
16 Model-Based Methods

This chapter discusses both maximum likelihood and Bayesian approaches for
learning the underlying dynamics and reward through interaction with the envi-
ronment. Maximum likelihood methods involve counting state transitions and
recording the amount of reward received to estimate the model parameters. We
will discuss a few approaches for planning using models that are continuously
updated. Even if we solve the estimated problem exactly, we generally have to
rely on heuristic exploration strategies to arrive at a suitable solution. Bayesian
methods involve computing a posterior distribution over model parameters. Solv-
ing for the optimal exploration strategy is generally intractable, but we can often
obtain a sensible approximation through posterior sampling.

16.1 Maximum Likelihood Models

As introduced in section 15.6 and implemented in algorithm 15.9, reinforcement
learning involves using information about past state transitions and rewards
to inform decisions. This section describes how to obtain a maximum likelihood
estimate of the underlying problem. This maximum likelihood estimate can be
used to generate a value function estimate that can be used with an exploration
strategy to generate actions.

We record the transition counts N(s, a, s′), indicating the number of times a
transition from s to s′ was observed when taking action a. The maximum likeli-
hood estimate of the transition function given these transition counts is

T(s′ | s, a) ≈ N(s, a, s′)/N(s, a) (16.1)

where N(s, a) = ∑s′ N(s, a, s′). If N(s, a) = 0, then we have no information
from which to estimate a transition. In such a case, we can default to a uniform

318 chapter 16. model-based methods

distribution or assume that the transition is impossible by setting the transition
probabilities to zero.

The reward function can also be estimated. As we receive rewards, we update
ρ(s, a), the sum of all rewards obtained when taking action a in state s. The
maximum likelihood estimate of the reward function is the mean reward:

R(s, a) ≈ ρ(s, a)/N(s, a) (16.2)
If N(s, a) = 0, then our estimate of R(s, a) is 0. If we have prior knowledge about
the transition probabilities or rewards, then we can initialize N(s, a, s′) and ρ(s, a)

to values other than 0.
Algorithm 16.1 updates N and ρ after observing the transition from s to s′ after

taking action a and receiving reward r. Algorithm 16.2 converts the maximum
likelihoodmodel into anMDP representation. Example 16.1 illustrates this process.
We can use this maximum likelihood model to select actions while interacting
with the environment and improving the model.

16.2 Update Schemes

As we update our maximum likelihood estimate of the model, we also need to
update our plan. This section discusses several update schemes in response to our
continuously changing model. A major consideration is computational efficiency
because we will want to perform these updates fairly frequently while interacting
with the environment.

16.2.1 Full Updates
Algorithm 16.3 solves the maximum likelihood model using the linear program-
ming formulation from section 7.7, though we could have used value iteration
or some other algorithm. After each step, we obtain a new model estimate and
re-solve.

16.2.2 Randomized Updates
Recomputing an optimal policy with each state transition is typically computa-
tionally expensive. An alternative is to perform a Bellman update on the estimated
model at the previously visited state, as well as a few randomly chosen states.1

1 This approach is related to the
Dyna approach suggested by R. S.
Sutton, “Dyna, an Integrated Ar-
chitecture for Learning, Planning,
and Reacting,” SIGART Bulletin,
vol. 2, no. 4, pp. 160–163, 1991.Algorithm 16.4 implements this approach.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

16.2. update schemes 319

mutable struct MaximumLikelihoodMDP
𝒮 # state space (assumes 1:nstates)
𝒜 # action space (assumes 1:nactions)
N # transition count N(s,a,s′)
ρ # reward sum ρ(s, a)
γ # discount
U # value function
planner

end

function lookahead(model::MaximumLikelihoodMDP, s, a)
𝒮, U, γ = model.𝒮, model.U, model.γ
n = sum(model.N[s,a,:])
if n == 0

return 0.0
end
r = model.ρ[s, a] / n
T(s,a,s′) = model.N[s,a,s′] / n
return r + γ * sum(T(s,a,s′)*U[s′] for s′ in 𝒮)

end

function backup(model::MaximumLikelihoodMDP, U, s)
return maximum(lookahead(model, s, a) for a in model.𝒜)

end

function update!(model::MaximumLikelihoodMDP, s, a, r, s′)
model.N[s,a,s′] += 1
model.ρ[s,a] += r
update!(model.planner, model, s, a, r, s′)
return model

end

Algorithm 16.1. A method for up-
dating the transition and reward
model for maximum likelihood re-
inforcement learning with discrete
state and action spaces. We incre-
ment N[s,a,s′] after observing a
transition from s to s′ after taking
action a, and we add r to ρ[s,a].
The model also contains an esti-
mate of the value function U and
a planner. This algorithm block
also includes methods for perform-
ing backup and lookahead with re-
spect to this model.

