
17 Model-Free Methods

In contrast with model-based methods, model-free reinforcement learning does not
require building explicit representations of the transition and reward models.1

1 Many of the topics in this chap-
ter are covered in greater depth by
R. S. Sutton and A.G. Barto, Rein-
forcement Learning: An Introduction,
2nd ed. MIT Press, 2018. See also
D. P. Bertsekas, Reinforcement Learn-
ing and Optimal Control. Athena Sci-
entific, 2019.

The model-free methods discussed in this chapter model the action value func-
tion directly. Avoiding explicit representations is attractive, especially when the
problem is high dimensional. This chapter begins by introducing incremental
estimation of the mean of a distribution, which plays an important role in estimat-
ing the mean of returns. We then discuss some common model-free algorithms
and methods for handling delayed reward more efficiently. Finally, we discuss
how to use function approximation to generalize from our experience.2 2 Although this part of the book has

been focusing on problems where
the model of the environment is
unknown, reinforcement learning
is often used for problems with
known models. The model-free
methods discussed in this chapter
can be especially useful in complex
environments as a form of approxi-
mate dynamic programming. They
can be used to produce policies off-
line, or as a means to generate the
next action in an online context.

17.1 Incremental Estimation of the Mean

Many model-free methods incrementally estimate the action value function Q(s, a)

from samples. For the moment, suppose that we are only concerned with the
expectation of a single variable X from m samples:

x̂m =
1

m

m

∑
i=1

x(i) (17.1)

where x(1), . . . x(m) are the samples. We can derive an incremental update:

x̂m =
1

m

(

x(m) +
m−1

∑
i=1

x(i)

)

(17.2)

=
1

m

(

x(m) + (m− 1)x̂m−1

)

(17.3)

= x̂m−1 +
1

m

(

x(m) − x̂m−1

)

(17.4)



336 chapter 17. model-free methods

We can rewrite this equation with the introduction of a learning rate function
α(m):

x̂m = x̂m−1 + α(m)
(

x(m) − x̂m−1

)

(17.5)
The learning rate can be a function other than 1/m. To ensure convergence, we
generally select α(m) such that we have ∑

∞
m=1 α(m) = ∞ and ∑

∞
m=1 α2(m) < ∞.

The first condition ensures that the steps are sufficiently large, and the second
condition ensures that the steps are sufficiently small.3 3 For a discussion of convergence

and its application to some of the
other algorithms discussed in this
chapter, see T. Jaakkola, M. I. Jor-
dan, and S. P. Singh, “On the Con-
vergence of Stochastic Iterative Dy-
namic Programming Algorithms,”
Neural Computation, vol. 6, no. 6,
pp. 1185–1201, 1994.

If the learning rate is constant, which is common in reinforcement learning
applications, then the weights of older samples decay exponentially at the rate
(1− α). With a constant learning rate, we can update our estimate after observing
x using the following rule:

x̂ ← x̂ + α(x− x̂) (17.6)
Algorithm 17.1 provides an implementation of this. An example of several learning
rates is shown in example 17.1.

The update rule discussed here will appear again in later sections and is related
to stochastic gradient descent. The magnitude of the update is proportional to the
difference between the sample and the previous estimate. The difference between
the sample and previous estimate is called the temporal difference error.

17.2 Q-Learning

Q-learning (algorithm 17.2) involves applying incremental estimation of the action
value function Q(s, a).4 The update is derived from the action value form of the 4 C. J. C.H. Watkins, “Learning

from Delayed Rewards,” Ph.D. dis-
sertation, University of Cambridge,
1989.

Bellman expectation equation:

Q(s, a) = R(s, a) + γ ∑
s′

T(s′ | s, a)U(s′) (17.7)

= R(s, a) + γ ∑
s′

T(s′ | s, a)max
a′

Q(s′, a′) (17.8)

Instead of using T and R, we can rewrite the equation above in terms of an
expectation over samples of reward r and the next state s′:

Q(s, a) = Er,s′ [r + γ max
a′

Q(s′, a′)] (17.9)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com



17.2. q-learning 337

Consider estimating the expected value obtainedwhen rolling a fair six-sided
die. What follows are learning curves that show the incremental estimates
over 100 trials associated with different learning rate functions. As we can
see, convergence is not guaranteed if α(m) decays too quickly, and it is slow
if α(m) does not decay quickly enough.

For constant values of α ∈ (0, 1], the mean estimate will continue to
fluctuate. Larger values of constant α fluctuate wildly, whereas lower values
take longer to converge.

