
18 Imitation Learning

Previous chapters have assumed either that a reward function is known or that re-
wards are received while interacting with the environment. For some applications,
it may be easier for an expert to demonstrate the desired behavior rather than
specify a reward function. This chapter discusses algorithms for imitation learning,
where the desired behavior is learned from expert demonstration. We will cover
a variety of methods ranging from very simple likelihood-maximization methods
to more complicated iterative methods that involve reinforcement learning.1 1 Additional methods and applica-

tions are surveyed by A. Hussein,
M.M.Gaber, E. Elyan, andC. Jayne,
“Imitation Learning: A Survey of
Learning Methods,” ACM Comput-
ing Surveys, vol. 50, no. 2, pp. 1–35,
2017.

18.1 Behavioral Cloning

A simple form of imitation learning is to treat it as a supervised learning problem.
This method, called behavioral cloning,2 trains a stochastic policy πθ parameterized 2 D.A. Pomerleau, “Efficient Train-

ing of Artificial Neural Networks
for Autonomous Navigation,” Neu-
ral Computation, vol. 3, no. 1, pp. 88–
97, 1991.

by θ to maximize the likelihood of actions from a data set D of expert state-action
pairs:

maximize
θ

∏
(s,a)∈D

πθ(a | s) (18.1)

As done in earlier chapters, we can transform the maximization over the product
over πθ(a | s) to a sum over log πθ(a | s).

Depending on howwe want to represent the conditional distribution πθ(a | s),
we may compute the maximum likelihood estimate of θ analytically. For example,
if we use a discrete conditional model (section 2.4), θwould consist of the counts
N(s, a) from D and πθ(a | s) = N(s, a)/ ∑a N(s, a). Example 18.1 applies a
discrete conditional model to data from the mountain car problem.

If we have a factored representation of our policy, we can use a Bayesian
network to represent the joint distribution over our state and action variables.
Figure 18.1 shows an example. We can learn both the structure (chapter 5) and

356 chapter 18. imitation learning

Consider using behavioral cloning on expert demonstrations for the moun-
tain car problem (appendix F.4). We are given 10 rollouts from an expert
policy. We fit a conditional distribution and plot the results. The continuous
trajectories were discretized with 10 bins each for position and for speed.

−0.05

0.00

0.05

sp
ee

d

P(a = −1 | s) P(a = 0 | s)

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5

−0.05

0.00

0.05

position

sp
ee

d

P(a = 1 | s)

−1 −0.5 0 0.5

position

expert demonstrations

accel right
coast
accel left

The state space is not fully covered by expert demonstrations, which is
typical of imitation learning problems. The resulting policymay performwell
when used in regions with coverage, but it assigns a uniform distribution
to actions in regions without coverage. Even if we start in a region with
coverage, we may transition to regions without coverage due to stochasticity
in the environment.

Example 18.1. A demonstration
of behavioral cloning applied to
the mountain car problem. The
light blue regions are areaswithout
training data, resulting in poor pol-
icy performancewhen the agent en-
counters those states.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

18.1 . behavioral cloning 357

the parameters (chapter 4) from the data D. Given the current state, we can then
infer the distribution over actions using one of the inference algorithms discussed
earlier (chapter 3).

s1 s2 s3

a1 a2

P(s1) P(s2) P(s3)

P(a1 | s1, s2) P(a2 | s1, s2, s3)

Figure 18.1. Bayesian networks can
be used to represent a joint distribu-
tion over the state and action vari-
ables. We can apply an inference al-
gorithm to generate a distribution
over actions, given the current val-
ues of the state variables.

We can use many other representations for πθ. For example, we might want
to use a neural network, where the input corresponds to the values of the state
variables and the output corresponds to parameters of a distribution over the
action space. If our representation is differentiable, which is the case with neural
networks, we can attempt to optimize equation (18.1) using gradient ascent. This
approach is implemented in algorithm 18.1.

struct BehavioralCloning
α # step size
k_max # number of iterations
∇logπ # log likelihood gradient

end

function optimize(M::BehavioralCloning, D, θ)
α, k_max, ∇logπ = M.α, M.k_max, M.∇logπ
for k in 1:k_max

∇ = mean(∇logπ(θ, a, s) for (s,a) in D)
θ += α*∇

end
return θ

end

Algorithm 18.1. A method for
learning a parameterized stochas-
tic policy from expert demonstra-
tions in the form of a set of state-
action tuples D. The policy param-
eterization vector θ is iteratively
improved by maximizing the log
likelihood of the actions given the
states. Behavioral cloning requires
a step size α, an iteration count
k_max, and a log likelihood gradi-
ent ∇logπ.