function MDP(model::MaximumLikelihoodMDP)
N, ρ, 𝒮, 𝒜, γ = model.N, model.ρ, model.𝒮, model.𝒜, model.γ
T, R = similar(N), similar(ρ)
for s in 𝒮

for a in 𝒜
n = sum(N[s,a,:])
if n == 0

T[s,a,:] .= 0.0
R[s,a] = 0.0

else
T[s,a,:] = N[s,a,:] / n
R[s,a] = ρ[s,a] / n

end
end

end
return MDP(T, R, γ)

end

Algorithm 16.2. A method for
converting a maximum likelihood
model to an MDP problem.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

320 chapter 16. model-based methods

We would like to apply maximum likelihood model estimation to the hex
world problem. The true transition matrices look like this:

0
0.2
0.4
0.6
0.8
1

There are six transition matrices, one for each action. The rows correspond
to the current state, and the columns correspond to the next state. There
are 26 states. The intensity in the images relate to the probability of making
the corresponding transition. In a reinforcement learning context, we do
not know these transition probabilities ahead of time. However, we can
interact with the environment and record the transitions we observe. After 10

simulations of 10 steps each from random initial states, maximum likelihood
estimation results in the following matrices:

0
0.2
0.4
0.6
0.8
1

After 1000 simulations, our estimate becomes

0
0.2
0.4
0.6
0.8
1

Example 16.1. Applyingmaximum
likelihood estimation to the hex
world problem.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

16.3. exploration 321

struct FullUpdate end

function update!(planner::FullUpdate, model, s, a, r, s′)
𝒫 = MDP(model)
U = solve(𝒫).U
copy!(model.U, U)
return planner

end

Algorithm 16.3. Amethod that per-
forms a full update of the value
function of U using the linear pro-
gramming formulation from sec-
tion 7.7.

struct RandomizedUpdate
m # number of updates

end

function update!(planner::RandomizedUpdate, model, s, a, r, s′)
U = model.U
U[s] = backup(model, U, s)
for i in 1:planner.m

s = rand(model.𝒮)
U[s] = backup(model, U, s)

end
return planner

end

Algorithm 16.4. Maximum likeli-
hood model-based reinforcement
learning with updates at random-
ized states. This approach per-
forms a Bellman update at the pre-
viously visited state, as well as at m
additional states chosen randomly.

16.2.3 Prioritized Updates
An approach called prioritized sweeping2 (algorithm 16.5) uses a priority queue to 2 A.W. Moore and C.G. Atkeson,

“Prioritized Sweeping: Reinforce-
ment Learning with Less Data
and Less Time,” Machine Learning,
vol. 13, no. 1, pp. 103–130, 1993.

help identify which states are most in need of updating. A transition from s to s′ is
followed by anupdate ofU(s) based on our updated transition and rewardmodels.
We then iterate over all state-action pairs (s−, a−) that can immediately transition
into s. The priority of any such s− is increased to T(s | s−, a−)× |U(s)− u|, where
u was the value of U(s) before the update. Hence, the larger the change in U(s)

and the more likely the transition to s, the higher the priority of states leading to
s. The process of updating the highest-priority state in the queue continues for a
fixed number of iterations or until the queue becomes empty.