2

4

6

trial

va
lu

e

trial die value
α(m) = 1/m0.1

α(m) = 1/m0.5

α(m) = 1/m0.75

α(m) = 1/m

α(m) = 1/m1.5

20 40 60 80 100

2

4

6

trial

va
lu

e

trial die value
α(m) = 0.05

α(m) = 0.1

α(m) = 0.2

α(m) = 0.5

α(m) = 1

Example 17.1. The effect of decay-
ing the learning rate with different
functions for α(m).

mutable struct IncrementalEstimate
μ # mean estimate
α # learning rate function
m # number of updates

end

function update!(model::IncrementalEstimate, x)
model.m += 1
model.μ += model.α(model.m) * (x - model.μ)
return model

end

Algorithm 17.1. A type for main-
taining an incremental estimate of
themean of a randomvariable. The
associated type maintains a cur-
rent mean value μ, a learning rate
function α, and an iteration count m.
Calling update! with a new value
x updates the estimate.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com



338 chapter 17. model-free methods

We can use equation (17.6) to produce an incremental update rule to estimate
the action value function:5 5 The maximization in this equa-

tion can introduce a bias. Algo-
rithms like double Q-learning at-
tempt to correct for this bias and
can lead to better performance. H.
vanHasselt, “Double Q-Learning,”
in Advances in Neural Information
Processing Systems (NIPS), 2010.

Q(s, a)← Q(s, a) + α

(

r + γ max
a′

Q(s′, a′)−Q(s, a)

)

(17.10)

Our choice of actions affects which states we end up in, and therefore our
ability to estimate Q(s, a) accurately. To guarantee convergence of our action
value function, we need to adopt some form of exploration policy, such as ǫ-
greedy or softmax, just as we did for our model-based methods in the previous
chapter. Example 17.2 shows how to run a simulation with the Q-learning update
rule and an exploration policy. Figure 17.1 illustrates this process on the hex world
problem.

mutable struct QLearning
𝒮 # state space (assumes 1:nstates)
𝒜 # action space (assumes 1:nactions)
γ # discount
Q # action value function
α # learning rate

end

lookahead(model::QLearning, s, a) = model.Q[s,a]

function update!(model::QLearning, s, a, r, s′)
γ, Q, α = model.γ, model.Q, model.α
Q[s,a] += α*(r + γ*maximum(Q[s′,:]) - Q[s,a])
return model

end

Algorithm 17.2. The Q-learning
update for model-free reinforce-
ment learning, which can be ap-
plied to problems with unknown
transition and reward functions.
The update modifies Q, which is a
matrix of state-action values. This
update function can be used to-
gether with an exploration strategy,
such as ǫ-greedy, in the simulate
function of algorithm 15.9. That
simulate function calls the update
function with s′, though this Q-
learning implementation does not
use it.

17.3 Sarsa

Sarsa (algorithm 17.3) is an alternative to Q-learning.6 It derives its name from 6 This approach was suggested
with a different name in G.A. Rum-
mery and M. Niranjan, “On-Line
Q-Learning Using Connectionist
Systems,” Cambridge University,
Tech. Rep. CUED/F-INFENG/TR
166, 1994.

the fact that it uses (s, a, r, s′, a′) to update the Q function at each step. It uses the
actual next action a′ to update Q instead of maximizing over all possible actions:

Q(s, a)← Q(s, a) + α
(

r + γQ(s′, a′)−Q(s, a)
) (17.11)

With a suitable exploration strategy, the a′ will converge to arg maxa′ Q(s′, a′),
which is what is used in the Q-learning update.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com



17.3. sarsa 339

50 rollouts 100 rollouts

150 rollouts 200 rollouts

−10 −8 −6 −4 −2 0 2 4 6 8 10

Figure 17.1. Q-learning used to it-
eratively learn an action value func-
tion for the hex world problem.
Each state is colored according to
the expected value of the best ac-
tion in that state according to Q.
Actions are similarly the best ex-
pected actions. Q-learning was run
with α = 0.1 and 10 steps per roll-
out.

