
19 Beliefs

A POMDP is an MDP with state uncertainty. The agent receives a potentially
imperfect observation of the current state rather than the true state. From the past
sequence of observations and actions, the agent develops an understanding of
the world. This chapter discusses how the belief of the agent can be represented
by a probability distribution over the underlying state. Various algorithms are
presented for updating our belief based on the observation and action taken by
the agent.1 We can perform exact belief updates if the state space is discrete or if 1 Different methods for belief up-

dating are discussed in the context
of robotic applications by S. Thrun,
W. Burgard, and D. Fox, Probabilis-
tic Robotics. MIT Press, 2006.

certain linear Gaussian assumptions are met. In cases where these assumptions
do not hold, we can use approximations based on linearization or sampling.

19.1 Belief Initialization

There are different ways to represent our beliefs. In this chapter, we will discuss
parametric representations, where the belief distribution is represented by a set of
parameters of a fixed distribution family, such as the categorical or multivariate
normal distribution. We will also discuss nonparametric representations, where
the belief distribution is represented by particles, or points sampled from the state
space. Associated with the different representations are different procedures for
updating the belief based on the action taken by the agent and the observation.

Before the agent takes any actions or makes any observations, we start with
an initial belief distribution. If we have some prior information about where the
agent might be in the state space, we can encode this in the initial belief. We
generally want to use diffuse initial beliefs in the absence of information to avoid
being overly confident in the agent being in a region of the state space where it
might not actually be. A strong initial belief focused on states that are far from
the true state can lead to poor state estimates, even after many observations.

380 chapter 19. beliefs

A diffuse initial belief can cause difficulties, especially for nonparametric repre-
sentations of the belief, where the state space can be only very sparsely sampled.
In some cases, it may be useful to wait to initialize our beliefs until an informative
observation is made. For example, in robot navigation problems, we might want
to wait until the sensors detect a known landmark, and then initialize the belief
appropriately. The landmark can help narrow down the relevant region of the
state space so that we can focus our sampling of the space in the area consistent
with the landmark observation. Example 19.1 illustrates this concept.

Consider an autonomous car equipped with a localization system that uses
camera, radar, and lidar data to track its position. The car is able to identify a
unique landmark at a range r and bearing θ from its current pose:

car
landmark

r
θ

The range and bearing measurements have zero-mean Gaussian noise with
variance νr and νθ , respectively, and the landmark is known to be at (x, y).
Given a measurement r and θ, we can produce a distribution over the car’s
position (x̂, ŷ) and orientation ψ̂:

r̂ ∼ N (r, νr) θ̂ ∼ N (θ, νθ) φ̂ ∼ U (0, 2π)

x̂ ← x + r̂ cos φ̂ ŷ← y + r̂ sin φ̂ ψ̂← φ̂− θ̂ − π

where φ̂ is the angle of the car from the landmark in the global frame.

Example 19.1. Generating an initial
nonparametric belief based on a
landmark observation. In this case,
the autonomous car could be any-
where in a ring around the land-
mark:

landmark

19.2 Discrete State Filter

st st+1

ot

rt

atat−1

rt−1

st−1

ot−1

at+1

rt+1

ot+1

Figure 19.1. A dynamic decision
network for the POMDP problem
formulation. As with figure 7.1, in-
formational edges into the action
nodes are not shown.

In a POMDP, the agent does not directly observe the underlying state of the
environment. Instead, the agent receives an observation, which belongs to some
observation space O, at each time step. The probability of observing o, given that
the agent took action a and transitioned to state s′, is given by O(o | a, s′). If O

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

19.2. discrete state filter 381

is continuous, then O(o | a, s′) is a probability density. Figure 19.1 shows the
dynamic decision network associated with POMDPs. Algorithm 19.1 provides an
implementation of the POMDP data structure.

struct POMDP
γ # discount factor
𝒮 # state space
𝒜 # action space
𝒪 # observation space
T # transition function
R # reward function
O # observation function
TRO # sample transition, reward, and observation

end

Algorithm 19.1. A data struc-
ture for POMDPs. We will use
the TRO field to sample the next
state, reward, and observation
given the current state and action:
s′, r, o = TRO(s, a). A compre-
hensive package for specifying and
solving POMDPs is provided by
M. Egorov, Z.N. Sunberg, E. Bala-
ban, T.A. Wheeler, J. K. Gupta, and
M. J. Kochenderfer, “POMDPs.jl: A
Framework for Sequential Decision
Making Under Uncertainty,” Jour-
nal of Machine Learning Research,
vol. 18, no. 26, pp. 1–5, 2017. In
mathematical writing, POMDPs
are sometimes defined in terms of
a tuple consisting of the various
components of the MDP, written
as (S ,A,O, T, R, O, γ).

A kind of inference known as recursive Bayesian estimation can be used to update
our belief distribution over the current state, given the most recent action and
observation. We use b(s) to represent the probability (or probability density for
continuous state spaces) assigned to state s. A particular belief b belongs to a
belief space B, which contains all possible beliefs.

When the state and observation spaces are finite, we can use a discrete state filter
to perform this inference exactly. Beliefs for problems with discrete state spaces
can be represented using categorical distributions, where a probability mass is
assigned to each state. This categorical distribution can be represented as a vector
of length |S| and is often called a belief vector. In cases where b can be treated as
a vector, we will use b. In this case, B ⊂ R

|S|. Sometimes B is referred to as a
probability simplex or belief simplex.

Because a belief vector represents a probability distribution, the elements must
be strictly nonnegative and must sum to 1:

b(s) ≥ 0 for all s ∈ S ∑
s

b(s) = 1 (19.1)

In vector form, we have
b ≥ 0 1⊤b = 1 (19.2)

The belief space for a POMDP with three states is given in figure 19.2. A discrete
POMDP problem is given in example 19.2.

1

1

1

b1

b2

b3

Figure 19.2. The set of valid be-
lief vectors for problems with three
states. Although the state space is
discrete, the belief space is contin-
uous.

If an agent with belief b takes an action a and receives an observation o, the
new belief b′ can be calculated as follows due to the independence assumptions

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

382 chapter 19. beliefs

The crying baby problem is a simple POMDPwith two states, three actions, and
two observations. Our goal is to care for a baby, and we do so by choosing at
each time step whether to feed the baby, sing to it, or ignore it.