16.3 Exploration

Regardless of the update scheme, some form of exploration strategy generally
must be followed to avoid the pitfalls of pure exploitation mentioned in the pre-
vious chapter. We can adapt the exploration algorithms presented in that chapter

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

322 chapter 16. model-based methods

struct PrioritizedUpdate
m # number of updates
pq # priority queue

end

function update!(planner::PrioritizedUpdate, model, s)
N, U, pq = model.N, model.U, planner.pq
𝒮, 𝒜 = model.𝒮, model.𝒜
u = U[s]
U[s] = backup(model, U, s)
for s⁻ in 𝒮

for a⁻ in 𝒜
n_sa = sum(N[s⁻,a⁻,s′] for s′ in 𝒮)
if n_sa > 0

T = N[s⁻,a⁻,s] / n_sa
priority = T * abs(U[s] - u)
if priority > 0

pq[s⁻] = max(get(pq, s⁻, 0.0), priority)
end

end
end

end
return planner

end

function update!(planner::PrioritizedUpdate, model, s, a, r, s′)
planner.pq[s] = Inf
for i in 1:planner.m

if isempty(planner.pq)
break

end
update!(planner, model, dequeue!(planner.pq))

end
return planner

end

Algorithm 16.5. The prioritized
sweeping algorithm maintains a
priority queue pq of states that de-
termines which are to be updated.
With each update, we set the pre-
vious state to have infinite prior-
ity. We then perform m Bellman up-
dates of the value function U at the
highest-priority states.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

16.3. exploration 323

for use in multistate problems. Algorithm 16.6 provides an implementation of
the ǫ-greedy exploration strategy.

function (π::EpsilonGreedyExploration)(model, s)
𝒜, ϵ = model.𝒜, π.ϵ
if rand() < ϵ

return rand(𝒜)
end
Q(s,a) = lookahead(model, s, a)
return argmax(a->Q(s,a), 𝒜)

end

Algorithm 16.6. The ǫ-greedy
exploration strategy for maximum
likelihood model estimates. It
chooses a random action with
probability ϵ; otherwise, it uses
the model to extract the greedy
action.

A limitation of the exploration strategies discussed in the previous chapter is
that they do not reason about exploring actions from states besides the current
one. For instance, we might want to take actions that bring ourselves into an
area of the state space that has not been explored. Several algorithms have been
suggested for addressing this issue, which also provide probabilistic bounds on
the quality of the resulting policy after a finite number of interactions.3 3 M. Kearns and S. Singh, “Near-

Optimal Reinforcement Learning
in Polynomial Time,” Machine
Learning, vol. 49, no. 2/3, pp. 209–
232, 2002.

One such algorithm is known as R-MAX (algorithm 16.7).4 Its name comes

4 R. I. Brafman andM. Tennenholtz,
“R-MAX—A General Polynomial
Time Algorithm for Near-Optimal
Reinforcement Learning,” Journal
of Machine Learning Research, vol. 3,
pp. 213–231, 2002.

from assigning maximal reward to underexplored state-action pairs. State-action
pairs with fewer than m visitations are considered underexplored. Instead of
using the maximum likelihood estimate for the reward (equation (16.2)), we use

R(s, a) =







rmax if N(s, a) < m

ρ(s, a)/N(s, a) otherwise
(16.3)

where rmax is the maximum achievable reward.
The transition model in R-MAX is also modified so that underexplored state-

action pairs result in staying in the same state:

T(s′ | s, a) =







(s′ = s) if N(s, a) < m

N(s, a, s′)/N(s, a) otherwise
(16.4)

Hence, underexplored states have value rmax/(1− γ), providing an incentive
to explore them. This exploration incentive relieves us of needing a separate
exploration mechanism. We simply choose our actions greedily with respect to
the value function derived from our transition and reward estimates. Example 16.2
demonstrates ǫ-greedy and R-MAX exploration.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

324 chapter 16. model-based methods

mutable struct RmaxMDP
𝒮 # state space (assumes 1:nstates)
𝒜 # action space (assumes 1:nactions)
N # transition count N(s,a,s′)
ρ # reward sum ρ(s, a)
γ # discount
U # value function
planner
m # count threshold
rmax # maximum reward

end

function lookahead(model::RmaxMDP, s, a)
𝒮, U, γ = model.𝒮, model.U, model.γ
n = sum(model.N[s,a,:])
if n < model.m

return model.rmax / (1-γ)
end
r = model.ρ[s, a] / n
T(s,a,s′) = model.N[s,a,s′] / n
return r + γ * sum(T(s,a,s′)*U[s′] for s′ in 𝒮)

end

function backup(model::RmaxMDP, U, s)
return maximum(lookahead(model, s, a) for a in model.𝒜)

end

function update!(model::RmaxMDP, s, a, r, s′)
model.N[s,a,s′] += 1
model.ρ[s,a] += r
update!(model.planner, model, s, a, r, s′)
return model