Suppose we want to apply Q-learning to an MDP problem 𝒫. We can con-
struct an exploration policy, such as the ǫ-greedy policy implemented in
algorithm 16.6 from the previous chapter. The Q-learning model comes from
algorithm 17.2, and the simulate function is implemented in algorithm 15.9.
Q = zeros(length(𝒫.𝒮), length(𝒫.𝒜))
α = 0.2 # learning rate
model = QLearning(𝒫.𝒮, 𝒫.𝒜, 𝒫.γ, Q, α)
ϵ = 0.1 # probability of random action
π = EpsilonGreedyExploration(ϵ)
k = 20 # number of steps to simulate
s = 1 # initial state
simulate(𝒫, model, π, k, s)

Example 17.2. How to use an ex-
ploration strategy with Q-learning
in simulation. The parameter set-
tings are notional.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com



340 chapter 17. model-free methods

Sarsa is referred to as a type of on-policy reinforcement learningmethod because
it attempts to directly estimate the value of the exploration policy as it follows it. In
contrast, Q-learning is an off-policymethod because it attempts to find the value of
the optimal policy while following the exploration strategy. Although Q-learning
and Sarsa both converge to an optimal strategy, the speed of convergence depends
on the application. Sarsa is run on the hex world problem in figure 17.2.

mutable struct Sarsa
𝒮 # state space (assumes 1:nstates)
𝒜 # action space (assumes 1:nactions)
γ # discount
Q # action value function
α # learning rate
ℓ # most recent experience tuple (s,a,r)

end

lookahead(model::Sarsa, s, a) = model.Q[s,a]

function update!(model::Sarsa, s, a, r, s′)
if model.ℓ != nothing

γ, Q, α, ℓ = model.γ, model.Q, model.α, model.ℓ
model.Q[ℓ.s,ℓ.a] += α*(ℓ.r + γ*Q[s,a] - Q[ℓ.s,ℓ.a])

end
model.ℓ = (s=s, a=a, r=r)
return model

end

Algorithm 17.3. The Sarsa update
for model-free reinforcement learn-
ing. We update the matrix Q con-
taining the state-action values, α
is a constant learning rate, and ℓ
is the most recent experience tu-
ple. As with the Q-learning imple-
mentation, the update function can
be used in the simulator in algo-
rithm 15.9.

50 rollouts 100 rollouts

150 rollouts 200 rollouts

−10 −8 −6 −4 −2 0 2 4 6 8 10

Figure 17.2. Sarsa used to itera-
tively learn an action value func-
tion for the hex world problem in
a manner otherwise identical to
figure 17.1. We find that Sarsa is
slower to converge to the true ac-
tion value function.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com



17.4. eligibil ity traces 341

17.4 Eligibility Traces

One of the disadvantages of Q-learning and Sarsa is that learning can be very
slow, especially with sparse rewards. For example, suppose that the environment
has a single goal state that provides a large reward, and the reward is zero at
all other states. After an amount of random exploration in the environment, we
reach the goal state. Regardless of whether we use Q-learning or Sarsa, we only
update the action value of the state immediately preceding the goal state. The
values at all other states leading up to the goal remain at zero. A large amount of
exploration is required to slowly propagate nonzero values to the remainder of
the state space.

Q-learning and Sarsa can be modified to propagate reward backward to the
states and actions leading to the source of the reward using eligibility traces.7 The 7 Eligibility traces were proposed

in the context of temporal differ-
ence learning by R. Sutton, “Learn-
ing to Predict by the Methods
of Temporal Differences,” Machine
Learning, vol. 3, no. 1, pp. 9–44,
1988.

credit is decayed exponentially so that states closer to the reward are assigned
larger values. It is common to use 0 < λ < 1 as the exponential decay parameter.
Versions of Q-learning and Sarsa with eligibility traces are often called Q(λ) and
Sarsa(λ).8

8 These algorithms were in-
troduced by C. J. C.H. Watkins,
“Learning fromDelayed Rewards,”
Ph.D. dissertation, University of
Cambridge, 1989. and J. Peng
and R. J. Williams, “Incremental
Multi-Step Q-Learning,” Machine
Learning, vol. 22, no. 1–3, pp. 283–
290, 1996.

A version of Sarsa(λ) is implemented in algorithm 17.4, which maintains an
exponentially decaying visit count N(s, a) for all state-action pairs. When action
a is taken in state s, N(s, a) is incremented by 1. The Sarsa temporal difference up-
date is then partially applied to every state-action pair according to this decaying
visit count.

Let δ denote the Sarsa temporal difference update:

δ = r + γQ(s′, a′)−Q(s, a) (17.12)

Every entry in the action value function is then updated according to

Q(s, a)← Q(s, a) + αδN(s, a) (17.13)

The visit counts are then decayed using both the discount factor and the
exponential decay parameter:

N(s, a)← γλN(s, a) (17.14)

Although the impact of eligibility traces is especially pronounced in environ-
ments with sparse reward, the algorithm can speed learning in general environ-
ments where reward is more distributed.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com



