodes are density values. Figure 2.7 shows a decision tree
that represents the density function in figure 2.6.

x1 < −5

x2 < 0 0.003

x1 < 0 0.0027

x2 < 5 0.003

0.0002 0.0027

Figure 2.7. An example of a de-
cision tree that represents a piece-
wise constant joint probability den-
sity defined over x1 and x2 over the
interval [−10, 10]2.

Another useful distribution is the multivariate Gaussian distribution with the
density function

N (x | µ, Σ) =
1

(2π)n/2|Σ|1/2
exp

(

−1

2
(x− µ)⊤Σ

−1(x− µ)
)

(2.20)

where x is in R
n, µ is the mean vector, and Σ is the covariance matrix. The density

function given here requires that Σ be positive definite.10 The number of indepen-

10 This definition is reviewed in ap-
pendix A.5.

dent parameters is equal to n+ (n+ 1)n/2, the number of components in µ added
to the number of components in the upper triangle of matrix Σ.11 Appendix B

11 If we know the parameters in the
upper triangle of Σ, we know the
parameters in the lower triangle as
well, because Σ is symmetric.

shows plots of different multivariate Gaussian density functions. We can also
define multivariate Gaussian mixture models. Figure 2.8 shows an example of one
with three components.

If we have a multivariate Gaussian with all the variables independent, then
the covariance matrix Σ is diagonal with only n independent parameters. In fact,
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Figure 2.8. Multivariate Gaussian
mixture model with three compo-
nents. The components are mixed
together with the weights 0.1, 0.5,
and 0.4, respectively.

we can write the density function as a product of univariate Gaussian densities:

N (x | µ, Σ) = ∏
i

N (xi | µi, Σii) (2.21)

2.4 Conditional Distributions

The previous section introduced the idea of independence, which can help reduce
the number of parameters used to define a joint distribution. However, as was
mentioned, independence can be too strong of an assumption. This section will
introduce the idea of conditional independence, which can help reduce the num-
ber of independent parameters without making assumptions that are as strong.
Before discussing conditional independence, we will first introduce the notion of
a conditional distribution, which is a distribution over a variable given the value of
one or more other ones.

The definition of conditional probability states that

P(x | y) =
P(x, y)

P(y)
(2.22)

where P(x | y) is read as ‘‘probability of x given y.’’ In some contexts, it is common
to refer to y as evidence.

Since a conditional probability distribution is a probability distribution over
one or more variables given some evidence, we know that

∑
x

P(x | y) = 1 (2.23)
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for a discrete X. If X is continuous, it integrates to 1.
We can incorporate the definition of conditional probability into equation (2.18)

to obtain a slightly different form of the law of total probability:

P(x) = ∑
y

P(x | y)P(y) (2.24)

for a discrete distribution.
Another useful relationship that follows from the definition of conditional

probability is Bayes’ rule:12 12 Named for the English statis-
tician and Presbyterian minister
Thomas Bayes (c. 1701–1761) who
provided a formulation of this the-
orem. A history is provided by S. B.
McGrayne, The Theory That Would
Not Die. Yale University Press, 2011.

P(x | y) =
P(y | x)P(x)

P(y)
(2.25)

If we have a representation of a conditional distribution P(y | x), we can apply
Bayes’ rule to swap y and x to obtain the conditional distribution P(x | y).

We will now discuss a variety of ways to represent conditional probability
distributions over discrete and continuous variables.

2.4.1 Discrete Conditional Models
A conditional probability distribution over discrete variables can be represented
using a table. In fact, we can use the same discrete factor representation that
we used in section 2.3.1 for joint distributions. Table 2.3 shows an example of a
table representing P(X | Y, Z) with all binary variables. In contrast with a joint
table (e.g., table 2.1), the column containing the probabilities need not sum to
1. However, if we sum over the probabilities that are consistent with what we
are conditioning on, we must get 1. For example, conditioning on y0 and z0 (the
evidence), we have

P(x0 | y0, z0) + P(x1 | y0, z0) = 0.08 + 0.92 = 1 (2.26)

Table 2.3. An example of a condi-
tional distribution involving the bi-
nary variables X, Y, and Z.