The closer the expert demonstrations are to optimal, the better the resulting
behavioral cloning policy will perform.3 However, behavioral cloning suffers 3 U. Syed and R. E. Schapire, “A

Reduction from Apprenticeship
Learning to Classification,” in Ad-
vances in Neural Information Process-
ing Systems (NIPS), 2010.

from cascading errors. As discussed in example 18.2, small inaccuracies compound
during a rollout and eventually lead to states that are poorly represented in the
training data, thereby leading to worse decisions, and ultimately to invalid or
unseen situations. Although behavioral cloning is attractive due to its simplic-
ity, cascading errors cause the method to perform poorly on many problems,
especially when policies must be used for long time horizons.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

358 chapter 18. imitation learning

Consider applying behavioral cloning to train a policy for driving an au-
tonomous race car. A human race car driver provides expert demonstrations.
Being an expert, the driver never drifts onto the grass or too close to a railing.
A model trained with behavioral cloning would have no information to use
when near a railing or when drifting onto the grass, and thus it would not
know how to recover.

Example 18.2. A brief example of
the generalization issue inherent to
behavioral cloning approaches.

18.2 Data Set Aggregation

One way to address the problem of cascading errors is to correct a trained policy
using additional expert input. Sequential interactive demonstration methods alter-
nate between collecting data from an expert in situations generated by a trained
policy and using this data to improve this policy.

One type of sequential interactive demonstration method is called data set
aggregation (DAgger) (algorithm 18.2).4 It starts by training a stochastic policy 4 S. Ross, G. J. Gordon, and J.A.

Bagnell, “A Reduction of Imitation
Learning and Structured Predic-
tion to No-Regret Online Learn-
ing,” in International Conference on
Artificial Intelligence and Statistics
(AISTATS), vol. 15, 2011.

using behavioral cloning. The policy is then used to run several rollouts from an
initial state distribution b, which are then given to an expert to provide the correct
actions for each state. The new data is aggregated with the previous data set and
a new policy is trained. Example 18.3 illustrates this process.

These interactive demonstrations iteratively build a data set covering the re-
gions of the state space that the agent is likely to encounter, based on previous
learning iterations. With each iteration, newly added examples compose a smaller
fraction of the data set, thereby leading to smaller policy changes. While sequen-
tial interactive demonstration can work well in practice, it is not guaranteed to
converge. It can be shown that mixing in influence from the expert policy can
guarantee convergence, which is the subject of the next section.

18.3 Stochastic Mixing Iterative Learning

Sequential interactive methods can also iteratively build up a policy by stochas-
tically mixing in newly trained policies. One such method is stochastic mixing
iterative learning (SMILe) (algorithm 18.3).5 It uses behavioral cloning in every

5 S. Ross and J.A. Bagnell, “Ef-
ficient Reductions for Imitation
Learning,” in International Confer-
ence on Artificial Intelligence and
Statistics (AISTATS), 2010.

iteration but mixes the newly trained policy with the previous ones.
We start with the expert policy, π(1) = πE.6 In each iteration, we execute the

6 We do not have an explicit rep-
resentation of πE. Evaluating πE

requires interactively querying the
expert, as done in the previous sec-
tion.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

18.3. stochastic mixing iterative learning 359

struct DataSetAggregation
𝒫 # problem with unknown reward function
bc # behavioral cloning struct
k_max # number of iterations
m # number of rollouts per iteration
d # rollout depth
b # initial state distribution
πE # expert
πθ # parameterized policy

end

function optimize(M::DataSetAggregation, D, θ)
𝒫, bc, k_max, m = M.𝒫, M.bc, M.k_max, M.m
d, b, πE, πθ = M.d, M.b, M.πE, M.πθ
θ = optimize(bc, D, θ)
for k in 2:k_max

for i in 1:m
s = rand(b)
for j in 1:d

push!(D, (s, πE(s)))
a = rand(πθ(θ, s))
s = rand(𝒫.T(s, a))

end
end
θ = optimize(bc, D, θ)

end
return θ

end

Algorithm 18.2. The DAgger
method of data set aggregation
for learning a stochastic parame-
terized policy from expert demon-
strations. This method takes an ini-
tial data set of state-action tuples D,
a stochastic parameterized policy
πθ(θ, s), an MDP 𝒫 that defines
a transition function, and an ini-
tial state distribution b. Behavioral
cloning (algorithm 18.1) is used in
each iteration to improve the pol-
icy.

An expert policy πE labels tra-
jectories sampled from the latest
learned policy to augment the data
set. The original paper generated
trajectories by stochastically mix-
ing in the expert policy. This imple-
mentation is thus the original DAg-
ger with an extreme mixing value
of zero.

In practice, an expert policy
would not exist, and calls to this
policy would be replaced with
queries to a human expert.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

360 chapter 18. imitation learning

Consider using DAgger to train a policy on the mountain car problem where
the reward is not observed. We use an expert policy that accelerates in the
direction of travel. In this example, we train a policy using the following
features:

f(s) = [1[v > 0], 1[v < 0], x, x2, v, v2, xv]

where x and v are the position and speed of the car.

