
15 Exploration and Exploitation

Reinforcement learning agents1 must balance exploration of the environment with 1 A review of the field of reinforce-
ment learning is provided in M.
Wiering and M. van Otterlo, eds.,
Reinforcement Learning: State of the
Art. Springer, 2012.

exploitation of knowledge obtained through its interactions.2 Pure exploration will

2 In some applications, we want
to optimize a policy given a fixed
set of trajectories. This context is
known as batch reinforcement learn-
ing. This chapter assumes that
we have to collect our own data
through interaction, which makes
choosing an appropriate explo-
ration strategy important.

allow the agent to build a comprehensive model, but the agent will likely have
to sacrifice the gathering of reward. Pure exploitation has the agent continually
choosing the action it thinks best to accumulate reward, but there may be other,
better actions that could be taken. This chapter introduces the challenges associ-
ated with the exploration-exploitation trade-off by focusing on a problem with
a single state. We conclude by introducing exploration in MDPs with multiple
states.

15.1 Bandit Problems

Early analyses of the exploration-exploitation trade-off were focused on slot
machines, also called one-armed bandits.3 The name comes fromolder slotmachines

3 These bandit problems were ex-
plored during World War II and
proved exceptionally challenging
to solve. According to Peter Whit-
tle, ‘‘efforts to solve [bandit prob-
lems] so sapped the energies and
minds of Allied analysts that the
suggestionwasmade that the prob-
lem be dropped over Germany as
the ultimate instrument of intellec-
tual sabotage.’’ J. C. Gittins, “Ban-
dit Processes and Dynamic Allo-
cation Indices,” Journal of the Royal
Statistical Society. Series B (Method-
ological), vol. 41, no. 2, pp. 148–177,
1979.

having a single pull lever, as well as the fact that the machine tends to take the
gambler’s money. Many real-world problems can be framed as multiarmed bandit
problems,4 such as the allocation of clinical trials and adaptive network routing.

4 C. Szepesvári and T. Lattimore,
Bandit Algorithms. Cambridge Uni-
versity Press, 2020.

Many bandit problem formulations exist in the literature, but this chapter will
focus on what is called a binary bandit, Bernoulli bandit, or binomial bandit. In these
problems, arm a pays off 1 with probability θa, and 0 otherwise. Pulling an arm
costs nothing, but we have only h pulls.

A bandit problem can be framed as an h-stepMDPwith a single state, n actions,
and an unknown, stochastic reward function R(s, a), as shown in figure 15.1.
Recall that R(s, a) is the expected reward when taking action a in s, but individual
rewards realized in the environment may come from a probability distribution.
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s

pull arm 1
+1 reward with probability θ1

+0 reward with probability 1− θ1

pull arm 2
+1 reward with probability θ2

+0 reward with probability 1− θ2

pull arm 3
+1 reward with probability θ3

+0 reward with probability 1− θ3

…

pull arm n

Figure 15.1. The multiarmed ban-
dit problem is a single-state MDP
where actions can differ only in
the likelihood that they produce
reward.

Algorithm 15.1 defines the simulation loop for a bandit problem. At each step,
we evaluate our exploration policy π on our current model of the payoff probabil-
ities to generate an action a. The next section will discuss a way to model payoff
probabilities, and the remainder of the chapter will outline several exploration
strategies. After obtaining a, we simulate a pull of that arm, returning binary
reward r. The model is then updated using the observed a and r. The simulation
loop is repeated to horizon h.

struct BanditProblem
θ # vector of payoff probabilities
R # reward sampler

end

function BanditProblem(θ)
R(a) = rand() < θ[a] ? 1 : 0
return BanditProblem(θ, R)

end

function simulate(𝒫::BanditProblem, model, π, h)
for i in 1:h

a = π(model)
r = 𝒫.R(a)
update!(model, a, r)

end
end

Algorithm 15.1. Simulation of a
bandit problem. A bandit problem
is defined by a vector θ of payoff
probabilities, one per action. We
also define a function R that simu-
lates the generation of a stochastic
binary reward in response to the se-
lection of an action. Each step of a
simulation involves generating an
action a from the exploration pol-
icy π. The exploration policy gener-
ally consults the model in the selec-
tion of the action. The selection of
that action results in a randomly
generated reward, which is then
used to update the model. Simu-
lations are run to horizon h.
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15.2 Bayesian Model Estimation