X Y Z P(X | Y, Z)

0 0 0 0.08
0 0 1 0.15
0 1 0 0.05
0 1 1 0.10
1 0 0 0.92
1 0 1 0.85
1 1 0 0.95
1 1 1 0.90

Conditional probability tables can become quite large. If we were to create
a table like table 2.3, in which all variables can take on m values and we are
conditioning on n variables, there would be mn+1 rows. However, since the m

values of the variable we are not conditioning on must sum to 1, there are only
(m− 1)mn independent parameters. There is still an exponential growth in the
number of variables onwhichwe condition.When there aremany repeated values
in the conditional probability table, a decision tree (introduced in section 2.3.1)
may be a more efficient representation.
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2.4.2 Conditional Gaussian Models
A conditional Gaussian model can be used to represent a distribution over a con-
tinuous variable given one or more discrete variables. For example, if we have a
continuous variable X and a discrete variable Y with values 1 : n, we can define a
conditional Gaussian model as follows:13 13 This definition is for a mixture of

univariate Gaussians, but the con-
cept can be easily generalized to a
mixture of multidimensional Gaus-
sians.p(x | y) =



















N (x | µ1, σ2
1 ) if y1

...
N (x | µn, σ2

n) if yn

(2.27)

with parameter vector θ = [µ1:n, σ1:n]. All 2n of those parameters can be varied
independently. If we want to condition on multiple discrete variables, we just
need to add more cases and associated parameters.

2.4.3 Linear Gaussian Models
The linear Gaussian model of P(X | Y) represents the distribution over a continu-
ous variable X as a Gaussian distribution with the mean being a linear function
of the value of the continuous variable Y. The conditional density function is

p(x | y) = N (x | my + b, σ2) (2.28)

with parameters θ = [m, b, σ]. The mean is a linear function of y defined by
parameters m and b. The variance is constant. Figure 2.9 shows an example.

−10 0 10

−10

0

10

x

y

0.00

0.01

0.02

0.03

Figure 2.9. A linear Gaussian
model with

p(x | y) = N (x | 2y + 1, 102)

2.4.4 Conditional Linear Gaussian Models
The conditional linear Gaussian model combines the ideas of conditional Gaussian
and linear Gaussian models to be able to condition a continuous variable on both
discrete and continuous variables. Suppose that we want to represent p(X | Y, Z),
where X and Y are continuous and Z is discrete with values 1 : n. The conditional
density function is then

p(x | y, z) =



















N (x | m1y + b1, σ2
1 ) if z1

...
N (x | mny + bn, σ2

n) if zn

(2.29)

Here, the parameter vector θ = [m1:n, b1:n, σ1:n] has 3n components.
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2.4.5 Sigmoid Models
We can use a sigmoid14 model to represent a distribution over a binary variable 14 A sigmoid is an S-shaped curve.

There are different ways to define
such a curve mathematically, but
we will focus on the logit model.

conditioned on a continuous variable. For example, we may want to represent
P(x1 | y), where x is binary and y is continuous. Of course, we could just set a
threshold θ and say that P(x1 | y) = 0 if y < θ, and P(x1 | y) = 1 otherwise.
However, in many applications, we may not want to have such a hard threshold
that results in assigning zero probability to x1 for certain values of y.

Instead of a hard threshold, we could use a soft threshold, which assigns low
probabilities when below a threshold and high probabilities when above a thresh-
old. One way to represent a soft threshold is to use a logit model, which produces
a sigmoid curve:

P(x1 | y) =
1

1 + exp
(

−2
y−θ1

θ2

) (2.30)

The parameter θ1 governs the location of the threshold, and θ2 controls the ‘‘soft-
ness’’ or spread of the probabilities. Figure 2.10 shows a plot of P(x1 | y) with a
logit model. −4 −2 0 2 4

0

0.5

1

y

P
(x

1
|y

)

θ2 = 1 θ2 = 2

θ2 = 3 θ2 = 10

Figure 2.10. The logit model with
θ1 = 0 and different values for θ2.