The baby becomes hungry over time. One does not directly observe
whether the baby is hungry, but instead receives a noisy observation in
the form of whether the baby is crying. A hungry baby cries 80 % of the time,
whereas a sated baby cries 10 % of the time. Singing to the baby yields a
perfect observation. The state, action, and observation spaces are:

S = {sated,hungry}
A = {feed, sing, ignore}
O = {crying,quiet}

The transition dynamics are:

T(sated | hungry, feed) = 100 %

T(hungry | hungry, sing) = 100 %

T(hungry | hungry, ignore) = 100 %

T(sated | sated, feed) = 100 %

T(hungry | sated, sing) = 10 %

T(hungry | sated, ignore) = 10 %

The reward function assigns −10 reward if the baby is hungry and an
additional −5 reward for feeding the baby because of the effort required.
Thus, feeding a hungry baby results in −15 reward. Singing to a baby takes
extra effort, and incurs a further −0.5 reward. As baby caretakers, we seek
the optimal infinite horizon policy with discount factor γ = 0.9.

Example 19.2. The crying baby
problem is a simple POMDP used
to demonstrate decision making
with state uncertainty.

st st+1

ot

rt

at
feed / sing
/ ignore

reward

hungry

crying

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

19.3. kalman filter 383

in figure 19.1:

b′(s′) = P(s′ | b, a, o) (19.3)
∝ P(o | b, a, s′)P(s′ | b, a) (19.4)
= O(o | a, s′)P(s′ | b, a) (19.5)
= O(o | a, s′)∑

s

P(s′ | a, b, s)P(s | b, a) (19.6)

= O(o | a, s′)∑
s

T(s′ | s, a)b(s) (19.7)

An instance of updating discrete beliefs is given in example 19.3, and the
belief update is implemented in algorithm 19.2. The success of the belief update
depends on having accurate observation and transition models. In cases where
thesemodels are not well known, it is generally advisable to use simplifiedmodels
with more diffuse distributions to help prevent overconfidence, which leads to
brittleness in the state estimates.

19.3 Kalman Filter

We can adapt equation (19.7) to handle continuous state spaces as follows:

b′(s′) ∝ O(o | a, s′)
∫

T(s′ | s, a)b(s)ds (19.8)

The integration above can be challenging unless we make some assumptions
about the form of T, O, and b. A special type of filter, known as a Kalman filter
(algorithm 19.3),2 provides an exact update under the assumption that T and O 2 Named after the Hungarian-

American electrical engineer
Rudolf E. Kálmán (1930–2016)
who was involved in the early
development of this filter.

are linear Gaussian and b is Gaussian:3

3 R. E. Kálmán, “A New Approach
to Linear Filtering and Prediction
Problems,” ASME Journal of Ba-
sic Engineering, vol. 82, pp. 35–45,
1960. A comprehensive overview
of the Kalman filter and its vari-
ants is provided by Y. Bar-Shalom,
X. R. Li, and T. Kirubarajan, Estima-
tion with Applications to Tracking and
Navigation. Wiley, 2001.

T(s′ | s, a) = N (s′ | Tss + Taa, Σs) (19.9)
O(o | s′) = N (o | Oss

′, Σo) (19.10)
b(s) = N (s | µb, Σb) (19.11)

The Kalman filter begins with a predict step, which uses the transition dynamics
to get a predicted distribution with the following mean and covariance:

µp ← Tsµb + Taa (19.12)
Σp ← TsΣbT⊤s + Σs (19.13)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

384 chapter 19. beliefs

The crying baby problem (example 19.2) assumes a uniform initial belief
state: [b(sated), b(hungry)] = [0.5, 0.5].

Suppose we ignore the baby and the baby cries. We update our belief
according to equation (19.7) as follows:

b′(sated) ∝ O(crying | ignore, sated)∑
s

T(sated | s, ignore)b(s)

∝ 0.1(0.0 · 0.5 + 0.9 · 0.5)

∝ 0.045

b′(hungry) ∝ O(crying | ignore, hungry)∑
s

T(hungry | s, ignore)b(s)

∝ 0.8(1.0 · 0.5 + 0.1 · 0.5)

∝ 0.440

After normalizing, our new belief is approximately [0.0928, 0.9072]. A crying
baby is likely to be hungry.

Suppose we then feed the baby and the crying stops. Feeding determinis-
tically caused the baby to be sated, so the new belief is [1, 0].

Finally, we sing to the baby, and the baby is quiet. Equation (19.7) is used
again to update the belief, resulting in [0.9890, 0.0110]. A sated baby only
becomes hungry 10 % of the time, and this percentage is further reduced by
not observing any crying.

Example 19.3. Discrete belief up-
dating in the crying baby problem.

function update(b::Vector{Float64}, 𝒫, a, o)
𝒮, T, O = 𝒫.𝒮, 𝒫.T, 𝒫.O
b′ = similar(b)
for (i′, s′) in enumerate(𝒮)

po = O(a, s′, o)
b′[i′] = po * sum(T(s, a, s′) * b[i] for (i, s) in enumerate(𝒮))

end
if sum(b′) ≈ 0.0

fill!(b′, 1)
end
return normalize!(b′, 1)

end

Algorithm 19.2. A method that
updates a discrete belief based on
equation (19.7), where b is a vec-
tor and 𝒫 is the POMDP model. If
the given observation has a zero
likelihood, a uniform distribution
is returned.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

19.4. extended kalman filter 385

In the update step, we use this predicted distribution with the current observa-
tion to update our belief:

K← ΣpO⊤s
(

OsΣpO⊤s + Σo

)−1
(19.14)

µb ← µp + K
(

o−Osµp

)

(19.15)
Σb ← (I−KOs)Σp (19.16)

where K is called the Kalman gain.

struct KalmanFilter
μb # mean vector
Σb # covariance matrix

end

function update(b::KalmanFilter, 𝒫, a, o)
μb, Σb = b.μb, b.Σb
Ts, Ta, Os = 𝒫.Ts, 𝒫.Ta, 𝒫.Os
Σs, Σo = 𝒫.Σs, 𝒫.Σo
predict
μp = Ts*μb + Ta*a
Σp = Ts*Σb*Ts' + Σs
update
Σpo = Σp*Os'
K = Σpo/(Os*Σp*Os' + Σo)
μb′ = μp + K*(o - Os*μp)
Σb′ = (I - K*Os)*Σp
return KalmanFilter(μb′, Σb′)

end

Algorithm 19.3. The Kalman filter,
which updates beliefs in the form
of Gaussian distributions. The cur-
rent belief is represented by μb and
Σb, and 𝒫 contains the matrices that
define linear Gaussian dynamics
and observation model. This 𝒫 can
be defined using a composite type
or a named tuple.