−5

0

5

×10−2

sp
ee

d

rollouts P(a = −1 | s) P(a = 1 | s)

0

0.2

0.4

0.6

0.8

1

−5

0

5

×10−2

sp
ee

d

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5

−5

0

5

×10−2

position

sp
ee

d

−1 −0.5 0 0.5

position
−1 −0.5 0 0.5

position

0

0.2

0.4

0.6

0.8

1

accel right coast accel left

Trajectories are colored according to the action. In the first iteration, the
agent behaves randomly, unable to make progress toward the goal (x ≥
0.6). With additional iterations, the agent learns to mimic the expert policy
of accelerating in the direction of travel. This behavior is apparent in the
new trajectories, which spiral outward, and the policy, which assigns high
likelihood to a = 1 when v > 0 and a = −1 when v < 0.

Example 18.3. DAgger applied to
the mountain car problem, with it-
erations running from top to bot-
tom. Trajectories accumulate in the
data set over time. The behavior of
the agent improves with each itera-
tion.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

18.4. maximum margin inverse reinforcement learning 361

latest policy π(k) to generate a new data set, querying the expert to provide the
correct actions. Behavioral cloning is applied only to this new data set to train
a new component policy π̂(k). This component policy is mixed with component
policies from the previous iterations to produce a new policy π(k+1).

The mixing of component policies to generate π(k+1) is governed by a mixing
scalar β ∈ (0, 1). The probability of acting according to the expert policy is (1− β)k,
and the probability of acting according to π̂(i) is β(1− β)i−1. This scheme assigns
more weight to older policies under the hypothesis that older policy components
were trained on the states most likely to be encountered.7 With each iteration, the 7 In SMILe, we are acting accord-

ing to our latest learned policy. We
expect that this learned policy will
match the expert fairlywell and pri-
marilymispredictwhenwedeviate
from the expert policy. The learned
component policies generally only
need to make smaller and smaller
contributionswith each iteration to
make up the difference in what has
not already been learned.

probability of acting according to the original expert policy decays to zero. The
mixing scalar is typically small, such that the agent does not abandon the expert’s
policy too quickly. Example 18.4 demonstrates this approach with the mountain
car problem.

18.4 Maximum Margin Inverse Reinforcement Learning

In many application settings, we have no expert that can be interactively queried;
but instead we have a batch of expert demonstration trajectories. We will assume
that the expert demonstration data D consists of m trajectories. Each trajectory τ

in D involves a rollout to depth d. In inverse reinforcement learning, we assume that
the expert is optimizing an unknown reward function. From D, we attempt to
derive that reward function. With that reward function, we can use the methods
discussed in prior chapters to derive an optimal policy.

There are different approaches to inverse reinforcement learning. We generally
need to define a parameterization of the reward function. A common assumption
is that this parameterization is linear, with Rφ(s, a) = φ⊤β(s, a), where β(s, a)

is a feature vector andφ is a vector of weightings. In this section, we will focus
on an approach known as maximum margin inverse reinforcement learning,8 where 8 P. Abbeel and A.Y. Ng, “Appren-

ticeship Learning via Inverse Re-
inforcement Learning,” in Interna-
tional Conference on Machine Learn-
ing (ICML), 2004.

the features are assumed to be binary. Since optimal policies remain optimal with
positive scaling of the reward function, this method additionally constrains the
weight vector such that ‖φ‖2 ≤ 1. The expert data activates each binary feature
with different frequencies, perhaps pursuing some and avoiding others. This
approach attempts to learn this pattern of activation and trains an agent to mimic
these activation frequencies.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

362 chapter 18. imitation learning

struct SMILe
𝒫 # problem with unknown reward
bc # Behavioral cloning struct
k_max # number of iterations
m # number of rollouts per iteration
d # rollout depth
b # initial state distribution
β # mixing scalar (e.g., d^-3)
πE # expert policy
πθ # parameterized policy

end

function optimize(M::SMILe, θ)
𝒫, bc, k_max, m = M.𝒫, M.bc, M.k_max, M.m
d, b, β, πE, πθ = M.d, M.b, M.β, M.πE, M.πθ
𝒜, T = 𝒫.𝒜, 𝒫.T
θs = []
π = s -> πE(s)
for k in 1:k_max

execute latest π to get new data set D
D = []
for i in 1:m

s = rand(b)
for j in 1:d

push!(D, (s, πE(s)))
a = π(s)
s = rand(T(s, a))

end
end
train new policy classifier
θ = optimize(bc, D, θ)
push!(θs, θ)
compute a new policy mixture
Pπ = Categorical(normalize([(1-β)^(i-1) for i in 1:k],1))
π = s -> begin

if rand() < (1-β)^(k-1)
return πE(s)

else
return rand(Categorical(πθ(θs[rand(Pπ)], s)))

end
end

end
Ps = normalize([(1-β)^(i-1) for i in 1:k_max],1)
return Ps, θs

end

Algorithm 18.3. The SMILe al-
gorithm for training a stochastic
parameterized policy from expert
demonstrations for an MDP 𝒫. It
successively mixes in new com-
ponent policies with smaller and
smaller weights, while simultane-
ously reducing the probability of
acting according to the expert pol-
icy. The method returns the prob-
abilities Ps and parameterizations
θs for the component policies.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

