
14 Policy Validation

The methods presented in the earlier chapters show how to construct an optimal
or approximately optimal solution with respect to a model of the dynamics and
reward. However, before deploying a decision-making system in the real world,
it is generally desirable to validate in simulation that the behavior of the resulting
policy is consistent with what is actually desired. This chapter discusses various
analytical tools for validating decision strategies.1 We will start by discussing how 1 A more extensive discussion is

provided by A. Corso, R. J. Moss,
M. Koren, R. Lee, andM. J. Kochen-
derfer, “A Survey ofAlgorithms for
Black-Box Safety Validation,” Jour-
nal of Artificial Intelligence Research,
vol. 72, pp. 377–428, 2021.

to go about evaluating performance metrics. Accurately computing such metrics
can be computationally challenging, especially when they pertain to rare events
such as failures. We will discuss methods that can help address computational
efficiency. It is important that our systems be robust to differences between the
models that we use for analysis and the real world. This chapter suggests methods
for analyzing robustness. Fundamental to the design of many decision-making
systems is the trade-off between multiple objectives, and we will outline ways of
analyzing these trade-offs. The chapter concludes with a discussion of adversarial
analysis, which can be used for finding the most likely failure trajectory.

14.1 Performance Metric Evaluation

Once we have a policy, we are often interested in evaluating it with respect to
various performance metrics. For example, suppose that we constructed a collision
avoidance system—either through some form of optimization of a scalar reward
function or just heuristically, as discussed in example 14.1—and we want to
assess its safety by computing the probability of collision when following our
policy.2 Or, if we created a policy for constructing investment portfolios, we might

2 Other safety risk metrics are
discussed by I. L. Johansen and
M. Rausand, “Foundations and
Choice of Risk Metrics,” Safety Sci-
ence, vol. 62, pp. 386–399, 2014.be interested in understanding the probability that our policy will result in an

extreme loss or what the expected return may be.

282 chapter 14. policy validation

For the moment, we will consider a single metric f , evaluated on a policy π.
Often, this metric is defined as the expectation of a trajectorymetric ftraj, evaluated
on trajectories τ = (s1, a1, . . .) produced by following the policy:

f (π) = Eτ [ftraj(τ)] (14.1)

This expectation is over the trajectory distribution. To define a trajectory distribu-
tion associated with an MDP, we need to specify an initial state distribution b. The
probability of generating a trajectory τ is

P(τ) = P(s1, a1, . . .) = b(s1)∏
t

T(st+1 | st, at) (14.2)

In the collision avoidance context, ftraj may be 1 if the trajectory led to a collision,
and 0 otherwise. The expectation would correspond to the collision probability.

0 500 1,000
0

1

2

×10−3

miss distance

p
(m

iss
di

sta
nc

e)

Figure 14.1. Distribution over the
miss distance estimated from 104

simulations when following a sim-
ple collision avoidance policy from
initial states with
h ∼ U (−10, 10) (m)
ḣ ∼ U (−200, 200) (m/s)
aprev = 0 m/s
tcol = 40 s

In some cases, we are interested in studying the distribution over the output
of ftraj. Figure 14.1 shows an example of such a distribution. The expectation in
equation (14.1) is just one of many ways to convert a distribution over trajectory
metrics to a single value. We will focus primarily on this expectation in our discus-
sion, but examples of other transformations of the distribution to a value include
variance, fifth percentile, and mean of the values below the fifth percentile.3

3 Various risk measures have
been discussed in the literature.
An overview of some of these
that have been used in the
context of MDPs is provided by
A. Ruszczyński, “Risk-Averse
Dynamic Programming for
Markov Decision Processes,”
Mathematical Programming, vol. 125,
no. 2, pp. 235–261, 2010.

The trajectory metric can sometimes be written in this form:

ftraj(τ) = ftraj(s1, a1, . . .) = ∑
t

fstep(st, at) (14.3)

where fstep is a function that depends on the current state and action, much
like the reward function in MDPs. If f (π) is defined as the expectation of ftraj,
the objective is the same as when solving an MDP, where fstep is simply the
reward function. We can thus use the policy evaluation algorithms introduced in
section 7.2 to evaluate our policy with respect to any performance metric of the
form in equation (14.3).