Kalman filters are often applied to systems that do not actually have linear
Gaussian dynamics and observations. A variety of modifications to the basic
Kalman filter have been proposed to better accommodate such systems.4 4 S. Thrun, W. Burgard, and D. Fox,

Probabilistic Robotics. MIT Press,
2006.

19.4 Extended Kalman Filter

The extended Kalman filter (EKF) is a simple extension of the Kalman filter to
problems whose dynamics are nonlinear with Gaussian noise:

T(s′ | s, a) = N (s′ | fT(s, a), Σs) (19.17)
O(o | s′) = N (o | fO(s

′), Σo) (19.18)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

386 chapter 19. beliefs

where fT(s, a) and fO(s
′) are differentiable functions.

Exact belief updates through nonlinear dynamics are not guaranteed to pro-
duce new Gaussian beliefs, as shown in figure 19.3. The extended Kalman filter
uses a local linear approximation to the nonlinear dynamics, thereby producing
a new Gaussian belief that approximates the true updated belief. We can use
similar update equations as the Kalman filter, but we must compute the matrices
Ts and Os at every iteration based on the current belief.

The local linear approximation to the dynamics, or linearization, is given by first-
order Taylor expansions in the form of Jacobians.5 For the state matrix, the Taylor 5 The Jacobian of a multivariate

function f with n inputs and m out-
puts is an m× n matrix where the
(i, j)th entry is ∂ fi/∂xj.

expansion is conducted at µb and the current action, whereas for the observation
matrix, it is computed at the predicted mean, µp = fT(µb).

The extended Kalman filter is implemented in algorithm 19.4. Although it is
an approximation, it is fast and performs well on a variety of real-world problems.
The EKF does not generally preserve the true mean and variance of the posterior,
and it does not model multimodal posterior distributions.

struct ExtendedKalmanFilter
μb # mean vector
Σb # covariance matrix

end

import ForwardDiff: jacobian
function update(b::ExtendedKalmanFilter, 𝒫, a, o)

μb, Σb = b.μb, b.Σb
fT, fO = 𝒫.fT, 𝒫.fO
Σs, Σo = 𝒫.Σs, 𝒫.Σo
predict
μp = fT(μb, a)
Ts = jacobian(s->fT(s, a), μb)
Os = jacobian(fO, μp)
Σp = Ts*Σb*Ts' + Σs
update
Σpo = Σp*Os'
K = Σpo/(Os*Σp*Os' + Σo)
μb′ = μp + K*(o - fO(μp))
Σb′ = (I - K*Os)*Σp
return ExtendedKalmanFilter(μb′, Σb′)

end

Algorithm 19.4. The extended
Kalman filter, an extension of the
Kalman filter to problems with
nonlinear Gaussian dynamics. The
current belief is represented by
mean μb and covariance Σb. The
problem 𝒫 specifies the nonlinear
dynamics using the mean tran-
sition dynamics function fT and
mean observation dynamics func-
tion fO. The Jacobians are obtained
using the ForwardDiff.jl pack-
age.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

19.5. unscented kalman filter 387

mx+
b

linear dynamics nonlinear dynamics
f̃ (x)

=
f (µ) +

f ′(µ)(x−
µ)

linear approximation

Figure 19.3. Updating a Gaussian
belief with a linear transform (left)
produces another Gaussian distri-
bution. Updating a Gaussian belief
with a nonlinear transform (cen-
ter) does not in general produce
a Gaussian distribution. The ex-
tended Kalman filter uses a lin-
ear approximation of the transform
(right), thereby producing another
Gaussian distribution that approx-
imates the posterior.

19.5 Unscented Kalman Filter

The unscented Kalman filter (UKF)6 is another extension to the Kalman filter to 6 S. J. Julier and J. K. Uhlmann, “Un-
scented Filtering and Nonlinear Es-
timation,” Proceedings of the IEEE,
vol. 92, no. 3, pp. 401–422, 2004.

problems that are nonlinear with Gaussian noise.7 Unlike the extended Kalman

7 According to Jeffrey K. Uhlmann,
the term ‘‘unscented’’ comes from
a label on a deodorant container
that he saw on someone’s desk.
He used that term to avoid call-
ing it the ‘‘Uhlmann filter.’’ IEEE
History Center Staff, “Proceedings
of the IEEE Through 100 Years:
2000–2009,” Proceedings of the IEEE,
vol. 100, no. 11, pp. 3131–3145, 2012.

filter, the unscented Kalman filter is derivative free, and relies on a determinis-
tic sampling strategy to approximate the effect of a distribution undergoing a
(typically nonlinear) transformation.

The unscented Kalman filter was developed to estimate the effect of transform-
ing a distribution over x with a nonlinear function f(x), producing a distribution
over x′. We would like to estimate the mean µ′ and covariance Σ

′ of the distribu-
tion over x′. The unscented transform allows for more information of p(x) to be
used than the mean µ and covariance Σ of the distribution over x.8

8 We need not necessarily assume
that the prior distribution is Gaus-
sian.

An unscented transform passes a set of sigma points S through f and uses the
transformed points to approximate the transformed mean µ′ and covariance Σ

′.
The original mean and covariance are constructed using the sigma points and a
vector of weights w:

µ = ∑
i

wisi (19.19)

Σ = ∑
i

wi(si − µ)(si − µ)⊤ (19.20)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

388 chapter 19. beliefs

where the ith sigma point si has weight wi. These weights must sum to 1 in order
to provide an unbiased estimate, but they need not all be positive.

The updated mean and covariance matrix given by the unscented transform
through f are thus:

µ′ = ∑
i

wif(si) (19.21)

Σ
′ = ∑

i

wi

(

f(si)− µ′
)(

f(si)− µ′
)⊤ (19.22)

A common set of sigma points include the mean µ ∈ R
n and an additional 2n

points formed from perturbations of µ in directions determined by the covariance
matrix Σ:9 9 The square root of a matrix A is

a matrix B such that BB⊤ = A. In
Julia, the sqrt method produces a
matrix C such that CC = A, which
is not the same. One common
square root matrix can be obtained
from the Cholesky decomposition.

s1 = µ (19.23)

s2i = µ+

(

√

(n + λ)Σ

)

i

for i in 1 : n (19.24)

s2i+1 = µ−
(

√

(n + λ)Σ

)

i

for i in 1 : n (19.25)

These sigma points are associated with the weights:

wi =

λ
n+λ for i = 1

1
2(n+λ)

otherwise
(19.26)

The scalar spread parameter λ determines how far the sigma points are spread
from the mean.10 Several sigma point sets for different values of λ are shown in

10 It is common to use λ = 2,
which is optimal for matching the
fourth moment of Gaussian distri-
butions. Motivations for choosing
sigma point sets of this form are
provided in exercise 19.13 and ex-
ercise 19.14.figure 19.4.