18.4. maximum margin inverse reinforcement learning 363

Consider using SMILe to train a policy on the mountain car problem where
the reward is not observed. We use the same features that were used for
DAgger in example 18.3. Both DAgger and SMILe receive a new expert-
labeled data set with each iteration. Instead of accumulating a larger data
set of expert-labeled data, SMILe trains a new policy component using only
the most recent data, mixing the new policy component with the previous
policy components.

−5

0

5

×10−2

sp
ee

d

rollouts P(a = −1 | s) P(a = 1 | s)

0

0.2

0.4

0.6

0.8

1

−5

0

5

×10−2

sp
ee

d

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5

−5

0

5

×10−2

position

sp
ee

d

−1 −0.5 0 0.5

position
−1 −0.5 0 0.5

position

0

0.2

0.4

0.6

0.8

1

accel right coast accel left

Example 18.4. Using SMILe to
learn a policy for the mountain
car problem. In contrast with DAg-
ger in example 18.3, SMILe mixes
the expert into the policy during
rollouts. This expert component,
whose influence wanes with each
iteration, causes the initial rollouts
to better progress toward the goal.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

364 chapter 18. imitation learning

An important part of this algorithm involves reasoning about the expected
return under a policy π for a weightingφ and initial state distribution b:

E
s∼b

[U(s)] = Eτ

[

d

∑
k=1

γk−1Rφ(s(k), a(k))

]

(18.2)

= Eτ

[

d

∑
k=1

γk−1φ⊤β(s(k), a(k))

]

(18.3)

= φ⊤
(

Eτ

[

d

∑
k=1

γk−1β(s(k), a(k))

])

(18.4)

= φ⊤µπ (18.5)

where τ corresponds to trajectories generated by π to depth d. Here, we introduce
the feature expectations vector µπ , which is the expected discounted accumulated
feature values. These feature expectations can be estimated from m rollouts, as
implemented in algorithm 18.4.

struct InverseReinforcementLearning
𝒫 # problem
b # initial state distribution
d # depth
m # number of samples
π # parameterized policy
β # binary feature mapping
μE # expert feature expectations
RL # reinforcement learning method
ϵ # tolerance

end

function feature_expectations(M::InverseReinforcementLearning, π)
𝒫, b, m, d, β, γ = M.𝒫, M.b, M.m, M.d, M.β, M.𝒫.γ
μ(τ) = sum(γ^(k-1)*β(s, a) for (k,(s,a)) in enumerate(τ))
τs = [simulate(𝒫, rand(b), π, d) for i in 1:m]
return mean(μ(τ) for τ in τs)

end

Algorithm 18.4. A structure for in-
verse reinforcement learning and
a method for estimating a feature
expectations vector from rollouts.

We can use the expert demonstrations to estimate the expert feature expecta-
tions µE, and we want to find a policy that matches these feature expectations
as closely as possible. At the first iteration, we begin with a randomized policy
π(1) and estimate its feature expectations, denoted as µ(1). At iteration k, we find
a newφ(k) corresponding to a reward function R

φ(k)(s, a) = φ(k)⊤β(s, a), such

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

18.5. maximum entropy inverse reinforcement learning 365

that the expert outperforms all previously found policies by the greatest margin t:

maximize
t,φ

t

subject to φ⊤µE ≥ φ⊤µ(i) + t for i = 1, . . . , k− 1

‖φ‖2 ≤ 1

(18.6)

Equation (18.6) is a quadratic program that can be easily solved. We then solve
for a new policy π(k) using the reward function R(s, a) = φ(k)⊤β(s, a), and
produce a new vector of feature expectations. Figure 18.2 illustrates this margin
maximization process.

We iterate until the margin is sufficiently small, with t ≤ ǫ. At convergence,
we can solve for a mixed policy that attempts to have feature expectations as close
as possible to that of the expert policy:

minimize
λ

‖µE − µλ‖2

subject to λ ≥ 0

‖λ‖1 = 1

(18.7)

where µλ = ∑i λiµ
(i). The mixture weights λ combine the policies found at each

iteration. With probability λi, we follow policy π(i). Maximum margin inverse
reinforcement learning is implemented in algorithm 18.5.