Policy evaluation will output a value function that is a function of the state,4 4 We used Uπ to represent the
value function associated with pol-
icy π in previous chapters.corresponding to the expected value of the performance metric when starting

from that state. Example 14.2 shows slices of this value function for the collision
avoidance problem. The overall performance is given by

f (π) = ∑
s

fstate(s)b(s) (14.4)

where fstate is the value function obtained through policy evaluation.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

14.1 . performance metric evaluation 283

In the aircraft collision avoidance problem, we need to decide when to issue
a climb or descend advisory to our aircraft to avoid an intruder aircraft. The
intruder is approaching us head on, with a constant horizontal closing speed.
The state is specified by the altitude h of our aircraft measured relative to the
intruder aircraft, our vertical rate ḣ, the previous action aprev, and the time
to potential collision tcol. There is a penalty of 1 when there is a collision,
defined as when the intruder comes within 50 m when tcol = 0. In addition,
there is a penalty of 0.01 when a 6= aprev to discourage advisory changes.

We can use dynamic programming with linear interpolation (section 8.4)
to derive an optimal policy. Alternatively, we can define a simple heuristic
policy parameterized by thresholds on tcol and h that works as follows. If
|h| < hthresh and tcol < tthresh, then an advisory is generated. This advisory is
to climb if h > 0 and to descend otherwise. By default, we use hthresh = 50 m

and tthresh = 30 s. The following are plots of both the optimal and simple
policies for two slices through the state space:

−200

−100

0

100

200

Op
tim

al
h
(m

)

ḣ = 0.0 m/s ḣ = 5.0 m/s

no advisory
descend
climb

0 10 20 30 40
−200

−100

0

100

200

tcol (s)

Sim
pl

e
h
(m

)

0 10 20 30 40

tcol (s)

Example 14.1. Optimal and simple
collision avoidance policies. Addi-
tional details of the problem are
given in appendix F.6.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

284 chapter 14. policy validation

Here is the result of applying policy evaluation to both an optimal policy
and the simple policy introduced in example 14.1. Each point in the plot
corresponds to the value of the metric, conditioned on starting from the
associated state. We define fstate(s, a) = 1 if s is a collision, and 0 otherwise.
This plot shows where in the state space there is significant collision risk,
indicated by ‘‘hotter’’ colors, when following the policy. We can see that the
optimal policy is quite safe, especially if tcol > 20 s. When tcol is low, even
the optimal policy cannot avoid collision due to the physical acceleration
constraints of the vehicle. The simple policy has a much higher level of risk
compared to the optimal policy, especially when tcol > 20 s, ḣ = 5 m/s, and
the intruder is below us—in part because the choice to produce an advisory
in the simple strategy does not take ḣ into account.

−200

−100

0

100

200

Op
tim

al
h
(m

)

ḣ = 0.0 m/s ḣ = 5.0 m/s

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40
−200

−100

0

100

200

tcol (s)

Sim
pl

e
h
(m

)

0 10 20 30 40

tcol (s)

Example 14.2. Probability of a
collision when following the opti-
mal and simple collision avoidance
policies.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

14.2. rare event simulation 285

If the state space is discrete, then equation (14.4) can be computed analytically.
However, if the state space is large or continuous, we may want to estimate f (π)

through sampling. We can pull a sample from the initial state distribution and
then roll out the policy and compute the trajectory metric. We can then estimate
the value of the overall metric from the mean of the trajectory metrics. The quality
of the estimate generally improves with more samples. Example 14.3 illustrates
this process for estimating various metrics associated with collision avoidance
policies.

We often use the standard error to measure the quality of our estimate:

SE = σ̂/
√

n (14.5)

where σ̂ is the standard deviation of our samples and n is the number of samples.
In example 14.3, the standard deviation of our collision metric is 0.0173, making
the standard error of our collision probability metric 0.000173.

We can convert the standard error to a confidence interval. For example, a 95 %

confidence interval would be µ̂± 1.96 SE, where µ̂ is the mean of our samples.
For our collision avoidance example, this interval is (−3.94× 10−5, 6.39× 10−4).
Alternatively, we can take a Bayesian approach and represent our posterior as a
beta distribution, as discussed in section 4.2.