−4 −2 0 2 4

−4

−2

0

2

4

x1

x
2

λ = −0.5

−4 −2 0 2 4

x1

λ = 0.0

−4 −2 0 2 4

x1

λ = 2.0

−4 −2 0 2 4

x1

λ = 4.0 Figure 19.4. The effect of varying
λ on the sigma points from equa-
tion (19.23) generated for a Gaus-
sian distribution with zero mean
and covariance:
Σ = [1 1/2; 1/2 2].

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

19.5. unscented kalman filter 389

The unscented Kalman filter performs two unscented transformations: one for
the prediction step and one for the observation update. Algorithm 19.5 provides
an implementation of this.

struct UnscentedKalmanFilter
μb # mean vector
Σb # covariance matrix
λ # spread parameter

end

function unscented_transform(μ, Σ, f, λ, ws)
n = length(μ)
Δ = cholesky((n + λ) * Σ).L
S = [μ]
for i in 1:n

push!(S, μ + Δ[:,i])
push!(S, μ - Δ[:,i])

end
S′ = f.(S)
μ′ = sum(w*s for (w,s) in zip(ws, S′))
Σ′ = sum(w*(s - μ′)*(s - μ′)' for (w,s) in zip(ws, S′))
return (μ′, Σ′, S, S′)

end

function update(b::UnscentedKalmanFilter, 𝒫, a, o)
μb, Σb, λ = b.μb, b.Σb, b.λ
fT, fO = 𝒫.fT, 𝒫.fO
n = length(μb)
ws = [λ / (n + λ); fill(1/(2(n + λ)), 2n)]
predict
μp, Σp, Sp, Sp′ = unscented_transform(μb, Σb, s->fT(s,a), λ, ws)
Σp += 𝒫.Σs
update
μo, Σo, So, So′ = unscented_transform(μp, Σp, fO, λ, ws)
Σo += 𝒫.Σo
Σpo = sum(w*(s - μp)*(s′ - μo)' for (w,s,s′) in zip(ws, So, So′))
K = Σpo / Σo
μb′ = μp + K*(o - μo)
Σb′ = Σp - K*Σo*K'
return UnscentedKalmanFilter(μb′, Σb′, λ)

end

Algorithm 19.5. The unscented
Kalman filter, an extension of the
Kalman filter to problems with
nonlinear Gaussian dynamics. The
current belief is represented by
mean μb and covariance Σb. The
problem 𝒫 specifies the nonlinear
dynamics using the mean tran-
sition dynamics function fT and
mean observation dynamics func-
tion fO. The sigma points used in
the unscented transforms are con-
trolled by the spread parameter λ.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

390 chapter 19. beliefs

19.6 Particle Filter

Discrete problems with large state spaces or continuous problems with dynamics
that are not well approximated by the linear Gaussian assumption of the Kalman
filter must often resort to approximation techniques to represent the belief and to
perform the belief update. One common approach is to use a particle filter, which
represents the belief state as a collection of states.11 Each state in the approximate 11 A tutorial on particle filters is

provided by M. S. Arulampalam, S.
Maskell, N. Gordon, and T. Clapp,
“A Tutorial on Particle Filters for
Online Nonlinear / Non-Gaussian
Bayesian Tracking,” IEEE Transac-
tions on Signal Processing, vol. 50,
no. 2, pp. 174–188, 2002.

belief is called a particle.
A particle filter is initialized by selecting or randomly sampling a collection

of particles that represent the initial belief. The belief update for a particle filter
with m particles begins by propagating each state si by sampling from the tran-
sition distribution to obtain a new state s′i with probability T(s′i | si, a). The new
belief is constructed by drawing m particles from the propagated states weighted
according to the observation function wi = O(o | a, s′). This procedure is given
in algorithm 19.6. Example 19.4 illustrates an application of a particle filter.

In problems with discrete observations, we can also perform particle belief
updates with rejection. We repeat the following process m times to generate
the set of next state samples. First, we randomly select some state si in the filter
and then sample a next state s′i according to our transition model. Second, we
generate a random observation oi according to our observation model. If oi does
not equal the true observation o, it is rejected, and we generate a new s′i and oi

until the observations match. This particle filter with rejection is implemented in
algorithm 19.7.

As the number of particles in a particle filter increases, the distribution repre-
sented by the particles approaches the true posterior distribution. Unfortunately,
particle filters can fail in practice. Low particle coverage and the stochastic nature
of the resampling procedure can cause there to be no particles near the true
state. This problem of particle deprivation can be somewhat mitigated by several
strategies. A motivational example is given in example 19.5.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

19.6. particle filter 391

Suppose that we want to determine our position based on imperfect distance
measurements to radio beacons whose locations are known. We remain
approximately still for a few steps to collect independent measurements. The
particle filter states are our potential locations. We can compare the ranges
that we would expect to measure for each particle to the observed ranges.

We assume that individual range observations from each beacon are ob-
served with zero-mean Gaussian noise. Our particle transition function adds
zero-mean Gaussian noise since we remain only approximately still.

The images here show the evolution of the particle filter. The rows cor-
respond to different numbers of beacons. The red dots indicate our true
location, and the blue dots are particles. The circles indicate the positions
consistent with noiseless distance measurements from each sensor.

y

t = 1 t = 2 t = 3 t = 4

y

x

y

x x x

Three beacons are required to identify our location accurately. A strength
of the particle filter is that it is able to represent the multimodal distributions
that are especially apparent when there are only one or two beacons.