18.5 Maximum Entropy Inverse Reinforcement Learning

The inverse reinforcement learning approach from the previous section is under-
specified, meaning that there are often multiple policies that can produce the
same feature expectations as the expert demonstrations. This section introduces
maximum entropy inverse reinforcement learning, which avoids this ambiguity by
preferring the policy that results in the distribution over trajectories that has
maximum entropy (appendix A.8).9 The problem can be transformed into one of

9 B.D. Ziebart, A. Maas, J. A. Bag-
nell, and A.K. Dey, “Maximum En-
tropy Inverse Reinforcement Learn-
ing,” in AAAI Conference on Artifi-
cial Intelligence (AAAI), 2008.

finding the best reward function parametersφ in a maximum likelihood estima-
tion problem, given the expert data D.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

366 chapter 18. imitation learning

µ(1)

µE

φ(2)
t(1)

µ(1)

µ(2)

µE

φ(3)

t(2)

µ(1)

µ(2)
µ(3)

µE φ(4)
t(3)

Figure 18.2. A geometric visual-
ization of three example iterations
of the maximum-margin inverse
reinforcement learning algorithm,
going top to bottom. In each itera-
tion, the new weight vector points
in the direction perpendicular to
the hyperplane that separates the
expert feature expectation vector
from that of the previous policy
with the largest possible margin.
The margin decreases with each it-
eration.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

18.5. maximum entropy inverse reinforcement learning 367

function calc_weighting(M::InverseReinforcementLearning, μs)
μE = M.μE
k = length(μE)
model = Model(Ipopt.Optimizer)
@variable(model, t)
@variable(model, ϕ[1:k] ≥ 0)
@objective(model, Max, t)
for μ in μs

@constraint(model, ϕ⋅μE ≥ ϕ⋅μ + t)
end
@constraint(model, ϕ⋅ϕ ≤ 1)
optimize!(model)
return (value(t), value.(ϕ))

end

function calc_policy_mixture(M::InverseReinforcementLearning, μs)
μE = M.μE
k = length(μs)
model = Model(Ipopt.Optimizer)
@variable(model, λ[1:k] ≥ 0)
@objective(model, Min, (μE - sum(λ[i]*μs[i] for i in 1:k))⋅

(μE - sum(λ[i]*μs[i] for i in 1:k)))
@constraint(model, sum(λ) == 1)
optimize!(model)
return value.(λ)

end

function optimize(M::InverseReinforcementLearning, θ)
π, ϵ, RL = M.π, M.ϵ, M.RL
θs = [θ]
μs = [feature_expectations(M, s->π(θ,s))]
while true

t, ϕ = calc_weighting(M, μs)
if t ≤ ϵ

break
end
copyto!(RL.ϕ, ϕ) # R(s,a) = ϕ⋅β(s,a)
θ = optimize(RL, π, θ)
push!(θs, θ)
push!(μs, feature_expectations(M, s->π(θ,s)))

end
λ = calc_policy_mixture(M, μs)
return λ, θs

end

Algorithm 18.5. Maximum mar-
gin inverse reinforcement learning,
which computes a mixed policy
whose feature expectations match
those of given expert demonstra-
tions. We use JuMP.jl to solve con-
strained optimization problems.
This implementation requires that
the provided reinforcement learn-
ing struct has a weight vector ϕ that
can be updated with new values.
The method returns the stochas-
tic weightings λ and parameteriza-
tions θs for the component policies.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

368 chapter 18. imitation learning

Any policy π induces a distribution over trajectories10 Pπ(τ). Different policies
10 For simplicity, this section as-
sumes a finite horizon and that the
state and action spaces are discrete,
making Pφ(τ) a probability mass.
To extend maximum entropy in-
verse reinforcement learning both
to problems with continuous state
and action spaces where the dy-
namics may be unknown, consider
guided cost learning. C. Finn, S.
Levine, and P. Abbeel, “Guided
Cost Learning: Deep Inverse Op-
timal Control via Policy Optimiza-
tion,” in International Conference on
Machine Learning (ICML), 2016.

produce different trajectory distributions. We are free to choose any of these
distributions over trajectories that match the expert feature expectations. The
principle of maximum entropy chooses the least informative distribution, which
corresponds to the one with maximum entropy.11 It can be shown that the least

11 For an introduction to this prin-
ciple, see E. T. Jaynes, “Informa-
tion Theory and StatisticalMechan-
ics,” Physical Review, vol. 106, no. 4,
pp. 620–630, 1957.

informative trajectory distribution takes the following form:

Pφ(τ) =
1

Z(φ)
exp(Rφ(τ)) (18.8)

where Pφ(τ) is the likelihood of a trajectory τ given reward parameterφ, and

Rφ(τ) =
d

∑
k=1

γk−1Rφ(s(k), a(k)) (18.9)

is the discounted trajectory reward. We make no assumption on the parameteriza-
tion of Rφ(s(k), a(k)) other than that it is differentiable, allowing representations
such as neural networks. The normalization scalar Z(φ) ensures that the proba-
bilities sum to 1:

Z(φ) = ∑
τ

exp(Rφ(τ)) (18.10)

The summation is over all possible trajectories.
We have chosen a particular class of trajectory distributions for our policy.