We would like to track our belief over the win probability θa for arm a. The beta
distribution (section 4.2) is often used for representing such a belief. Assuming
a uniform prior of Beta(1, 1), the posterior for θa after wa wins and ℓa losses is
Beta(wa + 1, ℓa + 1). The posterior probability of winning is

ρa = P(wina | wa, ℓa) =
∫ 1

0
θ×Beta(θ | wa + 1, ℓa + 1)dθ =

wa + 1

wa + ℓa + 2
(15.1)

Algorithm 15.2 provides an implementation of this. Example 15.1 illustrates how
to compute these posterior distributions from counts of wins and losses.

struct BanditModel
B # vector of beta distributions

end

function update!(model::BanditModel, a, r)
α, β = StatsBase.params(model.B[a])
model.B[a] = Beta(α + r, β + (1-r))
return model

end

Algorithm 15.2. The Bayesian up-
date function for bandit models.
After observing reward r after tak-
ing action a, we update the beta dis-
tribution associated with that ac-
tion by incrementing the appropri-
ate parameter.

A greedy action is one that maximizes our expected immediate reward—or, in
other words, the posterior probability of winning in the context of our binary
bandit problem. There may be multiple greedy actions. We do not always want to
select a greedy action because wemaymiss out on discovering another action that
may actually provide higher reward in expectation. We can use the information
from the beta distributions associated with the different actions to drive our
exploration of nongreedy actions.

15.3 Undirected Exploration Strategies

There are several ad hoc exploration strategies that are commonly used to balance
exploration with exploitation. This section discusses a type of ad hoc exploration
called undirected exploration, where we do not use information from previous
outcomes to guide exploration of nongreedy actions.
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Suppose we have a two-armed bandit that we have played six times. The
first arm has 1 win and 0 losses, and the other arm has 4 wins and 1 loss.
Assuming a uniform prior, the posterior distribution for θ1 is Beta(2, 1), and
the posterior distribution for θ2 is Beta(5, 2).

ρ1 = 2/3 ρ2 = 5/7

0 0.2 0.4 0.6 0.8 1
0
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θ

p
(θ
)

Beta(2, 1)

Beta(5, 2)

These posteriors assign nonzero likelihood to the win probabilities be-
tween 0 and 1. The density at 0 is 0 for both arms because they both received
at least one win. Similarly, the density at 1 for arm 2 is 0 because it received
at least one loss. The payoff probabilities ρ1 = 2/3 and ρ2 = 5/7 are shown
with vertical lines. We believe that the second arm has the best chance of
producing a payout.

Example 15.1. Posterior probability
distributions and expected payouts
for a multiarmed bandit.
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One of the most common undirected exploration strategies is ǫ-greedy explo-
ration (algorithm 15.3). This strategy chooses a random arm with probability ǫ.
Otherwise, we choose a greedy arm, arg maxa ρa. This ρa is the posterior prob-
ability of a win with action a using the Bayesian model given in the previous
section. Alternatively, we can use the maximum likelihood estimate, but with
enough pulls, the difference between the two approaches is small. Larger values
of ǫ lead to more exploration, thereby resulting in faster identification of the best
arm, but more pulls are wasted on suboptimal arms. Example 15.2 demonstrates
this exploration strategy and the evolution of our beliefs.

The ǫ-greedy method maintains a constant amount of exploration, despite
there being far more uncertainty earlier in the interaction with the bandit than
later. One common adjustment is to decay ǫ over time, such as with an exponential
decay schedule with the following update:

ǫ← αǫ (15.2)
for an α ∈ (0, 1) typically close to 1.

mutable struct EpsilonGreedyExploration
ϵ # probability of random arm

end

function (π::EpsilonGreedyExploration)(model::BanditModel)
if rand() < π.ϵ

return rand(eachindex(model.B))
else

return argmax(mean.(model.B))
end

end

Algorithm 15.3. The ǫ-greedy ex-
ploration strategy. With probabil-
ity ϵ, it will return a random action.
Otherwise, it will return a greedy
action.