Example 19.4. A particle filter ap-
plied to different beacon configura-
tions.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

392 chapter 19. beliefs

struct ParticleFilter
states # vector of state samples

end

function update(b::ParticleFilter, 𝒫, a, o)
T, O = 𝒫.T, 𝒫.O
states = [rand(T(s, a)) for s in b.states]
weights = [O(a, s′, o) for s′ in states]
D = SetCategorical(states, weights)
return ParticleFilter(rand(D, length(states)))

end

Algorithm 19.6. A belief updater
for particle filters, which updates
a vector of states representing the
belief based on the agent’s ac-
tion a and its observation o. Ap-
pendix G.5 provides an implemen-
tation of SetCategorical for defin-
ing distributions over discrete sets.

struct RejectionParticleFilter
states # vector of state samples

end

function update(b::RejectionParticleFilter, 𝒫, a, o)
T, O = 𝒫.T, 𝒫.O
states = similar(b.states)
i = 1
while i ≤ length(states)

s = rand(b.states)
s′ = rand(T(s,a))
if rand(O(a,s′)) == o

states[i] = s′
i += 1

end
end
return RejectionParticleFilter(states)

end

Algorithm 19.7. Updating a par-
ticle filter with rejection, which
forces sampled states to match the
input observation o.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

19.6. particle filter 393

Spelunker Joe is lost in a grid-based maze. He lost his lantern, so he can
observe his surroundings only by touch. At any given moment, Joe can tell
whether his location in the maze has walls in each cardinal direction. Joe is
fairly confident in his ability to feel walls, so he assumes that his observations
are perfect.

Joe uses a particle filter to track his belief over time. At some point, he
stops to rest. He continues to run his particle filter to update his belief. The
figures below show his belief over time, with dots indicating belief particles
in his particle filter corresponding to those locations in the maze.

The initial belief has one particle in each grid location that matches his
current observation of a wall to the north and south. Spelunker Joe does not
move and does not gain new information, so his belief should not change
over time. Due to the stochastic nature of resampling, subsequent beliefs may
not contain all the initial states. Over time, his belief will continue to lose
states until it only contains a single state. It is possible that this state is not
where Spelunker Joe is located.

Example 19.5. A particle filter
run for enough time can lose par-
ticles in relevant regions of the
state space due to the stochastic na-
ture of resampling. The problem is
more pronounced when there are
fewer particles or when the parti-
cles are spread over a large state
space.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

394 chapter 19. beliefs

19.7 Particle Injection

Particle injection involves injecting random particles to protect against particle
deprivation. Algorithm 19.8 injects a fixed number of particles from a broader
distribution, such as a uniform distribution over the state space.12 While particle

12 For robotic localization problems,
it is a common practice to inject
particles from a uniform distribu-
tion over all possible robot poses,
weighted by the current observa-
tion.

injection can help prevent particle deprivation, it also reduces the accuracy of the
posterior belief represented by the particle filter.

struct InjectionParticleFilter
states # vector of state samples
m_inject # number of samples to inject
D_inject # injection distribution

end

function update(b::InjectionParticleFilter, 𝒫, a, o)
T, O, m_inject, D_inject = 𝒫.T, 𝒫.O, b.m_inject, b.D_inject
states = [rand(T(s, a)) for s in b.states]
weights = [O(a, s′, o) for s′ in states]
D = SetCategorical(states, weights)
m = length(states)
states = vcat(rand(D, m - m_inject), rand(D_inject, m_inject))
return InjectionParticleFilter(states, m_inject, D_inject)

end

Algorithm 19.8. Particle filter
update with injection, in which
m_inject particles are sampled
from the injection distribution
D_inject to reduce the risk of par-
ticle deprivation.

Instead of using a fixed number of injected particles at each update, we can
take a more adaptive approach. When the particles are all being given very low
weights, we generally want to inject more particles. It might be tempting to choose
the number of injected particles based solely on the mean weight of the current
set of particles. However, doing so can make the success of the filter sensitive to
naturally low observation probabilities in the early periods when the filter is still
converging or in moments of high sensor noise.13 13 S. Thrun,W. Burgard, and D. Fox,

Probabilistic Robotics. MIT Press,
2006.Algorithm 19.9 presents an adaptive injection algorithm that keeps track of two

exponential moving averages of the mean particle weight and bases the number
of injections on their ratio.14 If wmean is the current mean particle weight, the two 14 D.E. Goldberg and J. Richard-

son, “An Experimental Compari-
son of Localization Methods,” in
International Conference on Genetic
Algorithms, 1987.

moving averages are updated according to

wfast ← wfast + αfast(wmean − wfast) (19.27)
wslow ← wslow + αslow(wmean − wslow) (19.28)

where 0 ≤ αslow < αfast ≤ 1.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

19.8. summary 395

The number of injected samples in a given iteration is obtained by comparing
the fast and slow mean particle weights:15 15 Note that ⌊x⌉ denotes the integer

nearest to x.

minject =
⌊

m max

(

0, 1− ν
wfast
wslow

)⌉

(19.29)

The scalar ν ≥ 1 allows us to tune the injection rate.

mutable struct AdaptiveInjectionParticleFilter
states # vector of state samples
w_slow # slow moving average
w_fast # fast moving average
α_slow # slow moving average parameter
α_fast # fast moving average parameter
ν # injection parameter
D_inject # injection distribution

end

function update(b::AdaptiveInjectionParticleFilter, 𝒫, a, o)
T, O = 𝒫.T, 𝒫.O
w_slow, w_fast, α_slow, α_fast, ν, D_inject =

b.w_slow, b.w_fast, b.α_slow, b.α_fast, b.ν, b.D_inject
states = [rand(T(s, a)) for s in b.states]
weights = [O(a, s′, o) for s′ in states]
w_mean = mean(weights)
w_slow += α_slow*(w_mean - w_slow)
w_fast += α_fast*(w_mean - w_fast)
m = length(states)
m_inject = round(Int, m * max(0, 1.0 - ν*w_fast / w_slow))
D = SetCategorical(states, weights)
states = vcat(rand(D, m - m_inject), rand(D_inject, m_inject))
b.w_slow, b.w_fast = w_slow, w_fast
return AdaptiveInjectionParticleFilter(states,

w_slow, w_fast, α_slow, α_fast, ν, D_inject)
end

Algorithm 19.9. A particle fil-
ter with adaptive injection, which
maintains fast and slow expo-
nential moving averages w_fast
and w_slow of the mean parti-
cle weight with smoothness fac-
tors α_fast and α_slow, respec-
tively. Particles are injected only
if the fast moving average of the
mean particle weight is less than
1/ν of the slow moving average.
Recommended values from the
original paper are α_fast = 0.1,
α_slow = 0.001, and ν = 2.

19.8 Summary

• Partially observable Markov decision processes (POMDPs) extend MDPs to
include state uncertainty.