We now fit that class to our trajectories using maximum likelihood to obtain the
parameters that best describe our data:

max
φ

f (φ) = max
φ

∑
τ∈D

log Pφ(τ) (18.11)

We can rewrite the objective function f (φ) from equation (18.11):

f (φ) = ∑
τ∈D

log
1

Z(φ)
exp(Rφ(τ)) (18.12)

=

(

∑
τ∈D

Rφ(τ)

)

− |D| log Z(φ) (18.13)

=

(

∑
τ∈D

Rφ(τ)

)

− |D| log ∑
τ

exp(Rφ(τ)) (18.14)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

18.6. generative adversarial imitation learning 369

We can attempt to optimize this objective function through gradient ascent.
The gradient of f is

∇φ f =

(

∑
τ∈D
∇φRφ(τ)

)

− |D|
∑τ exp(Rφ(τ)) ∑

τ

exp(Rφ(τ))∇φRφ(τ)

(18.15)

=

(

∑
τ∈D
∇φRφ(τ)

)

− |D|∑
τ

Pφ(τ)∇φRφ(τ) (18.16)

=

(

∑
τ∈D
∇φRφ(τ)

)

− |D|∑
s

bγ,φ(s)∑
a

πφ(a | s)∇φRφ(s, a) (18.17)

If the reward function is linear, with Rφ(s, a) = φ⊤β(s, a), as in the previous
section, then ∇φRφ(s, a) is simply β(s, a).

Updating the parameter vector φ thus requires both the discounted state
visitation frequency bγ,φ and the optimal policy under the current parameter
vector, πφ(a | s). We can obtain the optimal policy by running reinforcement
learning. To compute the discounted state visitation frequencies, we can use
rollouts or take a dynamic programming approach.

If we take a dynamic programming approach to compute the discounted state
visitation frequencies, we can start with the initial state distribution b

(1)
γφ = b(s)

and iteratively work forward in time:

b
(k+1)
γ,φ (s) = γ ∑

a
∑
s′

b
(k)
γ,φ(s)π(a | s)T(s′ | s, a) (18.18)

This version of maximum entropy inverse reinforcement learning is implemented
in algorithm 18.6.

18.6 Generative Adversarial Imitation Learning

In generative adversarial imitation learning (GAIL),12 we optimize a differentiable 12 J. Ho and S. Ermon, “Generative
Adversarial Imitation Learning,” in
Advances in Neural Information Pro-
cessing Systems (NIPS), 2016.

parameterized policy πθ, often represented by a neural network. Rather than
provide a reward function, we use adversarial learning (appendix D.7). We also
train a discriminator Cφ(s, a), typically also a neural network, to return the proba-
bility that it assigns to the state-action pair coming from the learned policy. The
process involves alternating between training this discriminator to become better

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

370 chapter 18. imitation learning

struct MaximumEntropyIRL
𝒫 # problem
b # initial state distribution
d # depth
π # parameterized policy π(θ,s)
Pπ # parameterized policy likelihood π(θ, a, s)
∇R # reward function gradient
RL # reinforcement learning method
α # step size
k_max # number of iterations

end

function discounted_state_visitations(M::MaximumEntropyIRL, θ)
𝒫, b, d, Pπ = M.𝒫, M.b, M.d, M.Pπ
𝒮, 𝒜, T, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.T, 𝒫.γ
b_sk = zeros(length(𝒫.𝒮), d)
b_sk[:,1] = [pdf(b, s) for s in 𝒮]
for k in 2:d

for (si′, s′) in enumerate(𝒮)
b_sk[si′,k] = γ*sum(sum(b_sk[si,k-1]*Pπ(θ, a, s)*T(s, a, s′)

for (si,s) in enumerate(𝒮))
for a in 𝒜)

end
end
return normalize!(vec(mean(b_sk, dims=2)),1)

end

function optimize(M::MaximumEntropyIRL, D, ϕ, θ)
𝒫, π, Pπ, ∇R, RL, α, k_max = M.𝒫, M.π, M.Pπ, M.∇R, M.RL, M.α, M.k_max
𝒮, 𝒜, γ, nD = 𝒫.𝒮, 𝒫.𝒜, 𝒫.γ, length(D)
for k in 1:k_max

copyto!(RL.ϕ, ϕ) # update parameters
θ = optimize(RL, π, θ)
b = discounted_state_visitations(M, θ)
∇Rτ = τ -> sum(γ^(i-1)*∇R(ϕ,s,a) for (i,(s,a)) in enumerate(τ))
∇f = sum(∇Rτ(τ) for τ in D) - nD*sum(b[si]*sum(Pπ(θ,a,s)*∇R(ϕ,s,a)

for (ai,a) in enumerate(𝒜))
for (si, s) in enumerate(𝒮))