end

function MDP(model::RmaxMDP)
N, ρ, 𝒮, 𝒜, γ = model.N, model.ρ, model.𝒮, model.𝒜, model.γ
T, R, m, rmax = similar(N), similar(ρ), model.m, model.rmax
for s in 𝒮

for a in 𝒜
n = sum(N[s,a,:])
if n < m

T[s,a,:] .= 0.0
T[s,a,s] = 1.0
R[s,a] = rmax

else
T[s,a,:] = N[s,a,:] / n
R[s,a] = ρ[s,a] / n

end
end

end
return MDP(T, R, γ)

end

Algorithm 16.7. The R-MAX
exploration strategy modifies the
transition and reward model from
maximum likelihood estimation.
It assigns the maximum reward
rmax to any underexplored
state-action pair, defined as being
those that have been tried fewer
than m times. In addition, all
underexplored state-action pairs
are modeled as transitioning
to the same state. This RmaxMDP
can be used as a replacement
for the MaximumLikelihoodMDP
introduced in algorithm 16.1.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

16.3. exploration 325

We can apply ǫ-greedy exploration to maximum likelihood model estimates
constructed while interacting with the environment. The code that follows
initializes the counts, rewards, and utilities to zero. It uses full updates to
the value function with each step. For exploration, we choose a random
action with probability 0.1. The last line runs a simulation (algorithm 15.9)
of problem 𝒫 for 100 steps starting in a random initial state:
N = zeros(length(𝒮), length(𝒜), length(𝒮))
ρ = zeros(length(𝒮), length(𝒜))
U = zeros(length(𝒮))
planner = FullUpdate()
model = MaximumLikelihoodMDP(𝒮, 𝒜, N, ρ, γ, U, planner)
π = EpsilonGreedyExploration(0.1)
simulate(𝒫, model, π, 100, rand(𝒮))

Alternatively, we can use R-MAX with an exploration threshold of m = 3.
We can act greedily with respect to the R-MAX model:
rmax = maximum(𝒫.R(s,a) for s in 𝒮, a in 𝒜)
m = 3
model = RmaxMDP(𝒮, 𝒜, N, ρ, γ, U, planner, m, rmax)
π = EpsilonGreedyExploration(0)
simulate(𝒫, model, π, 100, rand(𝒮))

Example 16.2. Demonstration of
ǫ-greedy and R-MAX exploration.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

326 chapter 16. model-based methods

16.4 Bayesian Methods

In contrast with the maximum likelihood methods discussed so far, Bayesian
methods balance exploration and exploitation without having to rely on heuris-
tic exploration policies. This section describes a generalization of the Bayesian
methods covered in section 15.5. In Bayesian reinforcement learning, we specify a
prior distribution over all model parameters θ.5 These model parameters may

5 A survey of this topic is provided
by M. Ghavamzadeh, S. Mannor, J.
Pineau, and A. Tamar, “Bayesian
Reinforcement Learning: A Sur-
vey,” Foundations and Trends in
Machine Learning, vol. 8, no. 5–6,
pp. 359–483, 2015. It covers meth-
ods for incorporating priors over
reward functions, which are not
discussed here.

include the parameters governing the distribution over immediate rewards, but
this section focuses on the parameters governing the state transition probabilities.

st st+1

θt

rt

at

θt+1

Figure 16.1. A dynamic decision
network for an MDP with model
uncertainty.

The structure of the problem can be represented using the dynamic decision
network shown in figure 16.1, wherein the model parameters are made explicit.
The shaded nodes indicate that the states are observed but the model parameters
are not. We generally assume that the model parameters are time invariant with
θt+1 = θt. However, our belief about θ evolves with time as we transition to new
states.

The belief over transition probabilities can be represented using a collection
of Dirichlet distributions, one for each source state and action. Each Dirichlet
distribution represents the distribution over s′ for a given s and a. If θ(s,a) is an
|S|-element vector representing the distribution over the next state, then the prior
distribution is given by

Dir(θ(s,a) | N(s, a)) (16.5)
where N(s, a) is the vector of counts associated with transitions starting in state s

taking action a. It is common to use a uniform prior with all components set to 1,
but prior knowledge of the transition dynamics can be used to initialize the counts
differently. Example 16.3 illustrates how these counts are used by the Dirichlet
distribution to represent the distribution over possible transition probabilities.