Another strategy is explore-then-commit exploration (algorithm 15.4), where we
select actions uniformly at random for the first k time steps. From that point on,
we choose a greedy action.5 Large values for k reduce the risk of committing to 5 A. Garivier, T. Lattimore, and

E. Kaufmann, “On Explore-Then-
Commit Strategies,” in Advances in
Neural Information Processing Sys-
tems (NIPS), 2016.

a suboptimal action, but we waste more time exploring potentially suboptimal
actions.

15.4 Directed Exploration Strategies

Directed exploration uses information gathered from previous pulls to guide explo-
ration of the nongreedy actions. For example, the softmax strategy (algorithm 15.5)
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We would like to apply the ǫ-greedy exploration strategy to a two-armed
bandit. We can construct the model with a uniform prior and the exploration
policy with ǫ = 0.3:
model(fill(Beta(),2))
π = EpsilonGreedyExploration(0.3)

To obtain our first action, we call π(model), which returns 1 based on the
current state of the random number generator. We observe a loss, with r = 0,
and then call
update!(model, 1, 0)

which updates the beta distributions within the model to reflect that we took
action 1 and received a reward of 0.

The plots here show the evolution of the payoff beliefs after each of six
steps of execution using our exploration strategy. Blue corresponds to the
first arm, and red corresponds to the second arm:
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Example 15.2. Application of the
ǫ-greedy exploration strategy to a
two-armed bandit problem.
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mutable struct ExploreThenCommitExploration
k # pulls remaining until commitment

end

function (π::ExploreThenCommitExploration)(model::BanditModel)
if π.k > 0

π.k -= 1
return rand(eachindex(model.B))

end
return argmax(mean.(model.B))

end

Algorithm 15.4. The explore-then-
commit exploration strategy. If k is
strictly positive, it will return a ran-
dom action after decrementing k.
Otherwise, it will return a greedy
action.

pulls arm a with probability proportional to exp(λρa), where the precision parame-
ter λ ≥ 0 controls the amount of exploration. We have uniform random selection
as λ→ 0 and greedy selection as λ→ ∞. As more data is accumulated, we may
want to increase λ by a multiplicative factor to reduce exploration.

mutable struct SoftmaxExploration
λ # precision parameter
α # precision factor

end

function (π::SoftmaxExploration)(model::BanditModel)
weights = exp.(π.λ * mean.(model.B))
π.λ *= π.α
return rand(Categorical(normalize(weights, 1)))

end

Algorithm 15.5. The softmax ex-
ploration strategy. It selects action
a with probability proportional to
exp(λρa). The precision parameter
λ is scaled by a factor α at each step.

A variety of exploration strategies are grounded in the idea of optimism under
uncertainty. If we are optimistic about the outcomes of our actions to the extent that
our data statistically allows, we will be implicitly driven to balance exploration
and exploitation. One such approach is quantile exploration (algorithm 15.6),6

6 This general strategy is related to
upper confidence bound exploration,
interval exploration, and interval es-
timation, referring to the upper
bound of a confidence interval.
L. P. Kaelbling, Learning in Embed-
ded Systems. MIT Press, 1993. See
also E. Kaufmann, “On Bayesian
Index Policies for Sequential Re-
source Allocation,” Annals of Statis-
tics, vol. 46, no. 2, pp. 842–865,
2018.

where we choose the arm with the highest α-quantile (section 2.2.2) for the payoff
probability. Values for α > 0.5 result in optimism under uncertainty, incentivizing
the exploration of actions that have not been tried as often. Larger values of α

result in more exploration. Example 15.3 shows quantile estimation and compares
it with the other exploration strategies.

An alternative to computing the upper confidence bound for our posterior
distribution exactly is to use UCB1 exploration (algorithm 15.7), originally intro-
duced in section 9.6 for exploration in Monte Carlo tree search. In this strategy,
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mutable struct QuantileExploration
α # quantile (e.g., 0.95)

end

function (π::QuantileExploration)(model::BanditModel)
return argmax([quantile(B, π.α) for B in model.B])

end

Algorithm 15.6. Quantile explo-
ration, which returns the action
with the highest α quantile.

we select the action a that maximizes

ρa + c

√

log N

N(a)
(15.3)

where N(a) is the number of times that we have taken action a, and N = ∑a N(a).
The parameter c ≥ 0 controls the amount of exploration that is encouraged
through the second term. Larger values of c lead tomore exploration. This strategy
is often used with maximum likelihood estimates of the payoff probabilities, but
we can adapt it to the Bayesian context by having N(a) be the sum of the beta
distribution parameters associated with a.