342 chapter 17. model-free methods

mutable struct SarsaLambda
𝒮 # state space (assumes 1:nstates)
𝒜 # action space (assumes 1:nactions)
γ # discount
Q # action value function
N # trace
α # learning rate
λ # trace decay rate
ℓ # most recent experience tuple (s,a,r)

end

lookahead(model::SarsaLambda, s, a) = model.Q[s,a]

function update!(model::SarsaLambda, s, a, r, s′)
if model.ℓ != nothing

γ, λ, Q, α, ℓ = model.γ, model.λ, model.Q, model.α, model.ℓ
model.N[ℓ.s,ℓ.a] += 1
δ = ℓ.r + γ*Q[s,a] - Q[ℓ.s,ℓ.a]
for s in model.𝒮

for a in model.𝒜
model.Q[s,a] += α*δ*model.N[s,a]
model.N[s,a] *= γ*λ

end
end

else
model.N[:,:] .= 0.0

end
model.ℓ = (s=s, a=a, r=r)
return model

end

Algorithm 17.4. The Sarsa(λ) up-
date,which uses eligibility traces to
propagate reward back in time to
speed learning of sparse rewards.
The matrix Q contains the state-
action values, the matrix N con-
tains exponentially decaying state-
action visit counts, α is a constant
learning rate, λ is an exponential
decay parameter, and ℓ is the most
recent experience tuple.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com



17.5. reward shaping 343

Special care must be taken when applying eligibility traces to an off-policy
algorithm like Q-learning that attempts to learn the value of the optimal policy.9 9 For an overview of this problem

and a potential solution, see A.
Harutyunyan, M.G. Bellemare, T.
Stepleton, and R. Munos, “Q(λ)
with Off-Policy Corrections,” in In-
ternational Conference on Algorithmic
Learning Theory (ALT), 2016.

Eligibility traces propagate back values obtained from an exploration policy. This
mismatch can result in learning instabilities.

17.5 Reward Shaping

Reward function augmentation can also improve learning, especially in problems
with sparse rewards. For example, if we are trying to reach a single goal state, we
could supplement the reward function by an amount that is inversely proportional
to the distance to the goal. Alternatively, we could add another penalty based
on how far we are from the goal. If we are playing chess, for instance, we might
add a penalty to our reward function when we lose a piece, even though we only
care about winning or losing the game at the end, not about winning or losing
individual pieces.

Modifying the reward function during training by incorporating domain knowl-
edge to speed training is known as reward shaping. Suppose that rewards in our
problem are generated according to R(s, a, s′), allowing rewards to depend on
the resulting state. We will use F(s, a, s′) to represent our shaping function. During
training, instead of using R(s, a, s′) as our reward, we use R(s, a, s′) + F(s, a, s′).

Adding F(s, a, s′) to our reward can change the optimal policy, of course. We
are often interested in shaping reward without changing what is optimal. It turns
out that a policy that is optimal under the original reward remains optimal under
the shaped reward if and only if

F(s, a, s′) = γβ(s′)− β(s) (17.15)

for some potential function β(s).10 10 A.Y. Ng, D. Harada, and S. Rus-
sell, “Policy Invariance Under Re-
ward Transformations: Theory and
Application to Reward Shaping,”
in International Conference on Ma-
chine Learning (ICML), 1999.

17.6 Action Value Function Approximation

The algorithms discussed so far in this chapter have assumed discrete state and
action spaces where the action value function can be stored in a lookup table. We
can adapt our algorithms to use value function approximation, allowing us to
apply them to problems with large or continuous spaces and generalize from
limited experience. Similar to the approach taken in chapter 8 in the context of a

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com



344 chapter 17. model-free methods

known model, we will use Qθ(s, a) to represent a parametric approximation of
our action value function when the model is unknown.11 11 In recent years, a major focus has

been on deep reinforcement learning,
where deep neural networks are
used for this parametric approxi-
mation. A discussion of practical
implementations is provided by L.
Graesser and W.L. Keng, Founda-
tions of Deep Reinforcement Learning.
Addison Wesley, 2020.

To illustrate this concept, we will derive a version of Q-learning that uses
our parametric approximation. We want to minimize the loss between our ap-
proximation and the optimal action value function Q∗(s, a), which we define to
be12

12 The 1/2 in the front is for con-
venience because we will later be
computing the derivative of this
quadratic.

ℓ(θ) =
1

2
E

(s,a)∼π∗

[

(Q∗(s, a)−Qθ(s, a))2
]

(17.16)

The expectation is over the state-action pairs that are experienced when following
the optimal policy π∗.