The distribution over θ is the result of the product of the Dirichlet distributions:

b(θ) = ∏
s

∏
a

Dir
(

θ(s,a) | N(s, a)
)

(16.6)

Algorithm 16.8 provides an implementation of the Bayesian update for this type
of posterior model. For problems with larger or continuous spaces, we can use
other posterior representations.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

16.4. bayesian methods 327

Suppose our agent randomly explores an environment with three states. The
agent takes action a1 from state s1 five times. It transitions to s3 four times
and remains in s1 once. The counts associated with s1 and a1 are N(s1, a1) =

[1, 0, 4]. If we want to assume a uniform prior over resulting states, we would
increment the counts by 1 to get N(s1, a1) = [2, 1, 5]. The transition function
from s1 taking action a1 is a three-valued categorical distribution because
there are three possible successor states. Each successor state has an unknown
transition probability. The space of possible transition probabilities is the set
of three-element vectors that sum to 1. The Dirichlet distribution represents
a probability distribution over these possible transition probabilities. Here is
a plot of the density function:

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

T(s1 | s1, a1)T(s2 | s1, a1)

T(s3 | s1, a1)

0

5

10

15

Example 16.3. AposteriorDirichlet
distribution over transition proba-
bilities fromaparticular statewhen
taking a particular action. An agent
learning the transition function in
an unknown MDP may choose to
maintain such a distribution over
each state-action pair.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

328 chapter 16. model-based methods

mutable struct BayesianMDP
𝒮 # state space (assumes 1:nstates)
𝒜 # action space (assumes 1:nactions)
D # Dirichlet distributions D[s,a]
R # reward function as matrix (not estimated)
γ # discount
U # value function
planner

end

function lookahead(model::BayesianMDP, s, a)
𝒮, U, γ = model.𝒮, model.U, model.γ
n = sum(model.D[s,a].alpha)
if n == 0

return 0.0
end
r = model.R(s,a)
T(s,a,s′) = model.D[s,a].alpha[s′] / n
return r + γ * sum(T(s,a,s′)*U[s′] for s′ in 𝒮)

end

function update!(model::BayesianMDP, s, a, r, s′)
α = model.D[s,a].alpha
α[s′] += 1
model.D[s,a] = Dirichlet(α)
update!(model.planner, model, s, a, r, s′)
return model

end

Algorithm 16.8. A Bayesian up-
date method when the posterior
distribution over transition mod-
els is represented as a product of
Dirichlet distributions. We assume
in this implementation that the re-
ward model R is known, though
we can use Bayesian methods to
estimate expected reward from ex-
perience. The matrix D associates
Dirichlet distributions with every
state-action pair to model uncer-
tainty in the transition to their suc-
cessor states.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

16.5. bayes-adaptive markov decis ion processes 329

16.5 Bayes-Adaptive Markov Decision Processes

We can formulate the problem of acting optimally in an MDP with an unknown
model as a higher-dimensional MDP with a knownmodel. This MDP is known as
a Bayes-adaptive Markov decision process, which is related to the partially observable
Markov decision process discussed in part IV.

The state space in the Bayes-adaptive MDP is the Cartesian product S × B,
where B is the space of possible beliefs over the model parameters θ. Although
S is discrete, B is often a high-dimensional continuous state space.6 A state in a 6 It is continuous in the case of

Dirichlet distributions over transi-
tion probabilities, as shown in ex-
ample 16.3.

Bayes-adaptive MDP is a pair (s, b) consisting of the current state s in the base
MDP and a belief state b. The action space and reward function are the same as
in the base MDP.

The transition function in a Bayes-adaptive MDP is T(s′, b′ | s, b, a), which is
the probability of transitioning to a state s′ with a belief state b′, given that the
agent starts in s with belief b and takes action a. The new belief state b′ can be
deterministically computed according to Bayes’ rule. If we let this deterministic
function be denoted as τ so that b′ = τ(s, b, a, s′), then we can decompose the
Bayes-adaptive MDP transition function as

T(s′, b′ | s, b, a) = δτ(s,b,a,s′)(b
′) P(s′ | s, b, a) (16.7)

where δx(y) is the Kronecker delta function7 such that δx(y) = 1 if x = y, and 0 7 This function is named after the
German mathematician Leopold
Kronecker (1823–1891).otherwise.