ϕ += α*∇f
end
return ϕ, θ

end

Algorithm 18.6. Maximum en-
tropy inverse reinforcement learn-
ing, which finds a stochastic pol-
icy that maximizes the likelihood
of the expert demonstrations un-
der a maximum-entropy trajectory
distribution. This implementation
computes the expected visitations
using dynamic programming over
all states, which requires that the
problem be discrete.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

18.7. summary 371

at distinguishing between simulated and expert state-action pairs, and training
the policy to look indistinguishable from the expert demonstrations. The process
is sketched in figure 18.3.

state

policy

π(a | s)

simulated state-action pairs expert state-action pairs

discriminator

P(simulated | s, a)

Figure 18.3. Instead of inferring a
reward function, generative adver-
sarial imitation learning optimizes
a discriminator to distinguish be-
tween simulated and expert state-
action pairs, and it optimizes a pol-
icy to appear indistinguishable to
the discriminator. The aim is to
eventually produce a policy that re-
sembles the expert.

The discriminator and policy have opposing objectives. GAIL seeks to find a
saddle point (θ,φ) of the negative log loss of the discriminator’s binary classifi-
cation problem:13 13 The original paper also includes

the following entropy term:
−λ E(s,a)∼D [− log πθ(a | s)]max

φ
min
θ

E(s,a)∼πθ

[

log(Cφ(s, a))
]

+ E(s,a)∼D
[

log(1− Cφ(s, a))
] (18.19)

wherewe use (s, a) ∼ D to represent samples from the distribution represented by
the expert data set D. We can alternate between gradient ascent onφ to increase
the objective and trust region policy optimization (section 12.4) on θ to reduce the
objective, generating the necessary trajectory samples from the policy to conduct
each of these steps. The discriminator provides a learning signal to the policy
similar to the way that a reward signal would if it were known.

18.7 Summary

• Imitation learning involves learning the desired behavior from expert demon-
stration without the use of a reward function.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

372 chapter 18. imitation learning

• One type of imitation learning is behavioral cloning, which produces a stochas-
tic policy that maximizes the conditional likelihood of the actions in the data
set.

• When an expert can be queried multiple times, we can use iterative approaches
like data set aggregation or stochastic mixing iterative learning.

• Inverse reinforcement learning involves inferring a reward function from expert
data and then using traditional methods for finding an optimal policy.

• Maximum margin inverse reinforcement learning attempts to find a policy that
matches the frequency of binary features found in the expert data set.

• Maximum entropy inverse reinforcement learning frames the problem of find-
ing the best reward parameter as a maximum likelihood estimation problem,
which it tries to solve using gradient ascent.

• Generative adversarial imitation learning iteratively optimizes a discriminator
and a policy; the discriminator tries to discriminate between decisions made
by the policy and decisions made by the expert, and the policy attempts to
deceive the discriminator.

18.8 Exercises
Exercise 18.1. Consider applying behavioral cloning to a discrete problem where we have
been given expert demonstrations. We could define a feature function β(s) and represent
the policy with a softmax distribution:

π(a | s) ∝ exp(θ⊤a β(s))

We would then learn the parameters θa for each action from the expert data. Why might
we want to use this approach over one where we directly estimate a discrete distribution
for each state, with one parameter per state-action pair?

Solution: In imitation learning, we are generally limited to a relatively small set of expert
demonstrations. The distribution P(a | s) has (|A| − 1)|S| independent parameters that
must be learned, which is often prohibitively large. Expert demonstrations typically cover
only a small portion of the state space. Even if P(a | s) can be reliably trained for the states
covered in the provided data set, the resulting policy would be untrained in other states.
Using a feature function allows generalization to unseen states.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

18.8. exercises 373

Exercise 18.2. Section 18.1 suggested using a maximum likelihood approach for training a
policy from expert data. This approach attempts to find the parameters of the policy that
maximizes the likelihood assigned to the training examples. In some problems, however,
we know that assigning high probability to one incorrect action is not as bad as assigning
high probability to another incorrect action. For example, predicting an acceleration of
−1 in the mountain car problem when the expert dictates an acceleration of 1 is worse
than predicting an acceleration of 0. How might behavioral cloning be modified to allow
different penalties to be given to different misclassifications?

Solution: We can instead supply a cost function C(s, atrue, apred) that defines the cost of
predicting action apred for state s when the expert’s action is atrue. For example, with the
mountain car problem, we might use

C(s, atrue, apred) = −|atrue − apred|

which penalizes greater deviations more than smaller deviations. The cost associated with
the expert’s action is typically zero.