2.4.6 Deterministic Variables
Some problems may involve a deterministic variable, whose value is fixed given
evidence. In other words, we assign probability 1 to a value that is a determin-
istic function of its evidence. Using a conditional probability table to represent
a discrete deterministic variable is possible, but it is wasteful. A single variable
instantiation will have probability 1 for each parental instantiation, and the re-
maining entries will be 0. Our implementation can take advantage of this sparsity
for a more compact representation. Algorithms in this text using discrete factors
treat any assignments missing from the factor table as having value 0, making it
so that we have to store only the assignments that have nonzero probability.

2.5 Bayesian Networks

A Bayesian network can be used to represent a joint probability distribution.15 The

15 For an in-depth treatment of
Bayesian networks and other forms
of probabilistic graphical models,
see D. Koller and N. Friedman,
Probabilistic Graphical Models: Prin-
ciples and Techniques. MIT Press,
2009.

structure of a Bayesian network is defined by a directed acyclic graph consisting of
nodes and directed edges.16 Each node corresponds to a variable. Directed edges

16 Appendix A.16 reviews common
graph terminology.

connect pairs of nodes, with cycles in the graph being prohibited. The directed
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edges indicate direct probabilistic relationships.17 Associatedwith each node Xi is 17 In causal networks, the direction
of the edges indicate causal rela-
tionships between variables. How-
ever, causality is not required in
general Bayesian networks. J. Pearl,
Causality: Models, Reasoning, and In-
ference, 2nd ed. Cambridge Univer-
sity Press, 2009.

a conditional distribution P(Xi | Pa(Xi)), where Pa(Xi) represents the parents of
Xi in the graph. Algorithm 2.2 provides an implementation of a Bayesian network
data structure. Example 2.5 illustrates the application of Bayesian networks to a
satellite-monitoring problem.

struct BayesianNetwork
vars::Vector{Variable}
factors::Vector{Factor}
graph::SimpleDiGraph{Int64}

end

Algorithm 2.2. A discrete Bayesian
network representation in terms of
a set of variables, factors, and a
graph. The graph data structure is
provided by Graphs.jl.

The chain rule for Bayesian networks specifies how to construct a joint distribu-
tion from the local conditional probability distributions. Suppose that we have
the variables X1:n and want to compute the probability of a particular assignment
of all these variables to values P(x1:n). The chain rule says

P(x1:n) =
n

∏
i=1

P(xi | pa(xi)) (2.31)

where pa(xi) is the particular assignment of the parents of Xi to their values.
Algorithm2.3 provides an implementation for Bayesian networkswith conditional
probability distributions represented as discrete factors.

function probability(bn::BayesianNetwork, assignment)
subassignment(ϕ) = select(assignment, variablenames(ϕ))
probability(ϕ) = get(ϕ.table, subassignment(ϕ), 0.0)
return prod(probability(ϕ) for ϕ in bn.factors)

end

Algorithm 2.3. A function for
evaluating the probability of an
assignment given a Bayesian
network bn. For example, if bn is
as defined in example 2.5, then
a = (b=1,s=1,e=1,d=2,c=1)
probability(bn, Assignment(a))
returns 0.034228655999999996.In the satellite example, suppose we want to compute the probability that

nothing is wrong; that is, P(b0, s0, e0, d0, c0). From the chain rule,

P(b0, s0, e0, d0, c0) = P(b0)P(s0)P(e0 | b0, s0)P(d0 | e0)P(c0 | e0) (2.32)