The second term can be computed using integration:

P(s′ | s, b, a) =
∫

θ
b(θ)P(s′ | s, θ, a)dθ =

∫

θ
b(θ)θ(s,a,s′) dθ (16.8)

This equation can be evaluated analytically in a manner similar to equation (15.1).
In the case where our belief b is represented by the factored Dirichlet in equa-
tion (16.6), we have

P(s′ | s, b, a) = N(s, a, s′)/ ∑
s′′

N(s, a, s′′) (16.9)

We can generalize the Bellman optimality equation (equation (7.16)) for MDPs
with a known model to the case in which the model is unknown:

U∗(s, b) = max
a

(

R(s, a) + γ ∑
s′

P(s′ | s, b, a)U∗
(

s′, τ
(

s, b, a, s′
))

)

(16.10)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

330 chapter 16. model-based methods

Unfortunately, we cannot simply directly apply policy iteration or value itera-
tion because b is continuous. We can, however use the approximation methods
of chapter 8 or the online methods of chapter 9. Part IV presents methods that
better use the structure of the Bayes-adaptive MDP.

16.6 Posterior Sampling

An alternative to solving for the optimal value function over the belief space
is to use posterior sampling,8 which was originally introduced in the context of 8 M. J.A. Strens, “A Bayesian

Framework for Reinforcement
Learning,” in International Confer-
ence on Machine Learning (ICML),
2000.

exploration in bandit problems in section 15.4.9 Here, we draw a sample θ from the

9 In that section, we sampled from
a posterior distribution over the
probability of payoffs and then as-
sumed that the sampled probabili-
ties were correct when selecting an
action.

current belief b and then solve for the best action, assuming that θ is the truemodel.
We then update our belief, draw a new sample, and solve the corresponding MDP.
Example 16.4 provides an example instance of this.

An advantage of posterior sampling is thatwe do not have to decide on heuristic
exploration parameters. However, solving theMDP at every step can be expensive.
A method for sampling a discrete MDP from the posterior is implemented in
algorithm 16.9.

struct PosteriorSamplingUpdate end

function Base.rand(model::BayesianMDP)
𝒮, 𝒜 = model.𝒮, model.𝒜
T = zeros(length(𝒮), length(𝒜), length(𝒮))
for s in 𝒮

for a in 𝒜
T[s,a,:] = rand(model.D[s,a])

end
end
return MDP(T, model.R, model.γ)

end

function update!(planner::PosteriorSamplingUpdate, model, s, a, r, s′)
𝒫 = rand(model)
U = solve(𝒫).U
copy!(model.U, U)

end

Algorithm 16.9. The update
method for posterior sampling.
After updating the parameters
of the Bayesian posterior, we
sample anMDP problem from that
posterior. This implementation
assumes a discrete state and
action space with a Dirichlet
modeling our uncertainty in the
transition probabilities from each
state-action pair. To generate the
transition model, we iterate over
every state and action and sample
from the associated Dirichlet
distribution. Once we have a
sampled problem 𝒫, we solve it
using the linear programming
formulation and store the resulting
value function U.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

16.6. posterior sampling 331

We want to apply Bayesian model estimation to hex world. We start with
associating uniform Dirichlet priors with every state-action pair. After 100

simulations of length 10 and adding our transition counts to our pseudo-
counts in our prior, the parameters of our posterior distributions over our
successor states appear as follows:

0

2

4

We can sample from this distribution to produce the model shown here. No-
tice that it hasmanymore nonzero transition probabilities than themaximum
likelihood models shown in example 16.1.

0

0.05

0.1

0.15

0.2

Example 16.4. Application of
Bayesian model estimation and
posterior sampling to the hex
world problem.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

332 chapter 16. model-based methods

16.7 Summary

• Model-based methods learn the transition and reward models through inter-
action with the environment.

• Maximum likelihood models use transition counts to maintain an estimate of
the transition probabilities to successor states and to track the mean reward
associated with state-action pairs.

• Maximum likelihoodmodels must be paired with an exploration strategy, such
as those introduced in the previous chapter in the context of bandits.

• Although we can replan with each step of experience, doing so exactly can be
costly.