For small probabilities, such as failure probabilities in a relatively safe system,
we are often interested in the relative standard error, which is given by

σ̂

µ̂
√

n
(14.6)

This is equivalent to dividing the standard error by the mean. In our collision
avoidance problem, our relative error is 0.578. Although the absolute error might
be small, the relative error is quite high since we are trying to estimate a small
probability.

14.2 Rare Event Simulation

As we see in example 14.3, we may need many samples to accurately estimate
metrics where rare events are very influential, such as estimating collision proba-
bility. In the collision avoidance example, our 104 samples contained only three
collisions, as indicated by the three spikes in the plot. When we are designing al-
gorithms for high-stakes systems, such as systems that trade money or drive cars,

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

286 chapter 14. policy validation

We want to estimate the probability of collision and the probability of gen-
erating an advisory. Here, we will consider the optimal and simple policies
introduced in example 14.1. To evaluate these metrics, we use 104 samples
from the initial state distribution used in figure 14.1 and then perform rollouts.
The plots here show the convergence curves:

0

1

2

3

×10−4

Op
tim

al
m
etr

ic
es

tim
at
e

Collision

0.00

0.20

0.40

Advisory

0 0.2 0.4 0.6 0.8 1

×104

0

5× 10−2

0.1

samples

Sim
pl

e
m
etr

ic
es

tim
at
e

0 0.2 0.4 0.6 0.8 1

×104

0.00

0.20

0.40

samples

What we can see is that the optimal policy is much safer than the simple
policy, while producing advisories at approximately the same frequency. The
advisory metric estimate converges much more quickly than the collision
estimates. The reason for the faster convergence for the advisory metric is
that advisories are more common than collisions. Collisions involving the
optimal policy are so rare that even 104 samples appear inadequate for an
accurate estimate. The curve is very jagged, with large spikes at samples
involving collisions, followed by a decay in the collision probability estimate
as collision-free samples are simulated.

Example 14.3. Probability of a col-
lision and an advisory when fol-
lowing the optimal and simple col-
lision avoidance policies.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

14.2. rare event simulation 287

accurately estimating failure probabilities through direct sampling and simulation
can be computationally challenging.

A common approach to improve efficiency is called importance sampling, which
involves sampling from an alternative distribution and weighting the results
appropriately to arrive at an unbiased estimate.5 We used this same kind of ap- 5 A more elaborate introduction

to importance sampling and other
techniques for rare event simula-
tion is provided by J.A. Bucklew,
Introduction to Rare Event Simula-
tion. Springer, 2004.

proach in the context of inference in Bayesian networks by the name of likelihood
weighted sampling (section 3.7). The alternative sampling distribution is often
called a proposal distribution, and we will use P′(τ) to represent the probability
our proposal distribution assigns to trajectory τ.

We will derive the appropriate way to weight samples from P′. If we have
τ(1), . . . , τ(n) drawn from the true distribution P, then we have

f (π) = Eτ [ftraj(τ)] (14.7)
= ∑

τ

ftraj(τ)P(τ) (14.8)

≈ 1

n ∑
i

ftraj(τ(i)) with τ(i) ∼ P (14.9)

We can multiply equation (14.8) by P′(τ)/P′(τ) and obtain the following:

f (π) = ∑
τ

ftraj(τ)P(τ)
P′(τ)
P′(τ)

(14.10)

= ∑
τ

ftraj(τ)P′(τ)
P(τ)

P′(τ)
(14.11)

≈ 1

n ∑
i

ftraj(τ(i))
P(τ(i))

P′(τ(i))
with τ(i) ∼ P′ (14.12)

In other words, we need to weight the outcomes of the samples from the proposal
distribution, where the weight6 given to sample i is P(τ(i))/P′(τ(i)). 6 Importantly, P′ must not assign

zero likelihood to any trajectory
to which P assigns positive likeli-
hood.

We want to choose the proposal distribution P′ to focus the generation of
samples on those that are ‘‘important,’’ in the sense that they are more likely to
contribute to the overall performance estimate. In the case of collision avoidance,
we will want this proposal distribution to encourage collisions so that we have
more than just a few collision situations to estimate collision risk. However, we
do not want all of our samples to result in collision. In general, assuming that the
space of histories is discrete, the optimal proposal distribution is

P∗(τ) =
| ftraj(τ)|P(τ)

∑τ′ | ftraj(τ′)|P(τ′)
(14.13)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

288 chapter 14. policy validation

If ftraj is nonnegative, then the denominator is exactly the same as the metric that
we are trying to estimate in equation (14.1).