Ifwe had fully specified a joint distribution over the five variables B, S, E, D, and
C, thenwewould have needed 25− 1 = 31 independent parameters. The structure
assumed in our Bayesian network allows us to specify the joint distribution using
only 1 + 1 + 4 + 2 + 2 = 10 independent parameters. The difference between
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In the margin is a Bayesian network for a satellite-monitoring problem involv-
ing five binary variables. Fortunately, battery failure and solar panel failures
are both rare, although solar panel failures are somewhat more likely than
battery failures. Failures in either can lead to electrical system failure. There
may be causes of electrical system failure other than battery or solar panel
failure, such as a problem with the power management unit. An electrical
system failure can result in trajectory deviation, which can be observed from
the Earth by telescope, as well as a communication loss that interrupts the
transmission of telemetry and mission data down to various ground stations.
Other anomalies not involving the electrical system can result in trajectory
deviation and communication loss.

Associated with each of the five variables are five conditional probability
distributions. Because B and S have no parents, we only need to specify P(B)

and P(S). The code here creates a Bayesian network structure with example
values for the elements of the associated factor tables. The tuples in the factor
tables index into the domains of the variables, which is {0, 1} for all the
variables. For example, (e=2,b=1,s=1) corresponds to (e1, b0, s0).
# requires convenience functions from appendix G.5
B = Variable(:b, 2); S = Variable(:s, 2)
E = Variable(:e, 2)
D = Variable(:d, 2); C = Variable(:c, 2)
vars = [B, S, E, D, C]
factors = [

Factor([B], FactorTable((b=1,) => 0.99, (b=2,) => 0.01)),
Factor([S], FactorTable((s=1,) => 0.98, (s=2,) => 0.02)),
Factor([E,B,S], FactorTable(

(e=1,b=1,s=1) => 0.90, (e=1,b=1,s=2) => 0.04,
(e=1,b=2,s=1) => 0.05, (e=1,b=2,s=2) => 0.01,
(e=2,b=1,s=1) => 0.10, (e=2,b=1,s=2) => 0.96,
(e=2,b=2,s=1) => 0.95, (e=2,b=2,s=2) => 0.99)),

Factor([D, E], FactorTable(
(d=1,e=1) => 0.96, (d=1,e=2) => 0.03,
(d=2,e=1) => 0.04, (d=2,e=2) => 0.97)),

Factor([C, E], FactorTable(
(c=1,e=1) => 0.98, (c=1,e=2) => 0.01,
(c=2,e=1) => 0.02, (c=2,e=2) => 0.99))

]
graph = SimpleDiGraph(5)
add_edge!(graph, 1, 3); add_edge!(graph, 2, 3)
add_edge!(graph, 3, 4); add_edge!(graph, 3, 5)
bn = BayesianNetwork(vars, factors, graph)

Example 2.5. A Bayesian network
representing a satellite-monitoring
problem. Here is the structure of
the network represented as a di-
rected acyclic graph. Associated
with each node is a conditional
probability distribution.

B S

E

D C

P(B) P(S)

P(E | B, S)

P(D | E) P(C | E)

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss
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10 and 31 does not represent an especially significant savings in the number of
parameters, but the savings can become enormous in larger Bayesian networks.
The power of Bayesian networks comes from their ability to reduce the number
of parameters required to specify a joint probability distribution.

2.6 Conditional Independence

The reason that a Bayesian network can represent a joint distribution with fewer
independent parameters than would normally be required is the conditional in-
dependence assumptions encoded in its graphical structure.18 Conditional inde- 18 If the conditional independence

assumptions made by the Bayesian
network are invalid, then we run
the risk of not properly modeling
the joint distribution, as will be dis-
cussed in chapter 5.

pendence is a generalization of the notion of independence introduced in sec-
tion 2.3.1. Variables X and Y are conditionally independent given Z if and only
if P(X, Y | Z) = P(X | Z)P(Y | Z). The assertion that X and Y are conditionally
independent given Z is written as (X⊥Y | Z). It is possible to show from this
definition that (X⊥Y | Z) if and only if P(X | Z) = P(X | Y, Z). Given Z, in-
formation about Y provides no additional information about X, and vice versa.
Example 2.6 shows an instance of this.