• Prioritized sweeping can focus replanning by updating the values of states
that appear to need it the most in our evolving model of the environment.

• Bayesian model-based methods maintain a probability distribution over possi-
ble problems, allowing principled reasoning about exploration.

• In Bayes-adaptive MDPs, their states augment the original MDP with the
probability distribution over the possible MDP models.

• Posterior sampling reduces the high computational complexity of solving a
Bayes-adaptive MDP by solving an MDP sampled from the belief state rather
than reasoning about all possible MDPs.

16.8 Exercises
Exercise 16.1. Suppose we have an agent interacting in an environment with three states
and two actions with unknown transition and reward models. We perform one sequence
of direct interaction with the environment. Table 16.1 tabulates the state, action, reward,
and resulting state. Use maximum likelihood estimation to estimate the transition and
reward functions from this data.

Table 16.1. Transition data.

s a r s′

s2 a1 2 s1

s1 a2 1 s2

s2 a2 1 s1

s1 a2 1 s2

s2 a2 1 s3

s3 a2 2 s2

s2 a2 1 s3

s3 a2 2 s3

s3 a1 2 s2

s2 a1 2 s3

Solution: We first tabulate the number of transitions from each state and action N(s, a), the
rewards received ρ(s, a), and the maximum likelihood estimate of the reward function
R̂(s, a) = ρ(s, a)/N(s, a) as follows:

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

16.8. exercises 333

s a N(s, a) ρ(s, a) R̂(s, a) =
ρ(s,a)
N(s,a)

s1 a1 0 0 0

s1 a2 2 2 1

s2 a1 2 4 2

s2 a2 3 3 1

s3 a1 1 2 2

s3 a2 2 4 2

In the next set of tables, we compute the number of observed transitions N(s, a, s′) and
the maximum likelihood estimate of the transition model T̂(s′ | s, a) = N(s, a, s′)/N(s, a).
When N(s, a) = 0, we use a uniform distribution over the resulting states.

s a s′ N(s, a, s′) T̂(s′ | s, a) = N(s,a,s′)
N(s,a)

s1 a1 s1 0 1/3

s1 a1 s2 0 1/3

s1 a1 s3 0 1/3

s1 a2 s1 0 0

s1 a2 s2 2 1

s1 a2 s3 0 0

s2 a1 s1 1 1/2

s2 a1 s2 0 0

s2 a1 s3 1 1/2

s2 a2 s1 1 1/3

s2 a2 s2 0 0

s2 a2 s3 2 2/3

s3 a1 s1 0 0

s3 a1 s2 1 1

s3 a1 s3 0 0

s3 a2 s1 0 0

s3 a2 s2 1 1/2

s3 a2 s3 1 1/2

Exercise 16.2. Provide a lower bound and an upper bound on the number of updates that
could be performed during an iteration of prioritized sweeping.

Solution: A lower bound on the number of updates performed in an iteration of prioritized
sweeping is 1. This could occur during our first iteration using a maximum likelihood
model, where the only nonzero entry in our transition model is T(s′ | s, a). Since no

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

334 chapter 16. model-based methods

state-action pairs (s−, a−) transition to s, our priority queue would be empty, and thus the
only update performed would be for U(s).

An upper bound on the number of updates performed in an iteration of prioritized
sweeping is |S|. Suppose that we just transitioned to s′, and T̂(s′ | s, a) > 0 for all s and a.
If we do not provide a maximum number of updates, we will perform |S| updates. If we
provide a maximum number of updates m < |S|, the upper bound is reduced to m.

Exercise 16.3. In performing Bayesian reinforcement learning of the transition model
parameters for a discrete MDP with state space S and action space A, how many indepen-
dent parameters are there when using Dirichlet distributions to represent uncertainty over
the transition model?

Solution: For each state and action, we specify a Dirichlet distribution over the transition
probability parameters, so we will have |S||A| Dirichlet distributions. Each Dirichlet
is specified using |S| independent parameters. In total, we have |S|2|A| independent
parameters.

Exercise 16.4. Consider the problem statement in exercise 16.1, but this time we want to
use Bayesian reinforcement learning with a prior distribution represented by a Dirichlet
distribution. Assuming a uniform prior, what is the posterior distribution over the next
state, given that we are in state s2 and take action a1?

Solution: Dir(θ(s2,a1) | [2, 1, 2])

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