Another general approach to exploration is to use posterior sampling (algo-
rithm 15.8), also referred to as randomized probability matching or Thompson sam-
pling.7 It is simple to implement and does not require careful parameter tuning. 7 W.R. Thompson, “On the Like-

lihood That One Unknown Prob-
ability Exceeds Another in View
of the Evidence of Two Samples,”
Biometrika, vol. 25, no. 3/4, pp. 285–
294, 1933. For a recent tutorial, see
D. Russo, B.V. Roy, A. Kazerouni,
I. Osband, and Z. Wen, “A Tutorial
on Thompson Sampling,” Founda-
tions and Trends inMachine Learning,
vol. 11, no. 1, pp. 1–96, 2018.

The idea is to sample from the posterior distribution over the rewards associated
with the various actions. The action with the largest sampled value is selected.

15.5 Optimal Exploration Strategies

The beta distribution associated with arm a is parameterized by counts (wa, ℓa).
Together, these counts w1, ℓ1, . . . , wn, ℓn represent our belief about payoffs, and
thus represent a belief state. These 2n numbers can describe n continuous proba-
bility distributions over possible payoff probabilities.

We can construct an MDP whose states are vectors of length 2n that represent
the agent’s belief over the n-armed bandit problem. Dynamic programming can
be used to solve this MDP to obtain an optimal policy π∗ that specifies which
arm to pull given the counts.
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Consider using exploration strategies given the information obtained in the
two-armed bandit problem of example 15.1, where the posterior distribution
for θ1 is Beta(2, 1), and the posterior distribution for θ2 is Beta(5, 2). The
second arm has the higher payoff probability.

An ǫ-greedy strategywith ǫ = 0.2 has a 20 % chance of choosing randomly
between the arms and an 80 % chance of choosing the second arm. Hence,
the overall probability of choosing the first arm is 0.1, and the probability of
choosing the second arm is 0.9.

A softmax strategy with λ = 1 assigns a weight of exp(ρ1) = exp(2/3) ≈
1.948 to the first arm and a weight of exp(ρ2) = exp(5/7) ≈ 2.043 to the
second. The probability of choosing the first arm is 1.948/(1.948 + 2.043) ≈
0.488, and the probability of choosing the second arm is 0.512. The plot here
shows how the probability of choosing the first arm varies with λ:
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Quantile exploration with α = 0.9 computes the payoff probability that
is greater than 90 % of the probability mass associated with each posterior
distribution. The 0.9 quantile for θ1 is 0.949 and for θ2 is 0.907, as shown here.
The first arm (blue) has the higher quantile and would be pulled next.
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Example 15.3. Exploration strate-
gies used with the two-armed ban-
dit problem from example 15.1.
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mutable struct UCB1Exploration
c # exploration constant

end

function bonus(π::UCB1Exploration, B, a)
N = sum(b.α + b.β for b in B)
Na = B[a].α + B[a].β
return π.c * sqrt(log(N)/Na)

end

function (π::UCB1Exploration)(model::BanditModel)
B = model.B
ρ = mean.(B)
u = ρ .+ [bonus(π, B, a) for a in eachindex(B)]
return argmax(u)

end

Algorithm 15.7. The UCB1 explo-
ration strategy with exploration
constant c. We compute equa-
tion (15.3) for each action from the
pseudocount parameters in B. We
then return the action that maxi-
mizes that quantity.

struct PosteriorSamplingExploration end

(π::PosteriorSamplingExploration)(model::BanditModel) =
argmax(rand.(model.B))

Algorithm 15.8. The posterior sam-
pling exploration strategy. It has no
free parameters. It simply samples
from the beta distributions associ-
ated with each action and then re-
turns the action associatedwith the
largest sample.