Suppose the presence of satellite trajectory deviation (D) is conditionally
independent of whether we have a communication loss (C) given knowledge
of whether we have an electrical system failure (E). We would write this
(D⊥C | E). If we know that we have an electrical system failure, then the
fact that we observe a loss of communication has no impact on our belief
that there is a trajectory deviation. We may have an elevated expectation
that there is a trajectory deviation, but that is only because we know that an
electrical system failure has occurred.

Example 2.6. Conditional indepen-
dence in the satellite-tracking prob-
lem.

We can use a set of rules to determine whether the structure of a Bayesian
network implies that two variables must be conditionally independent given a set
of other evidence variables.19 Suppose that we want to check whether (A⊥B | C) 19 Even if the structure of a network

does not imply conditional inde-
pendence, there may still be con-
ditional independence due to the
choice of conditional probability
distributions. See exercise 2.10.

is implied by the network structure, where C is a set of evidence variables.We have
to check all possible undirected paths from A to B for what is called d-separation.
A path between A and B is d-separated by C if any of the following is true:

1. The path contains a chain of nodes, X → Y → Z, such that Y is in C.
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2. The path contains a fork, X ← Y → Z, such that Y is in C.

3. The path contains an inverted fork (also called a v-structure), X → Y ← Z, such
that Y is not in C and no descendant of Y is in C. Example 2.7 provides some
intuition for this rule.

We say that A and B are d-separated by C if all the paths between A and B

are d-separated by C. This d-separation implies that (A⊥B | C).20 Example 2.8
20 An algorithm for efficiently de-
termining d-separation is a bit com-
plicated. See algorithm 3.1 in D.
Koller and N. Friedman, Probabilis-
tic Graphical Models: Principles and
Techniques. MIT Press, 2009.

demonstrates this process for checking whether a graph implies a particular
conditional independence assumption.

If we have X → Y → Z (chain) or X ← Y → Z (fork) with evi-
dence at Y, then X and Z are conditionally independent, meaning that
P(X | Y, Z) = P(X | Y). Interestingly, if the directions of the arrows were
slightly different, with X → Y ← Z (inverted fork), then X and Z may no
longer be conditionally independent given Y. In other words, it may be the
case that P(B | E) 6= P(B | S, E). To provide some intuition, consider the
inverted fork path from battery failure B to solar panel failure S via electrical
system failure E. Suppose we know that we have an electrical failure. If we
know that we do not have a battery failure, then we are more inclined to
believe that we have a solar panel failure because it is an alternative cause of
the electrical failure. Conversely, if we found out that we do have a battery
failure, then our belief that we have a solar panel failure decreases. This effect
is referred to as explaining away. Observing a solar panel failure explains
away the cause of the electrical system failure.

Example 2.7. Intuition behind
conditional independence assump-
tions implied (and not implied) in
chains, forks, and inverted forks.

Sometimes the term Markov blanket21 of node X is used to refer to the minimal 21 Named after the Russian math-
ematician Andrey Andreyevich
Markov (1856–1922). J. Pearl, Prob-
abilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference.
Morgan Kaufmann, 1988.

set of nodes that, if their values were known, make X conditionally independent
of all other nodes. A Markov blanket of a particular node turns out to consist of
its parents, its children, and the other parents of its children.

2.7 Summary

• Representing uncertainty as a probability distribution is motivated by a set of
axioms related to the comparison of the plausibility of different statements.
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Suppose thatwewant to determinewhether the network shown in themargin
implies that (D⊥B | F). There are two undirected paths from D to B. We
need to check both paths for d-separation.