• The uncertainty requires agents in a POMDP to maintain a belief over their
state.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

396 chapter 19. beliefs

Spelunker Joe from example 19.6 now moves one tile to the east and moves
all particles in his particle filter one tile east as well. He now senses walls
only to the north and east, and unfortunately, this observation does not agree
with any of the updated particles in his filter. He decides to use adaptive
injection to fix his particle deprivation problem. Here, we see how his filter
injects particles from a uniform random distribution, along with the values
for the fast and slow filters:

wslow = 1.0

w f ast = 1.0

wslow = 0.99

w f ast = 0.7

wslow = 0.98

w f ast = 0.49

wslow = 0.97

w f ast = 0.34

wslow = 0.96

w f ast = 0.24

wslow = 0.95

w f ast = 0.17

wslow = 0.94

w f ast = 0.12

wslow = 0.93

w f ast = 0.1

Iterations proceed left to right and top to bottom. Each blue dot represents
a particle in the particle filter, corresponding to a partial belief in being in
that location of the grid.

Example 19.6. A particle filter with
adaptive injection α_slow = 0.01,
α_fast = 0.3, and ν = 2.0, start-
ing from a deprived state with 16
identical particles. The moving av-
erages are initialized to 1 to reflect
a long period of observations that
perfectly match every particle in
the filter. Over the next iterations,
these moving averages change at
different rates based on the quan-
tity of particles that match the ob-
servation. The iterations proceed
left to right and top to bottom.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

19.9. exercises 397

• Beliefs for POMDPs with discrete state spaces can be represented using cate-
gorical distributions and can be updated analytically.

• Beliefs for linear Gaussian POMDPs can be represented using Gaussian distri-
butions and can also be updated analytically.

• Beliefs for nonlinear, continuous POMDPs can also be represented using Gaus-
sian distributions, but they cannot typically be updated analytically. In this
case, the extended Kalman filter and the unscented Kalman filter can be used.

• Continuous problems can sometimes be modeled under the assumption that
they are linear Gaussian.

• Particle filters approximate the belief with a large collection of state particles.

19.9 Exercises
Exercise 19.1. Can every MDP be framed as a POMDP?

Solution: Yes. The POMDP formulation extends the MDP formulation by introducing state
uncertainty in the form of the observation distribution. Any MDP can be framed as a
POMDP with O = S and O(o | a, s′) = (o = s′).

Exercise 19.2. What is the belief update for a discrete POMDP with no observation? What
is the belief update for a POMDP with linear Gaussian dynamics with no observation?

Solution: If an agent in a POMDP without an observation with belief b takes an action a,
the new belief b′ can be calculated as follows:

b′(s′) = P(s′ | b, a) = ∑
s

P(s′ | a, b, s)P(s | b, a) = ∑
s

T(s′ | s, a)b(s)

This belief update is equivalent to having a uniform observation distribution. A POMDP
with linear Gaussian dynamics that has no observation will update its belief using only
the Kalman filter predict step in equation (19.12).

Exercise 19.3. An autonomous vehicle represents its belief over its position using a mul-
tivariate normal distribution. It comes to a rest at a traffic light, and the belief updater
continues to run while it sits. Over time, the belief concentrates and becomes extremely
confident in a particular location. Why might this be a problem? How might this extreme
confidence be avoided?

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

398 chapter 19. beliefs

Solution: Overconfidence in a belief can be a problem when the models or belief updates
do not perfectly represent reality. The overconfident belief may have converged on a state
that does not match the true state. Once the vehicle moves again, new observations may
be inconsistent with the belief and result in poor estimates. To help address this issue, we
can require that the values of the diagonal elements of the covariance matrix be above
threshold.

Exercise 19.4. Consider tracking our belief over the dud rate for widgets produced at a
factory. We use a Poisson distribution to model the probability that k duds are produced
in one day of factory operation given that the factory has a dud rate of λ:

P(k | λ) =
1

k!
λke−λ

Suppose that our initial belief over the dud rate follows a gamma distribution:

p(λ | α, β) =
βα

Γ(α)
λα−1e−βλ

where λ ∈ (0, ∞), and the belief is parameterized by the shape α > 0 and the rate β > 0.
After a day of factory operation, we observe that d ≥ 0 duds were produced. Show that
our updated belief over the dud rate is also a gamma distribution.16 16 The gamma distribution is a con-

jugate prior to the Poisson distri-
bution. A conjugate prior is a family
of probability distributions that re-
main within the same family when
updated with an observation. Con-
jugate priors are useful for model-
ing beliefs because their form re-
mains constant.

Solution: We seek the posterior distribution p(λ | d, α, β), which we can obtain through
Bayes’ rule:

p(λ | d, α, β) ∝ p(d | λ)p(λ | α, β)

∝
1

d!
λde−λ βα

Γ(α)
λα−1e−βλ

∝ λα+d−1e−(β+1)λ

This is a gamma distribution:

p(λ | α + d, β + 1) =
(β + 1)α+d

Γ(α + d)
λα+d−1e−(β+1)λ

∝ λα+d−1e−(β+1)λ

Exercise 19.5. Why are particle filters with rejection not used for updating beliefs in
POMDPs with continuous observations?

Solution: Rejection sampling requires repeatedly sampling the transition and observation
functions until the sampled observation matches the true observation. The probability
of sampling any particular value in a continuous probability distribution is zero, making
rejection sampling run forever. In practice, we would use a finite representation for contin-
uous values, such as 64-bit floating point numbers, but rejection sampling can run for an
extremely long time for each particle.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

19.9. exercises 399

Exercise 19.6. Explain why Spelunker Joe would not benefit from switching to a particle
filter with adaptive injection with ν ≥ 1 in example 19.5.

Solution: Adaptive injection injects new particles when νwfast/wslow < 1. Spelunker Joe
assumes perfect observations and has a belief with particles that match his current obser-
vation. Thus, every particle has a weight of 1, and both wfast and wslow are 1. It follows
that wfast/wslow is always 1, leading to no new particles.

Exercise 19.7. Why is the injection rate scalar ν in a particle filter with adaptive injection
typically not set to a value less than 1?

Solution: Particle injection was designed to inject particles when the current observations
have lower likelihood than a historic trend over the observation likelihood. Thus, injection
typically occurs only when the short-term estimate of the mean particle weight wfast is less
than the long-term estimate of the mean particle weight wslow. If ν < 1, then particles can
still be generated even if wfast ≥ wslow, despite indicating that current observations have a
higher likelihood than the past average.