Let Q∗(w1, ℓ1, . . . , wn, ℓn, a) represent the expected payoff after pulling arm a

and thereafter acting optimally. The optimal utility function and optimal policy
can be written in terms of Q∗:

U∗(w1, ℓ1, . . . , wn, ℓn) = max
a

Q∗(w1, ℓ1, . . . , wn, ℓn, a) (15.4)

π∗(w1, ℓ1, . . . , wn, ℓn) = arg max
a

Q∗(w1, ℓ1, . . . , wn, ℓn, a) (15.5)

We can decompose Q∗ into two terms:

Q∗(w1, ℓ1, . . . , wn, ℓn, a) =
wa + 1

wa + ℓa + 2
(1 + U∗(. . . , wa + 1, ℓa, . . .))

+

(

1− wa + 1

wa + ℓa + 2

)

U∗(. . . , wa, ℓa + 1, . . .)

(15.6)

The first term is associated with a win for arm a, and the second term is associ-
ated with a loss. The value (wa + 1)/(wa + ℓa + 2) is the posterior probability of
a win, which comes from equation (15.1).8 The first U∗ in equation (15.6) records 8 This probability can be adjusted

if we have a nonuniform prior.a win, whereas the second U∗ records a loss.
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We can compute Q∗ for the entire belief space, as we have assumed a finite
horizon h. We start with all terminal belief states with ∑a(wa + ℓa) = h, where
U∗ = 0. We can then work backward to states with ∑a(wa + ℓa) = h − 1 and
apply equation (15.6). This process is repeated until we reach our initial state.
Such an optimal policy is computed in example 15.4.

Although this dynamic programming solution is optimal, the number of belief
states is O(h2n). We can formulate an infinite horizon, discounted version of the
problem that can be solved efficiently using the Gittins allocation index,9 which 9 J. C. Gittins, “Bandit Processes

and Dynamic Allocation Indices,”
Journal of the Royal Statistical Society.
Series B (Methodological), vol. 41,
no. 2, pp. 148–177, 1979. J. Git-
tins, K. Glazebrook, and R. Weber,
Multi-Armed Bandit Allocation In-
dices, 2nd ed. Wiley, 2011.

can be stored as a lookup table that specifies a scalar allocation index value, given
the number of pulls and the number of wins associated with an arm.10 The arm

10 A survey of algorithms for com-
puting this lookup table are pro-
vided in J. Chakravorty and A. Ma-
hajan, “Multi-Armed Bandits, Git-
tins Index, and Its Calculation,” in
Methods and Applications of Statistics
in Clinical Trials, N. Balakrishnan,
ed., vol. 2, Wiley, 2014, pp. 416–435.

that has the highest allocation index is the one that should be pulled next.

15.6 Exploration with Multiple States

In the general reinforcement learning context with multiple states, we must use
observations about state transitions to inform our decisions. We can modify the
simulation process in algorithm 15.1 to account for state transitions and update
our model appropriately. Algorithm 15.9 provides an implementation of this.
There are many ways to model the problem and perform exploration, as we will
discuss over the next few chapters, but the simulation structure is exactly the
same.

15.7 Summary

• The exploration-exploitation trade-off is a balance between exploring the state-
action space for higher rewards and exploiting the already-known favorable
state actions.

• Multiarmed bandit problems involve a single state where the agent receives
stochastic rewards for taking different actions.

• A beta distribution can be used to maintain a belief over multiarmed bandit
rewards.

• Undirected exploration strategies, including ǫ-greedy and explore-then-commit,
are simple to implement but do not use information from previous outcomes
to guide the exploration of nongreedy actions.
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Next, we have constructed the state-action tree for a two-armed bandit prob-
lem with a two-step horizon. State vectors are shown as [w1, ℓ1, w2, ℓ2]; blue
arrows indicate wins and red arrows indicate losses.

[0, 0, 0, 0], U∗ = 1.083

pull 1

[1, 0, 0, 0], U∗ = 2/3 [0, 1, 0, 0], U∗ = 1/2

pull 1

[2, 0, 0, 0] [1, 1, 0, 0]

pull 2

[1, 0, 0, 1]

pull 1

[0, 2, 0, 0]

pull 2

[0, 1, 0, 1]

pull 2

[0, 0, 1, 0], U∗ = 2/3 [0, 0, 0, 1], U∗ = 1/2

pull 1

[1, 0, 1, 0] [0, 1, 1, 0]

pull 2

[0, 0, 2, 0]

pull 1 pull 2

[0, 0, 1, 1] [0, 0, 0, 2]

Unsurprisingly, the policy is symmetric with respect to arms 1 and 2. We
find that the first arm does not matter, and it is best to pull a winning arm
twice and not to pull a losing arm twice.