Although equation (14.13) is generally not practical to compute exactly (this
is why we are using importance sampling in the first place), it can provide some
intuition as to how to use our domain expertise to construct a proposal distribution.
It is common to bias the initial state distribution or the transition model slightly
toward more important trajectories, such as toward collision.

−200 −100 0 100 200
−10

−5

0

5

10

h (m)

ḣ
(m

/
s)

Figure 14.2. Proposal distribution
generated from the probability of
collision when following the op-
timal collision avoidance policies
from different initial states with
tcol = 20 s and aprev = 0 m/s.
Yellow indicates higher probability
density.

To illustrate the construction of an importance distribution, we will use the
optimal policy for the collision avoidance problem in example 14.1. Instead
of starting at tcol = 40 s, we will start the aircraft closer, with tcol = 20 s, to
make the collision avoidance problem more challenging. The true distribution
has h ∼ U (−10, 10) (m) and ḣ ∼ U (−200, 200) (m/s). However, certain combi-
nations of h and ḣ are more challenging for the optimal policy to resolve. We
used dynamic programming on a discrete version of the problem to determine
the probability of collision for different values of h and ḣ. We can take these
results and normalize them to turn them into the proposal distribution shown in
figure 14.2.

0 2 4

×104

0

0.2

0.4

0.6

0.8

1
×10−2

samples

Co
lli
sio

n
pr

ob
ab

ili
ty

importance sampling
direct sampling

Figure 14.3. Collision probability
when following the optimal policy
as estimated by importance sam-
pling and direct sampling.

Using the proposal distribution shown in figure 14.2 results in better estimates
of the collision probability than direct sampling with the same number of samples.
Figure 14.3 shows the convergence curves. By 5× 104 samples, both sampling
methods converge to the same estimate. However, importance sampling converges
closely to the true value within 104 samples. Using our proposal distribution,
importance sampling generated 939 collisions, while direct sampling generated
only 246. Even more collisions could be generated if we also biased the transition
distribution, rather than solely the initial state distribution.

14.3 Robustness Analysis

Before deploying a system in the real world, it is important to study its robustness
to modeling errors. We can use the tools mentioned in the previous sections,
such as policy evaluation and importance sampling, but evaluate our policies on
environments that deviate from the model assumed when optimizing the policy.
Figure 14.4 shows how performance varies as the true model deviates from the
one used for optimization. We can also study the sensitivity of our metrics to
modeling assumptions over the state space (example 14.4). If performance on
the relevant metrics appears to be preserved under plausible perturbations of the

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

14.4. trade analysis 289

environment model, then we can have greater confidence that our system will
behave as planned when deployed.

0 0.5 1 1.5 2

10−4

10−3

10−2

10−1

ḧlimit (m/s2)

Co
lli
sio

n
pr

ob
ab

ili
ty

Figure 14.4. Analysis of robustness
of a policy optimized for ḧlimit =
1 m/s2 but evaluated in environ-
ments with different values for
ḧlimit.

We typically want our planning model, the model we use for optimizing our
policies, to be relatively simple to prevent overfitting to potentially erroneous
modeling assumptions that are not representative of the real world. A side benefit
of simpler planning models is that they can make planning more computation-
ally efficient. However, our evaluation model can be as complex as we can justify.
For example, we may use a simple, low-dimensional, discrete model of aircraft
dynamics when generating a collision avoidance policy, but then evaluate that
policy in a continuous, high-fidelity simulation. A simpler planning model is
often more robust to perturbations in the evaluation model.

The process of evaluating our policies on a variety of evaluation models is
sometimes referred to as stress testing, especially if the spectrum of evaluation
models includes fairly extreme scenarios. In collision avoidance, extreme scenarios
might include those where the aircraft are converging on each other with extreme
climb rates that may not be physically achievable. Understanding what categories
of scenarios can lead to system failure can be useful during the design phase,
even if we choose not to optimize the behavior of the system for these scenarios
because they are deemed unrealistic.