A common approach to minimizing this loss is to use some form of gradient
descent. The gradient of the loss is

∇ℓ(θ) = − E
(s,a)∼π∗

[(Q∗(s, a)−Qθ(s, a))∇θQθ(s, a)] (17.17)

We typically choose parametric representations of the action value function that
are differentiable and where ∇θQθ(s, a) is easy to compute, such as linear or
neural network representations. If we apply gradient descent,13 our update rule 13 We want to descend rather than

ascend because we are trying to
minimize our loss.is

θ← θ+ α E
(s,a)∼π∗

[(Q∗(s, a)−Qθ(s, a))∇θQθ(s, a)] (17.18)

where α is our step factor or learning rate. We can approximate the update rule
above using samples of our state-action pairs (s, a) as we experience them:

θ← θ+ α(Q∗(s, a)−Qθ(s, a))∇θQθ(s, a) (17.19)

Of course, we cannot compute equation (17.19) directly because that would
require knowing the optimal policy, which is precisely what we are attempting
to find. Instead, we attempt to estimate it from our observed transition and our
action value approximation:

Q∗(s, a) ≈ r + γ max
a′

Qθ(s
′, a′) (17.20)

which results in the following update rule:

θ← θ+ α(r + γ max
a′

Qθ(s
′, a′)−Qθ(s, a))∇θQθ(s, a) (17.21)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com



17.7. experience replay 345

This update is implemented in algorithm 17.5 with the addition of a scaled gra-
dient step (algorithm 12.2), which is often needed to ensure that the gradient
steps do not become too large. Example 17.3 shows how to use this update with a
linear action value approximation. Figure 17.3 demonstrates this algorithm with
the mountain car problem.

struct GradientQLearning
𝒜 # action space (assumes 1:nactions)
γ # discount
Q # parameterized action value function Q(θ,s,a)
∇Q # gradient of action value function
θ # action value function parameter
α # learning rate

end

function lookahead(model::GradientQLearning, s, a)
return model.Q(model.θ, s,a)

end

function update!(model::GradientQLearning, s, a, r, s′)
𝒜, γ, Q, θ, α = model.𝒜, model.γ, model.Q, model.θ, model.α
u = maximum(Q(θ,s′,a′) for a′ in 𝒜)
Δ = (r + γ*u - Q(θ,s,a))*model.∇Q(θ,s,a)
θ[:] += α*scale_gradient(Δ, 1)
return model

end

Algorithm 17.5. The Q-learning
update with action value function
approximation. With each new ex-
perience tuple s, a, r, s′, we up-
date our vector θ with constant
learning rate α. Our parameter-
ized action value function is given
by Q(θ,s,a) and its gradient is
∇Q(θ,s,a).

17.7 Experience Replay

A major challenge of using global function approximation with reinforcement
learning is catastrophic forgetting. For example, we might initially discover that
our particular policy brings us to a low-reward region of the state space. We then
refine our policy to avoid that area. However, after some amount of time, we may
forget why it was important to avoid that region of the state space, and we may
risk reverting to a poorly performing policy.

Catastrophic forgetting can be mitigated with experience replay,14 where a fixed

14 Experience replay played an im-
portant role in the work of V.
Mnih, K. Kavukcuoglu, D. Silver, A.
Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller, “Playing Atari
with Deep Reinforcement Learn-
ing,” 2013. arXiv: 1312 . 5602v1
. This concept was explored ear-
lier by L.-J. Lin, “Reinforcement
Learning for Robots Using Neu-
ral Networks,” Ph.D. dissertation,
Carnegie Mellon University, 1993.

number of the most recent experience tuples are stored across training iterations.
A batch of tuples are sampled uniformly from this replay memory to remind us to
avoid strategies that we have already discovered are poor.15 The update equation

15 Variations of this approach in-
clude prioritizing experiences. T.
Schaul, J. Quan, I. Antonoglou, and
D. Silver, “Prioritized Experience
Replay,” in International Conference
on Learning Representations (ICLR),
2016.

from equation (17.21) is modified to become

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

https://arxiv.org/abs/1312.5602v1
https://arxiv.org/abs/1312.5602v1


346 chapter 17. model-free methods

We are interested in applying Q-learning with a linear action value approx-
imation to the simple regulator problem with γ = 1. Our action value ap-
proximation is Qθ(s, a) = θ⊤β(s, a), where our basis function is

β(s, a) = [s, s2, a, a2, 1]

With this linear model,

∇θQθ(s, a) = β(s, a)