The optimal value functions were computed using

Q∗([1, 0, 0, 0], 1) =
2

3
(1 + 0) +

1

3
(0) = 2/3

Q∗([1, 0, 0, 0], 2) =
1

2
(1 + 0) +

1

2
(0) = 1/2

Q∗([0, 1, 0, 0], 1) =
1

3
(1 + 0) +

2

3
(0) = 1/3

Q∗([0, 1, 0, 0], 2) =
1

2
(1 + 0) +

1

2
(0) = 1/2

Q∗([0, 0, 0, 0], 1) =
1

2
(1 + 2/3) +

1

2
(1/2) = 1.083

Example 15.4. Computing the op-
timal policy for a two-armed, two-
step horizon bandit problem.
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function simulate(𝒫::MDP, model, π, h, s)
for i in 1:h

a = π(model, s)
s′, r = 𝒫.TR(s, a)
update!(model, s, a, r, s′)
s = s′

end
end

Algorithm 15.9. The simulation
loop for reinforcement learning
problems. The exploration policy π
generates the next action based on
information in the model and the
current state s. The MDP problem
𝒫 is treated as the ground truth and
is used to sample the next state and
reward. The state transition and re-
ward are used to update the model.
The simulation is run to horizon h.

• Directed exploration strategies, including softmax, quantile, UCB1, and poste-
rior sampling exploration, use information from past actions to better explore
promising actions.

• Dynamic programming can be used to derive optimal exploration strategies
for finite horizons, but these strategies can be expensive to compute.

15.8 Exercises
Exercise 15.1. Consider again the three-armed bandit problems in which each arm has a
win probability drawn uniformly between 0 and 1. Compare the softmax, quantile, and
UCB1 exploration strategies. Qualitatively, what values for λ, α, and c produce the highest
expected reward on randomly generated bandit problems?

Solution: Here we plot the expected reward per step for each of the three strategies. Again,
the effectiveness of the parameterization depends on the problem horizon, so several
different depths are shown as well.
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The softmax strategy performs best for large values of λ, which prioritize pulling arms
with higher expected reward according to the current belief. Quantile exploration performs
better with longer horizons, independent of its parameterization. The size of the confidence
bound α does not significantly affect performance except for values very close to 0 or 1.
The UCB1 strategy performs best with small positive values of the exploration scalar c. The
expected reward decays as c increases. All three policies can be tuned to produce similar
maximal expected rewards.

Exercise 15.2. Give an example of a practical application of a multiarmed bandit problem.

Solution: There are many multiarmed bandit problems. Consider, for example, a news
company that would like to maximize interaction (clicks) on articles on its website. The
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company may have several articles to display, but it must select one article to display at any
given time. This problem is a multiarmed bandit problem because a user will either click
article i with probability θi or not click with probability 1− θi. Exploration would consist
of displaying articles on the website and observing the number of clicks, and exploitation
would consist of displaying the article likely to lead to the highest number of clicks. This
problem is related to A/B testing, where companies test different versions of a website to
determine which version yields the most interactions.

Exercise 15.3. Given a one-armed bandit with a prior of θ ∼ Beta(7, 2), provide bounds
on the posterior probability of winning after 10 additional pulls.

Solution: A lower bound on our posterior probability of winning ρ can be computed
assuming that all pulls result in a loss, (e.g., ℓ = 10 and w = 0). We can similarly compute
an upper bound ρ, assuming that all pulls result in a win (e.g., w = 10 and ℓ = 0). The
bounds are thus

ρ =
w + 7

w + ℓ+ 9
=

0 + 7

0 + 10 + 9
=

7

19

ρ =
w + 7

w + ℓ+ 9
=

10 + 7

10 + 0 + 9
=

17

19

Exercise 15.4. Suppose that we have a bandit with arms a and b, and we use an ǫ-greedy
exploration strategy with ǫ = 0.3 and an exploration decay factor of α = 0.9. We generate
a random number x between 0 and 1 to determine if we explore (x < ǫ) or exploit (x > ǫ).
Given we have ρa > ρb, which arm is selected if x = 0.2914 in the first iteration? Which
arm is selected if x = 0.1773 in the ninth iteration?