Exercise 19.8. Suppose we are dropped into a rectangular forest at an initial location
chosen uniformly at random. We do not know which direction we are facing. Fortunately,
we do know the dimensions of the forest (it has width w and length ℓ ≫ w).17 We can

17 This problem was motivated by
Richard Bellman’s ‘‘Lost in a For-
est Problem,’’ in which we start at
a random location and orientation
in a forest with a known geometry
and must find a policy that mini-
mizes the average (or maximum)
time to exit. R. Bellman, “Minimiza-
tion Problem,” Bulletin of the Amer-
ican Mathematical Society, vol. 62,
no. 3, p. 270, 1956.

move in a continuous path, continuously observing whether we are still in the forest.
How can we apply belief updating to this problem? Here are three possible policies, each
defining a different path. Which of these policies are guaranteed to escape the forest?
Which policy is best?

w

A straight path of length 2w Two perpendicular segments,
each of length

√
2w

Two legs of an equilateral trian-
gle, each of length 2

√
3

3 w

Solution: Our initial belief is a uniform distribution over all two-dimensional locations and
orientations (states) in the forest. We can represent an updated belief using the path that
we have traveled thus far. If we are still in the forest, our belief consists of all states that can
be reached from a state within the forest by following our path while remaining entirely
in the forest. As soon as we exit the forest, our belief consists of all states that reach the
edge by following our path while remaining entirely in the forest.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

400 chapter 19. beliefs

Of the given policies, only the last two are guaranteed to escape the forest. The path
formed by the two perpendicular segments and by the two sides of the equilateral triangle
will always intersect with the forest’s border. The straight segment, however, may not
leave the forest. We prefer the shorter of the two escaping policies, which is the equilateral
triangle.

Exercise 19.9. Algorithm 19.2 checks whether the updated belief is a zero vector. When
can a belief update yield a zero vector? Why might this arise in real-world applications?

Solution:A zero belief vector can result from an observation o that is considered impossible.
This situation can arise after taking action a from belief b when O(o | a, s′) = 0 for all
possible next states s′ according to b and our transition model. Algorithm 19.2 handles
this case by returning a uniform belief. In practical applications, there may be a mismatch
between the model and the real world. We generally want to be careful to avoid assigning
zero probability to observations, just in case our belief, transition, or observations models
are incorrect.

Exercise 19.10. Suppose we are performing in-flight monitoring of an aircraft. The aircraft
is either in a state of normal operation s0 or a state of malfunction s1. We receive observa-
tions through the absence of a warning w0 or the presence of a warning w1. We can choose
to allow the plane to continue to fly m0 or send the plane in for maintenance m1. We have
the following transition and observation dynamics, where we assume that the warnings
are independent of the actions, given the status of the plane:

T(s0 | s0, m0) = 0.95 O(w0 | s0) = 0.99

T(s0 | s0, m1) = 1 O(w1 | s1) = 0.7

T(s1 | s1, m0) = 1

T(s0 | s1, m1) = 0.98

Given the initial belief b = [0.95, 0.05], compute the updated belief b′, given that we allow
the plane to continue to fly and we observe a warning.

Solution: Using equation (19.7), we update the belief for s0:

b′(s0) ∝ O(w1 | s0)∑
s

T(s0 | s, m0)b(s)

b′(s0) ∝ O(w1 | s0)(T(s0 | s0, m0)b(s0) + T(s0 | s1, m0)b(s1))

b′(s0) ∝ (1− 0.99)(0.95× 0.95 + (1− 1)× 0.05) = 0.009025

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

19.9. exercises 401

We repeat the update for s1:

b′(s1) ∝ O(w1 | s1)∑
s

T(s1 | s, m0)b(s)

b′(s1) ∝ O(w1 | s1)(T(s1 | s0, m0)b(s0) + T(s1 | s1, m0)b(s1))

b′(s1) ∝ 0.7((1− 0.95)× 0.95 + 1× 0.05) = 0.06825

After normalization, we obtain the following updated belief:

b′(s0) =
b′(s0)

b′(s0) + b′(s1)
≈ 0.117

b′(s1) =
b′(s1)

b′(s0) + b′(s1)
≈ 0.883

b′ ≈ [0.117, 0.883]

Exercise 19.11. Consider a robot moving along a line with position x, velocity v, and
acceleration a. At each time step, we directly control the acceleration and observe the
velocity. The equations of motion for the robot are

x′ = x + v∆t + 1
2 a∆t2

v′ = v + a∆t

where ∆t is the duration of each step. Suppose we would like to implement a Kalman filter
to update our belief. The state vector is s = [x, v]. Determine Ts, Ta, and Os.

Solution: The transition and observation dynamics can be written in linear form as follows:
[

x′

v′

]

=

[

1 ∆t

0 1

] [

x

v

]

+

[

1
2 ∆t2

∆t

]

a

o =
[

0 1
]

[

x′

v′

]

Through these equations, we can identify Ts, Ta, and Os:

Ts =

[

1 ∆t

0 1

]

Ta =

[

1
2 ∆t2

∆t

]

Os =
[

0 1
]

Exercise 19.12. Consider a robot with a differential drive moving in two dimensions at
a constant speed v. The robot’s state is its position (x, y) and its heading θ. At each time
step, we control the robot’s turn rate ω. The equations of motion for the robot are

x′ = x + v cos(θ)∆t

y′ = y + v sin(θ)∆t

θ′ = θ + ω∆t

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

402 chapter 19. beliefs

This transition function is nonlinear. What is its linearization, Ts, as a function of the state
s = [x, y, θ]?

Solution: The linearization is given by the Jacobian as follows:

Ts =

∂x′
∂x

∂x′
∂y

∂x′
∂θ

∂y′

∂x
∂y′

∂y
∂y′

∂θ
∂θ′
∂x

∂θ′
∂y

∂θ′
∂θ

=

1 0 −v sin(θ)∆t

0 1 v cos(θ)∆t

0 0 1

This linearization can be used in an extended Kalman filter to maintain a belief.

Exercise 19.13. Suppose we choose the following 2n sigma points for an n-dimensional
distribution:

s2i = µ+
√

nΣi for i in 1 : n

s2i−1 = µ−
√

nΣi for i in 1 : n

Show that we can reconstruct the mean and the covariance from these sigma points using
the weights wi = 1/(2n).