We can implement this as follows for problem 𝒫:
β(s,a) = [s,s^2,a,a^2,1]
Q(θ,s,a) = dot(θ,β(s,a))
∇Q(θ,s,a) = β(s,a)
θ = [0.1,0.2,0.3,0.4,0.5] # initial parameter vector
α = 0.5 # learning rate
model = GradientQLearning(𝒫.𝒜, 𝒫.γ, Q, ∇Q, θ, α)
ϵ = 0.1 # probability of random action
π = EpsilonGreedyExploration(ϵ)
k = 20 # number of steps to simulate
s = 0.0 # initial state
simulate(𝒫, model, π, k, s)

Example 17.3. How to use an ex-
ploration strategy with Q-learning
with action value function approx-
imation in simulation. The param-
eter settings are notional.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com



17.7. experience replay 347

−5

0

5

×10−2

sp
ee

d

value function

2,000

2,200

2,400

2,600

position

policy

−1 −0.5 0 0.5

−5

0

5

×10−2

position

sp
ee

d

received reward

−1,000

−500

0

accel right
coast
accel left

Figure 17.3. A utility function
and policy obtained using linear
approximation Q-learning applied
to the mountain car problem (ap-
pendix F.4). The basis functions are
polynomials over position and ve-
locity up to degree eight and are
each duplicated three times for the
three actions. ‘‘Received reward’’
refers to the reward received by
an agent when run using a greedy
policy with the approximate value
function.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com



348 chapter 17. model-free methods

θ← θ+ α
1

mgrad
∑

i

(r(i) + γ max
a′

Qθ(s
′(i), a′)−Qθ(s

(i), a(i)))∇θQθ(s
(i), a(i)) (17.22)

where s(i), a(i), r(i), and s′(i) is the ith experience tuple in a random batch of size
mgrad.

Experience replay allows experience tuples to contribute to learning multiple
times, thereby increasing data efficiency. Furthermore, sampling uniformly at
random from the replaymemory breaks apart otherwise correlated sequences that
are obtained from rollouts, thereby reducing the variance of the gradient estimate.
Experience replay stabilizes the learning process by retaining information from
previous policy parameterizations.

Algorithm 17.6 shows how to incorporate experience replay into Q-learning
with action value function approximation. Example 17.4 shows how to apply this
approach to a simple regulator problem.

17.8 Summary

• Model-free methods seek to directly learn an action value function rather than
transition and reward models.

• Simple techniques can be used to incrementally learn a mean from sequential
updates.

• The Q-learning algorithm incrementally learns an action value function using
an approximation of the Bellman equation.

• In contrast with Q-learning, Sarsa uses the action taken by the exploration
policy rather than maximizing over all subsequent actions in its update.

• Eligibility traces can speed learning by propagating sparse rewards through
the state-action space.

• Q-learning can be applied to approximate value functions using stochastic
gradient descent.

• The catastrophic forgetting experienced by Q-learning and Sarsa can be miti-
gated using experience replay, which reuses past experience tuples.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com



17.8. summary 349

struct ReplayGradientQLearning
𝒜 # action space (assumes 1:nactions)
γ # discount
Q # parameterized action value function Q(θ,s,a)
∇Q # gradient of action value function
θ # action value function parameter
α # learning rate
buffer # circular memory buffer
m # number of steps between gradient updates
m_grad # batch size

end

function lookahead(model::ReplayGradientQLearning, s, a)
return model.Q(model.θ, s,a)

end

function update!(model::ReplayGradientQLearning, s, a, r, s′)
𝒜, γ, Q, θ, α = model.𝒜, model.γ, model.Q, model.θ, model.α
buffer, m, m_grad = model.buffer, model.m, model.m_grad
if isfull(buffer)

U(s) = maximum(Q(θ,s,a) for a in 𝒜)
∇Q(s,a,r,s′) = (r + γ*U(s′) - Q(θ,s,a))*model.∇Q(θ,s,a)
Δ = mean(∇Q(s,a,r,s′) for (s,a,r,s′) in rand(buffer, m_grad))
θ[:] += α*scale_gradient(Δ, 1)
for i in 1:m # discard oldest experiences

popfirst!(buffer)
end

else
push!(buffer, (s,a,r,s′))

end
return model

end

Algorithm 17.6. Q-learning with
function approximation and ex-
perience replay. The update de-
pends on a parameterized policy
Q(θ,s,a) and gradient ∇Q(θ,s,a).
It updates the parameter vector θ
and the circular memory buffer
provided by DataStructures.jl.
It updates θ every m steps using
a gradient estimated from m_grad
samples from the buffer.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com



350 chapter 17. model-free methods

Suppose we want to add experience replay to example 17.3. When construct-
ing the model, we need to provide a replay buffer with the desired capacity:
capacity = 100 # maximum size of the replay buffer
ExperienceTuple = Tuple{Float64,Float64,Float64,Float64}
M = CircularBuffer{ExperienceTuple}(capacity) # replay buffer
m_grad = 20 # batch size
model = ReplayGradientQLearning(𝒫.𝒜, 𝒫.γ, Q, ∇Q, θ, α, M, m, m_grad)

We can vary the number of steps between gradient updates m and the
depth of each simulation d. In the plot shown here, we limit all training runs
to md = 30 experience tuples with each iteration. It indicates that rollouts to
a sufficient depth are necessary for training to succeed. In addition, very few
rollouts to an excessive depth do not perform as well as a moderate number
of rollouts to a moderate depth.