Solution: Since x < ǫ1 in the first iteration, we explore and choose a with probability 0.5

and b with probability 0.5. At the ninth iteration, ǫ9 = α8ǫ1 ≈ 0.129. Since x > ǫ9, we
exploit and select a.

Exercise 15.5. We have a four-armed bandit, and we want to use a softmax exploration
strategy with precision parameter λ = 2 and a prior belief θa ∼ Beta(2, 2) for each arm a.
Suppose that we pull each arm four times, with the result that arms 1, 2, 3, and 4 pay off
1, 2, 3, and 4 times, respectively. List the posterior distributions over θa and calculate the
probability that we select arm 2.
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Solution: The posterior distributions for each arm are: Beta(3, 5), Beta(4, 4), Beta(5, 3), and
Beta(6, 2), respectively. The probability of selecting arm 2 can be computed in the following
steps:

P(a = i) ∝ exp (λρi)

P(a = i) =
exp (λρi)

∑a exp (λρa)

P(a = 2) =
exp (2× 4

8 )

exp (2× 3
8 ) + exp (2× 4

8 ) + exp (2× 5
8 ) + exp (2× 6

8 )

P(a = 2) ≈ 0.2122

Exercise 15.6. Rewrite equation (15.6) for an arbitrary Beta(α, β) prior.

Solution: We can rewrite the equation more generally as follows:

Q∗(w1, ℓ1, . . . , wn, ℓn, a) =
wa + α

wa + ℓa + α + β
(1 + U∗(. . . , wa + 1, ℓa, . . .))

+

(

1− wa + α

wa + ℓa + α + β

)

U∗(. . . , wa, ℓa + 1, . . .)

Exercise 15.7. Recall example 15.4. Instead of having a payoff of 1 for each arm, let us
assume that arm 1 gives a payoff of 1, while arm 2 gives a payoff of 2. Calculate the new
action value functions for both arms.

Solution: For arm 1, we have

Q∗([1, 0, 0, 0], 1) =
2

3
(1 + 0) +

1

3
(0) = 2/3

Q∗([1, 0, 0, 0], 2) =
1

2
(2 + 0) +

1

2
(0) = 1

Q∗([0, 1, 0, 0], 1) =
1

3
(1 + 0) +

2

3
(0) = 1/3

Q∗([0, 1, 0, 0], 2) =
1

2
(2 + 0) +

1

2
(0) = 1

Q∗([0, 0, 0, 0], 1) =
1

2
(1 + 1) +

1

2
(1) = 1.5
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And for arm 2, we have

Q∗([0, 0, 1, 0], 1) =
1

2
(1 + 0) +

1

2
(0) = 1/2

Q∗([0, 0, 1, 0], 2) =
2

3
(2 + 0) +

1

3
(0) = 4/3

Q∗([0, 0, 0, 1], 1) =
1

2
(1 + 0) +

1

2
(0) = 1/2

Q∗([0, 0, 0, 1], 2) =
1

3
(2 + 0) +

2

3
(0) = 2/3

Q∗([0, 0, 0, 0], 2) =
1

2
(2 + 4/3) +

1

2
(2/3) = 2

Exercise 15.8. Prove that the number of belief states in an n-armed bandit problem with a
horizon of h is O(h2n).

Solution: We begin by counting the number of solutions to w1 + ℓ1 + · · ·+ wn + ℓn = k,
where 0 ≤ k ≤ h. If n = 2 and k = 6, one solution is 2 + 0 + 3 + 1 = 6. For our counting
argument, we will use tally marks to represent integers. For example, we can write a
solution like 2+ 0+ 3+ 1 = ||++|||+| = 6. For general values for n and k, we would have
k tally marks and 2n− 1 plus signs. Given that many tally marks and plus signs, we can
arrange them in any order we want. We can represent a solution as a string of k + 2n− 1

characters, where a character is either | or +, with k of those characters being |. To obtain
the number of solutions, we count the number of ways we can choose k positions for |
from the set of k + 2n− 1 positions, resulting in

(k + 2n− 1)!

(2n− 1)!k!
= O(h2n−1)

solutions. The number of belief states is this expression summed for k from 0 to h, which
is O(h× h2n−1) = O(h2n).
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