If we find that our policies are overly sensitive to ourmodeling assumptions, we
may consider using a method known as robust dynamic programming.7 Instead of 7 G.N. Iyengar, “Robust Dynamic

Programming,” Mathematics of Op-
erations Research, vol. 30, no. 2,
pp. 257–280, 2005. This approach
can improve robustness in the con-
text of collision avoidance. M. J.
Kochenderfer, J. P. Chryssantha-
copoulos, and P. Radecki, “Robust-
ness of Optimized Collision Avoid-
ance Logic to Modeling Errors,” in
Digital Avionics Systems Conference
(DASC), 2010.

committing to a particular transition model, we have a suite of transition models
T1:n and reward models R1:n. We can revise the Bellman update equation from
equation (7.16) to provide robustness to different models as follows:

Uk+1(s) = max
a

min
i

(

Ri(s, a) + γ ∑
s′

Ti(s
′ | s, a)Uk(s

′)

)

(14.14)

The update uses the action that maximizes expected utility when using the model
that minimizes our utility.

14.4 Trade Analysis

Many interesting tasks involve multiple, often competing, objectives. For au-
tonomous systems, there is often a trade-off between safety and efficiency. In
designing a collision avoidance system, we want to be very safe without making

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

290 chapter 14. policy validation

We can plot collision probability when starting from different initial states,
similar to example 14.2. Here, we use a policy optimized for the parameters
in appendix F.6, but we vary the limit ḧlimit in the evaluation model.

−200

−100

0

100

200

ḧ
lim

it
=

0.
25

(m
/

s2
)

h
(m

)

ḣ = 0.0 m/s ḣ = 5.0 m/s

0

0.2

0.4

0.6

0.8

1

−200

−100

0

100

200

ḧ
lim

it
=

1.
0
(m

/
s2
)

h
(m

)

0 10 20 30 40
−200

−100

0

100

200

tcol (s)

ḧ
lim

it
=

1.
25

(m
/

s2
)

h
(m

)

0 10 20 30 40

tcol (s)

We optimized the policy with ḧlimit = 1 m/s2. If it was actually 0.25 m/s2,
then the policy performs poorly in some states since it takes longer to achieve
a target vertical rate. If the limit was 1.25 m/s2, we are a bit safer.

Example 14.4. Probability of a col-
lision when following the optimal
collision avoidance policies when
there is a mismatch between the
model used for planning and the
model used for evaluation.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

14.5. adversarial analysis 291

too many unnecessary avoidance maneuvers. A trade analysis studies how the
various performance metrics are traded as the design parameters are changed.

If we consider only two performance metrics, we can plot a trade-off curve like
the one discussed in example 14.5. By varying parameters in the policy, we obtain
different values for the two metrics. These curves are useful when comparing
different methodologies for generating policies. For example, the curves in exam-
ple 14.5 suggest that a dynamic programming approach to generating policies
can bring significant benefit over simple threshold-based policies—at least in the
way we defined them. 0 0.5 1 1.5 2

0.00

0.05

0.10

0.15

Advisory changes

Co
lli
sio

n
pr

ob
ab

ili
ty

Figure 14.5. Performance of poli-
cies generated by varying the pa-
rameters of the simple policy from
example 14.1. The approximate
Pareto curve is highlighted in blue.

For each of the curves in example 14.5, we vary only one parameter at a time,
but to arrive at a satisfactory system, we may need to study the effects of varying
multiple parameters. As we vary multiple parameters, we obtain a space of
possible policies. Some of those policies may perform worse on all performance
metrics relative to at least one other policy in that space. We can often eliminate
from consideration those policies that are dominated by others. A policy is called
Pareto optimal8 or Pareto efficient if it is not dominated by any other policy in that 8 Named after the Italian economist

Vilfredo Federico Damaso Pareto
(1848–1923).space. The set of Pareto optimal policies is called the Pareto frontier or (in two

dimensions) the Pareto curve. Figure 14.5 shows an example of a Pareto curve.