Solution: If we use the weights wi = 1/(2n), the reconstructed mean is

∑
i

wisi =
n

∑
i=1

1

2n

(

µ+
√

nΣi

)

+
1

2n

(

µ−
√

nΣi

)

=
n

∑
i=1

1

n
µ = µ

and the reconstructed covariance is

∑
i

wi(si − µ′)(si − µ′)⊤ = 2
n

∑
i=1

1

2n

(√
nΣi

)(√
nΣi

)⊤

=
1

n

n

∑
i=1

(√
nΣi

)(√
nΣi

)⊤

=
√

Σ

√
Σ
⊤

= Σ

Exercise 19.14. Recall the 2n sigma points and weights from the previous problem that
represent a mean µ and covariance Σ. We would like to parameterize the sigma points and
weights in order to control the concentration of the points about the mean. Show that we
can construct a new set of sigma points by uniformly down-weighting the original sigma
points and then including the mean µ as an additional sigma point. Show that this new
set of 2n + 1 sigma points matches the form in equation (19.23).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

19.9. exercises 403

Solution: We can include the mean µ in the sigma points from exercise 19.13 to obtain a
new set of 2n + 1 sigma points:

s1 = µ

s2i = µ+

(√

n

1− w1
Σ

)

i

for i in 1 : n

s2i+1 = µ−
(√

n

1− w1
Σ

)

i

for i in 1 : n

where w1 is the weight of the first sigma point. The weights of the remaining sigma points
are uniformly reduced from 1/(2n) to (1− w1)/(2n). The reconstructed mean is still µ,
and the reconstructed covariance is still Σ.

We can vary w1 to produce different sets of sigma points. Setting w1 > 0 causes the
sigma points to spread away from the mean; setting w1 < 0 moves the sigma points
closer to the mean. This results in a scaled set of sigma points with different higher-order
moments, but it preserves the same mean and covariance.

We can match equation (19.23) by substituting w1 = λ/(n + λ). It follows that (1−
w1)/2n = 1/(2(n + λ)) and n/(1− w1) = n + λ.

Exercise 19.15. Compute the set of sigma points and weights with λ = 2 for a multivariate
Gaussian distribution with

µ =

[

1

2

]

Σ =

[

4 0

0 2.25

]

Solution: Since we have a two-dimensional Gaussian distribution and we are given λ = 2,
we need to compute 2n + 1 = 5 sigma points. We need to compute the square-root matrix
B =

√

(n + λ)Σ, such that BB⊤ = (n+λ)Σ. Since the scaled covariancematrix is diagonal,
the square-root matrix is simply the elementwise square root of (n + λ)Σ:

√

(n + λ)Σ =

√

√

√

√(2 + 2)

[

4 0

0 2.25

]

=

[

4 0

0 3

]

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

404 chapter 19. beliefs

Now, we can compute the sigma points and weights:

s1 =

[

1

2

]

w1 =
2

2 + 2
=

1

2

s2 =

[

1

2

]

+

[

4

0

]

=

[

5

2

]

w2 =
1

2(2 + 2)
=

1

8

s3 =

[

1

2

]

−
[

4

0

]

=

[

−3

2

]

w3 =
1

2(2 + 2)
=

1

8

s4 =

[

1

2

]

+

[

0

3

]

=

[

1

5

]

w4 =
1

2(2 + 2)
=

1

8

s5 =

[

1

2

]

−
[

0

3

]

=

[

1

−1

]

w5 =
1

2(2 + 2)
=

1

8

Exercise 19.16. Using the sigma points and weights from the previous exercise, compute
the updated mean and covariance given by the unscented transform through f(x) =

[2x1, x1x2].

Solution: The transformed sigma points are

f(s1) =

[

2

2

]

f(s2) =

[

10

10

]

f(s3) =

[

−6

−6

]

f(s4) =

[

2

5

]

f(s5) =

[

2

−1

]

We can reconstruct the mean as the weighted sum of transformed sigma points:

µ′ = ∑
i

wif(si)

µ′ =
1

2

[

2

2

]

+
1

8

[

10

10

]

+
1

8

[

−6

−6

]

+
1

8

[

2

5

]

+
1

8

[

2

−1

]

=

[

2

2

]

The covariance matrix can be reconstructed from the weighted sum of point-wise covari-
ance matrices:

Σ
′ = ∑

i

wi

(

f(si)− µ′
) (

f(si)− µ′
)⊤

Σ
′ =

1

2

[

0 0

0 0

]

+
1

8

[

64 64

64 64

]

+
1

8

[

64 64

64 64

]

+
1

8

[

0 0

0 9

]

+
1

8

[

0 0

0 9

]

=

[

16 16

16 18.25

]

Exercise 19.17. Both the Kalman filter and the extended Kalman filter compute the cross-
covariance matrix Σpo using the observation covariance Os. The unscented Kalman filter
does not directly compute this observationmatrix, but instead computes Σpo directly. Show
that the covariance update for the unscented Kalman filter, Σb′ ← Σp −KΣoK⊤, matches
the covariance update for theKalmanfilter and extendedKalmanfilter, Σb′ ← (I−KOs)Σp.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

19.9. exercises 405

Solution: We can use the relations K = ΣpoΣ
−1
o and Σpo = ΣpO⊤s to show that the two

updates are equivalent. Note also that a symmetric matrix is its own transpose, and that
covariance matrices are symmetric.

Σb′ = Σp −KΣoK⊤

= Σp −KΣo

(

ΣpoΣ
−1
o

)⊤

= Σp −KΣo

(

Σ
−1
o

)⊤
Σ
⊤
po

= Σp −KΣ
⊤
po

= Σp −K
(

ΣpO⊤s
)⊤

= Σp −KOsΣ⊤p

= Σp −KOsΣp

= (I−KOs)Σp

Exercise 19.18. What are some advantages and disadvantages of using a particle filter
instead of a Kalman filter?

Solution: A Kalman filter can provide an exact belief update when the system is linear
Gaussian. Particle filters can work better when the system is nonlinear and the uncertainty
is multimodal. Particle filters are generally more computationally expensive andmay suffer
from particle deprivation.

Exercise 19.19. Consider using a particle filter to maintain a belief in a problem where
observations are very reliable, with observations having either high or low likelihood.
For example, in the Spelunker Joe problem, we can reliably determine which of the four
walls are present, allowing us to immediately discount any states that do not match the
observation. Why might a particle filter with rejection be a better match than a traditional
particle filter for such problems?

Solution:A traditional particle filter produces a set of particles and assigns weights to them
according to their observation likelihoods. In problems like the one with Spelunker Joe,
many particles may end upwith little to no weight. Havingmany particles with lowweight
makes the belief vulnerable to particle deprivation. A particle filter with rejection ensures
that each particle’s successor state is compatible with the observation, thus mitigating the
issue of particle deprivation.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