If we have a stochastic policy π(a | s), we then seek to minimize the cost over our data
set:

minimize
θ

∑
(s,atrue)∈D

∑
apred

C
(

s, atrue, apred
)

π
(

apred | s
)

This technique is called cost-sensitive classification.14 One benefit of cost-sensitive classi- 14 C. Elkan, “The Foundations of
Cost-Sensitive Learning,” in Inter-
national Joint Conference on Artificial
Intelligence (IJCAI), 2001.

fication is that we can use a wide variety of off-the-shelf classification models, such as
k-nearest neighbors, support vector machines, or decision trees, to train a policy.

Exercise 18.3. Provide an example of where maximum margin inverse reinforcement
learning does not uniquely define an optimal policy.

Solution: Maximum margin inverse reinforcement learning extracts binary features from
the expert data and seeks a reward function whose optimal policy produces trajectories
with the same frequencies of these binary features. There is no guarantee that multiple
policies do not produce the same feature expectations. For example, an autonomous car
that makes only left lane changes could have the same lane change frequencies as an
autonomous car that makes only right lane changes.

Exercise 18.4. Maximum margin inverse reinforcement learning measures how similar
a policy is to expert demonstrations using feature expectations. How is this similarity
measure affected if nonbinary features are used?

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

374 chapter 18. imitation learning

Solution: If we use nonbinary features, then it is possible that some features can get larger
than others, incentivizing the agent to match those features rather than those that tend
to be smaller. Scale is not the only issue. Even if all features are constrained to lie within
[0, 1], then a policy that consistently produces φ(s, a)1 = 0.5 will have the same feature
expectations as one that produces φ(s, a)1 = 0 half the time and φ(s, a)1 = 1 half the time.
Depending on what the feature encodes, this can result in very different policies. Any
set of continuous features can be discretized, and thus approximated by a set of binary
features.

Exercise 18.5. Suppose we are building a system in a high-rise that must choose which
floor to send an elevator. We have trained several policies to match the feature expectations
of expert demonstrations, such as how long customers must wait for an elevator or how
long they have to wait to get to their destinations. We run multiple rollouts for each policy
and plot the relative duration spent on each floor. Which policy should we prefer according
to the principle of maximum entropy, assuming that each policy matches the feature
expectations equally?

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

floor

re
lat

ive
du

ra
tio

n

policy A

1 2 3 4 5 6 7 8 9 10
floor

policy B

1 2 3 4 5 6 7 8 9 10
floor

policy C

Solution: These distributions over relative duration are analogous to distributions over
trajectories for this elevator problem. In applying the principle of maximum entropy, we
prefer the distribution with most entropy. Hence, we would choose policy B, which, in
being most uniform, has the greatest entropy.

Exercise 18.6. Consider the policy optimization step in generative adversarial imitation
learning. Rewrite the objective in the form of a reward function so that traditional rein-
forcement learning techniques can be applied.

Solution: We rewrite equation (18.19), dropping the terms dependent on the expert data
set, and flip the sign to change from minimization over θ to a maximization over θ of the
reward, producing the surrogate reward function:

R̃φ(s, a) = − log Cφ(s, a)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

18.8. exercises 375

Although R̃φ(s, a) may be quite different from the unknown true reward function, it can
be used to drive the learned policy into regions of the state-action space similar to those
covered by the expert.

Exercise 18.7. Explain how generative adversarial imitation learning could be changed
such that the discriminator takes in trajectories rather than state-action pairs. Why might
this be useful?

Solution: Changing generative adversarial imitation learning such that the discriminator
takes trajectories is straightforward, especially if the trajectories are of fixed length. The
expert data set is split into trajectories, and the learned policy is used to produce trajectories,
just as it was before. Rather than operating on state-action pairs, the discriminator takes in
trajectories using a representation such as a recurrent neural network (appendix D.5) and
produces a classification probability. The objective function remains largely unchanged:

max
φ

min
θ

Eτ∼πθ

[

log(Cφ(τ))
]

+ Eτ∼D
[

log(1− Cφ(τ))
]

The advantage of running the discriminator over entire trajectories is that it can help
the discriminator capture features that are not apparent from individual state-action pairs,
which can result in better policies. For example, when looking at individual accelerations
and turn rates for an autonomous driving policy, there is very little for a discriminator to
learn. A discriminator trained to look at longer trajectories can see more of the vehicle’s
behavior, such as lane change aggressiveness and smoothness, to better match expert
driving demonstrations.15

15 This approach was used in A.
Kuefler, J. Morton, T.A. Wheeler,
and M. J. Kochenderfer, “Imitating
Driver Behavior with Generative
Adversarial Networks,” in IEEE In-
telligent Vehicles Symposium (IV),
2017.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