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

iteration

ex
pe

cte
d
va

lu
e

m = 1, d = 30

m = 2, d = 15

m = 3, d = 10

m = 5, d = 6

m = 10, d = 3

Example 17.4. An application of ex-
perience replay to the simple regu-
lator problem with Q-learning and
action value approximation.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com



17.9. exercises 351

17.9 Exercises
Exercise 17.1. Given the following set of samples, perform incremental estimation of the
mean twice: once using a learning rate of α = 0.1 and once using a learning rate of α = 0.5.
In both, use an initial mean equal to the first sample:

x(1:5) = {1.0, 1.8, 2.0, 1.6, 2.2}

Solution: We set the mean at the first iteration equal to the first sample and proceed to
incrementally estimate the mean using equation (17.6):

x̂1 = 1.0 x̂1 = 1.0

x̂2 = 1.0 + 0.1(1.8− 1.0) = 1.08 x̂2 = 1.0 + 0.5(1.8− 1.0) = 1.4

x̂3 = 1.08 + 0.1(2.0− 1.08) = 1.172 x̂3 = 1.4 + 0.5(2.0− 1.4) = 1.7

x̂4 = 1.172 + 0.1(1.6− 1.172) ≈ 1.215 x̂4 = 1.7 + 0.5(1.6− 1.7) = 1.65

x̂5 = 1.215 + 0.1(2.2− 1.215) ≈ 1.313 x̂5 = 1.65 + 0.5(2.2− 1.65) = 1.925

Exercise 17.2. Following the previous exercise, suppose that once we have estimated
the mean with five samples for both methods, we are provided with a single additional
sample, x(6), that we will use as the final sample in estimating our mean. Which of the
two incremental estimation methods (i.e., α = 0.1 or α = 0.5) would be preferable?
Solution: While we do not know what the sample would be or what the underlying mean
of the process is, we would likely prefer the second incrementally estimated mean that
uses α = 0.5. Since we only have one sample left, the first learning rate is too small
to considerably change the mean, while the second learning rate is large enough to be
responsive, without neglecting the past samples. Consider two cases:
1. If we assume that the next sample is approximately equal to the incremental mean of all

previous samples, then we have x(6) ≈ x̂5. Thus, performing an incremental update of
the mean yields no change to our estimate. We have x̂6 ≈ 1.313 for a learning rate of
0.1, and we have x̂6 = 1.925 for a learning rate of 0.5.

2. If we assume the next sample is approximately equal to the exact mean of all previous
samples, then we have x(6) ≈ 1.72. The update using a learning rate of 0.1 yields
x̂6 ≈ 1.354, while the update using a learning rate of 0.5 yields x̂6 ≈ 1.823.

In both of these cases, supposing that the next sample is equal to the mean of all previous
samples, then the estimate using a learning rate of 0.5 is more accurate.
Exercise 17.3. Consider applying Q-learning with function approximation to a problem
with a continuous action space by discretizing the action space. Suppose that the con-
tinuous action space is in R

n, such as a robot with n actuators, and each dimension is
discretized into m intervals. Howmany actions are in the resulting discrete action space? Is
Q-learning with function approximation well suited for continuous problems with many
dimensions?

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com



352 chapter 17. model-free methods

Solution: An action space with n dimensions and m intervals per dimension results in mn

discrete actions. The number of discrete actions increases exponentially in n. Even if m is
small, larger values of n can quickly result in very high action counts. Hence, Q-learning
with function approximation is not well suited for use on continuous problems with many
action dimensions.

Exercise 17.4. What is the complexity of Q-learning if we interact with the environment
for d time steps? What is the complexity of Sarsa if we interact with the environment for d

time steps?

Solution: For Q-learning, our update rule is

Q(s, a)← Q(s, a) + α

(

r + γ max
a′

Q(s′, a′)−Q(s, a)

)

At each time step, we must perform a maximization over actions, so for d time steps, the
complexity of Q-learning is O(d|A|). For Sarsa, our update rule is

Q(s, a)← Q(s, a) + α
(

r + γQ(s′, a′)−Q(s, a)
) (17.23)

At each time step, unlike Q-learning, we do not have to perform a maximization over
actions, so for d time steps, the complexity of Sarsa is simply O(d).