The path D ← A → C ← B involves the fork D ← A → C, followed
by an inverted fork, A → C ← B. There is no evidence at A, so there is
no d-separation from the fork. Since F is a descendant of C, there is no d-
separation along the inverted fork. Hence, there is no d-separation along this
path.

The secondpath, D → E← C ← B, involves the inverted fork D → E← C

and a chain, E← C ← B. Since F is a descendant of E, there is no d-separation
along the inverted fork. Because there is no d-separation along the chain part
of this path either, there is no d-separation along this path from D to B.

For D and B to be conditionally independent given F, there must be d-
separation along all undirected paths from D to B. In this case, neither of the
two paths has d-separation. Hence, conditional independence is not implied
by the network structure.

Example 2.8. Conditional indepen-
dence assumptions implied by the
graphical structure below.

A

E

F

D C

B

• There are many families of both discrete and continuous probability distribu-
tions.

• Continuous probability distributions can be represented by density functions.

• Probability distribution families can be combined in mixtures to create more
flexible distributions.

• Joint distributions are distributions over multiple variables.

• Conditional distributions are distributions over one or more variables given
the values of evidence variables.

• A Bayesian network is defined by a graphical structure and a set of conditional
distributions.

• Depending on the structure of the Bayesian network, we can represent joint
distributions with fewer parameters due to conditional independence assump-
tions.
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2.8 Exercises
Exercise 2.1. Consider a continuous random variable X that follows the exponential distri-
bution parameterized by λ with density p(x | λ) = λ exp(−λx) with nonnegative support.
Compute the cumulative distribution function of X.

Solution: We start with the definition of the cumulative distribution function. Since the
support of the distribution is lower-bounded by x = 0, there is no probability mass in
the interval (−∞, 0), allowing us to adjust the lower bound of the integral to 0. After
computing the integral, we obtain cdfX(x):

cdfX(x) =
∫ x

−∞
p(x′)dx′

cdfX(x) =
∫ x

0
λe−λx′ dx′

cdfX(x) = −e−λx′
∣

∣

∣

x

0

cdfX(x) = 1− e−λx

Exercise 2.2. For the density function in figure 2.6, what are the five components of the
mixture? (There are multiple valid solutions.)

Solution: One solution is U ([−10,−10], [−5, 10]), U ([−5, 0], [0, 10]), U ([−5,−10], [0, 0]),
U ([0,−10], [10, 5]), and U ([0, 5], [10, 10]).

Exercise 2.3. Given the following table representation of P(X, Y, Z), generate an equivalent
compact decision tree representation:

X Y Z P(X, Y, Z)

0 0 0 0.13
0 0 1 0.02
0 1 0 0.05
0 1 1 0.02
1 0 0 0.13
1 0 1 0.01
1 1 0 0.05
1 1 1 0.17
2 0 0 0.13
2 0 1 0.12
2 1 0 0.05
2 1 1 0.12
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Solution:We start with the most common probabilities: 0.13, which occurs when Z = 0 and
Y = 0, and 0.05, which occurs when Z = 0 and Y = 1. We choose to make Z the root of
our decision tree, and when Z = 0, we continue to a Y node. Based on the value of Y, we
branch to either 0.13 or 0.05. Next, we continue with cases when Z = 1. The most common
probabilities are 0.02, which occurs when Z = 1 and X = 0, and 0.12, which occurs when
Z = 1 and X = 2. So, when Z = 1, we choose to continue to an X node. Based on the
whether X is 0, 1, or 2, we continue to 0.02, a Y node, or 0.12, respectively. Finally, based
on the value of Y, we branch to either 0.01 or 0.17.

Z

Y

0.13 0.05

X

0.02 Y

0.01 0.17

0.12

Exercise 2.4. Suppose that we want to specify a multivariate Gaussian mixture model with
three components defined over four variables. We require that two of the three Gaussian
distributions assume independence between the four variables, while the other Gaussian
distribution is defined without any independence assumptions. How many independent
parameters are required to specify this mixture model?