Exercise 17.5. Is the computational complexity of Sarsa per experience tuple (st, at, rt, st+1)

more or less than that of Sarsa(λ)?

Solution: For Sarsa, our update rule is

Q(s, a)← Q(s, a) + α
(

r + γQ(s′, a′)−Q(s, a)
) (17.24)

So, for each experience tuple, we have O(1) complexity. For Sarsa(λ), our update rules are

δ← rt + γQ(st+1, at+1)−Q(st, at)

N(st, at)← N(st, at) + 1

Q(s, a)← Q(s, a) + αδN(s, a) for all s, a

N(s, a)← γλN(s, a) for all s, a

For each experience tuple, we need to compute δ and increment the visit count at (st, at),
which are both O(1). However, we need to update both the action value function and the
visit counts for all states and actions, which are both O(|S||A|). Thus, the computational
complexity per experience tuple is greater for Sarsa(λ). However, Sarsa(λ) often converges
using fewer experience tuples.

Exercise 17.6. What is the behavior of Q(λ) in the limit as λ→ 0? What is the behavior of
Q(λ) in the limit as λ→ 1?

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com



17.9. exercises 353

Solution: For Q(λ), we perform the following update rules:

δ← rt + γ max
a′

Q(st+1, a′)−Q(st, at)

N(st, at)← N(st, at) + 1

Q(s, a)← Q(s, a) + αδN(s, a) for all s, a

N(s, a)← γλN(s, a) for all s, a

In the limit as λ → 0, for our first iteration, we compute the temporal difference error δ

and we increment the visit count N(st, at). In the action value function update, the only
nonzero N(s, a) is at N(st, at), so we perform Q(st, at) ← Q(st, at) + αδN(st, at). Finally,
we reset all the visit counts to zero. From this, we can see that in the limit as λ → 0, we
have no eligibility traces and we are performing a straightforward Q-learning update.

In the limit as λ→ 1, our visit counts will accumulate and we have full eligibility traces,
which will spread the reward over all previously visited state-action pairs.

Exercise 17.7. Compute Q(s, a) using Sarsa(λ) after following the trajectory

(s1, aR, 0, s2, aR, 0, s3, aL, 10, s2, aR, 4, s1, aR)

Use α = 0.5, λ = 1, γ = 0.9, and initial action value function and visit counts equal to zero
everywhere. Assume that S = {s1, s2, s3, s4} and A = {aL, aR}.

Solution: The Sarsa(λ) update rules are

δ← rt + γQ(st+1, at+1)−Q(st, at)

N(st, at)← N(st, at) + 1

Q(s, a)← Q(s, a) + αδN(s, a) for all s, a

N(s, a)← γλN(s, a) for all s, a

For the first experience tuple, we have δ = 0 + 0.9× 0− 0 = 0, we increment the visit
count at N(s1, aR), the action value function does not change since δ = 0, and we update
our counts. After this, we have

Q(s, a) s1 s2 s3 s4

aL 0 0 0 0

aR 0 0 0 0

N(s, a) s1 s2 s3 s4

aL 0 0 0 0

aR 0.9 0 0 0

For the second experience tuple, we have δ = 0, we increment the visit count at N(s2, aR),
the action value function does not change since δ = 0, and we update our counts. After
this, we have

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com



354 chapter 17. model-free methods

Q(s, a) s1 s2 s3 s4

aL 0 0 0 0

aR 0 0 0 0

N(s, a) s1 s2 s3 s4

aL 0 0 0 0

aR 0.81 0.9 0 0

For the third experience tuple, we have δ = 10, we increment the visit count at N(s3, aL),
we update the action value function, and we update our counts. After this, we have

Q(s, a) s1 s2 s3 s4

aL 0 0 5 0

aR 4.05 4.5 0 0

N(s, a) s1 s2 s3 s4

aL 0 0 0.9 0

aR 0.729 0.81 0 0

For the fourth experience tuple, we have δ = 4 + 0.9× 4.05− 4.5 = 3.145, we increment
the visit count at N(s2, aR) = 0.81 + 1 = 1.81, we update the action value function, and
we update our counts. After this, we have

Q(s, a) s1 s2 s3 s4

aL 0 0 6.415 0

aR 5.196 7.346 0 0

N(s, a) s1 s2 s3 s4

aL 0 0 0.81 0

aR 0.656 1.629 0 0

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com