Solution: For a Gaussian distribution over four variables (n = 4) with independence
assumptions, we need to specify n + n = 2n = 8 independent parameters; there are four
parameters for the mean vector and four parameters for the covariance matrix (which is
equivalent to the mean and variance parameters of four independent univariate Gaussian
distributions). For a Gaussian distribution over four variables without independence
assumptions, we need to specify n + n(n + 1)/2 = 14 independent parameters; there are
4 parameters for the mean vector and 10 parameters for the covariance matrix. In addition,
for our three mixture components (k = 3), we need to specify k − 1 = 2 independent
parameters for the weights. Thus, we need 2(8) + 1(14) + 2 = 32 independent parameters
to specify this mixture distribution.

Exercise 2.5. We have three independent variables X1:3 defined by piecewise-constant
densities with 4, 7, and 3 bin edges, respectively. How many independent parameters are
required to specify their joint distribution?

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com



40 chapter 2. representation

Solution: If we have a piecewise-constant density with m bin edges, then there are m− 1

bins and m− 2 independent parameters. For this problem, there will be (4− 2) + (7−
2) + (3− 2) = 8 independent parameters.

Exercise 2.6. Suppose that we have four continuous random variables, X1, X2, Y1, and
Y2, and we want to construct a linear Gaussian model of X = X1:2 given Y = Y1:2; that is,
p(X | Y). How many independent parameters are required for this model?

Solution: In this case, our mean vector for the Gaussian distribution is two-dimensional
and requires four independent parameters for the transformation matrix M and two inde-
pendent parameters for the bias vector b. We also require three independent parameters
for the covariance matrix Σ. In total, we need 4 + 2 + 3 = 9 independent parameters to
specify this model:

p(x | y) = N (x |My + b, Σ)

Exercise 2.7. Given the following Bayesian network, in which each node can take on one of
four values, how many independent parameters are there? What is the percent reduction
in the number of independent parameters required when using the following Bayesian
network compared to using a full joint probability table?

D

F

E C

A

B

Solution: The number of independent parameters for each node is equal to (k− 1)km, where
k is the number of values that the node can take on and m is the number of parents that the
node has. Variable A has 3, B has 12, C has 48, D has 3, E has 12, and F has 48 independent
parameters. There are 126 total independent parameters for this Bayesian network.

The number of independent parameters required to specify a joint probability table
over n variables that can take on k values is equal to kn − 1. Therefore, specifying a joint
probability table would require 46 − 1 = 4096 − 1 = 4095 independent parameters.
The percent reduction in the number of independent parameters required is (4095 −
126)/4095 ≈ 96.9 %.
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Exercise 2.8. Given the following Bayesian network, is A d-separated from E, given C?

A

E

D C

B

Solution: There are two paths from A to E: A → D → E and A → C → E. There is
d-separation along the second path, but not the first. Hence, A is not d-separated from E

given C.

Exercise 2.9. Given the following Bayesian network, determine the Markov blanket of B:

A

B

C

D

E

F

G

H

Solution: Paths from B to A can only be d-separated given A. Paths from B to D can only be
d-separated given D. Paths from B to E, and simultaneously F, G, and H, can be efficiently
d-separated given E. Paths from B to C are naturally d-separated due to a v-structure;
however, since E must be contained in our Markov blanket, paths from B to C given E can
only be d-separated given C. So, the Markov blanket of B is {A, C, D, E}.

Exercise 2.10. In a Bayesian network with structure A → B, is it possible for A to be
independent of B?

Solution: There is a direct arrow from A to B, which indicates that independence is not
implied. However, this does not mean that they are not independent. Whether A and B are
independent depends on the choice of conditional probability tables. We can choose the
tables so that there is independence. For example, suppose that both variables are binary
and P(a) = 0.5 is uniform and P(b | a) = 0.5. Clearly, P(A)P(B | A) = P(A)P(B), which
means they are independent.
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