14.5 Adversarial Analysis

It can be useful to study the robustness of a policy from the perspective of an
adversarial analysis. At each time step, an adversary selects the state that results
from applying the action specified by the policy from the current state. The
adversary has two objectives to balance: minimizing our return and maximizing
the likelihood of the resulting trajectory according to our transition model. We
can transform our original problem into an adversarial problem. The adversarial
state space is the same as in the original problem, but the adversarial action space
is the state space of the original problem. The adversarial reward is

R′(s, a) = −R(s, π(s)) + λ log(T(a | s, π(s))) (14.15)

where π is our policy, R is our original reward function, T is our original transition
model, and λ ≥ 0 is a parameter that controls the importance of maximizing the
resulting likelihood of the trajectory. Since an adversary attempts to maximize the
sum of adversarial reward, it is maximizing our expected negative return plus λ

times the log probability of the resulting trajectory.9 The adversarial transition

9 The log probability of a trajectory
is equal to the sum of the log of the
individual state transition proba-
bilities.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

292 chapter 14. policy validation

In our aircraft collision avoidance problem, we must balance safety in terms
of collision probability with other metrics, such as the expected number of
advisory changes. Both of these can be implemented using trajectory metrics
that are additively decomposed by steps as done in equation (14.3), allowing
us to compute them using exact policy evaluation.

The plot here shows three curves associated with different parameterized
versions of the simple and optimal policies. The first curve shows the per-
formance of the simple policy on the two metrics as the hthresh parameter
(defined in example 14.1) is varied. The second curve shows the performance
of the simple policy as tthresh is varied. The third curve shows the optimal
policy as the parameter θ is varied, where the cost of collision is −θ and the
cost of changing advisories is −(1− θ).

0 0.5 1 1.5
0.00

0.05

0.10

0.15

Advisory changes

Co
lli
sio

n
pr

ob
ab

ili
ty

Simple(hthresh)
Simple(tthresh)
Optimal(θ)

We can see that the optimal policy dominates the curves generated by the
parameterized simple policies. When θ is close to 1, then we are very safe, but
we have to tolerate more advisory changes. As θ goes to 0, we are less safe
but do not produce advisories. Given a particular threshold level of safety,
we are able to create an optimized policy that has fewer advisory changes in
expectation than either of the simple parametric policies.

Example 14.5. An analysis of the
trade-off between safety and op-
erational efficiency when varying
parameters of different collision
avoidance systems.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

14.5. adversarial analysis 293

model is deterministic; the state transitions to exactly what the adversary specifies
as its action.

Algorithm 14.1 implements this conversion to an adversarial problem. It as-
sumes a discrete state and action space, which can then be solved using one of
the dynamic programming algorithms in chapter 7. The solution is an adversarial
policy that maps states to states. Given an initial state, we can generate a trajectory
that minimizes our reward given some level of probability. Since the problem
is deterministic, it is actually a search problem, and any of the algorithms in
appendix E can be used. If our problem is high-dimensional or continuous, we
may use one of the approximate solution techniques discussed in chapters 8 and 9.

function adversarial(𝒫::MDP, π, λ)
𝒮, 𝒜, T, R, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.T, 𝒫.R, 𝒫.γ
𝒮′ = 𝒜′ = 𝒮
R′ = zeros(length(𝒮′), length(𝒜′))
T′ = zeros(length(𝒮′), length(𝒜′), length(𝒮′))
for s in 𝒮′

for a in 𝒜′
R′[s,a] = -R(s, π(s)) + λ*log(T(s, π(s), a))
T′[s,a,a] = 1

end
end
return MDP(T′, R′, γ)

end

Algorithm 14.1. Conversion to an
adversarial problem, given a pol-
icy π. An adversarial agent tries to
change the outcomes of our policy
actions so as to balance minimiz-
ing our original utility and max-
imizing the likelihood of the tra-
jectory. The parameter λ controls
how important it is to maximize
the likelihood of the resulting tra-
jectory. It returns an MDP whose
transition and reward models are
represented as matrices.

Sometimes we are interested in finding the most likely failure associated with
a policy for a particular definition of failure. In some problems, failure can be
defined as entering a particular state. For example, a collision may be considered
a failure in our collision avoidance problem. Other problems may require a more
complicated definition of failure that goes beyond just entering a subset of the
state space. For example, we may want to specify failure using a temporal logic,
which is a way to represent and reason about propositions qualified in terms of
time. In many cases, however, we can use these failure specifications to create an
augmented state space that we can then solve.10

10 M. Bouton, J. Tumova, and M. J.
Kochenderfer, “Point-Based Meth-
ods forModel Checking in Partially
Observable Markov Decision Pro-
cesses,” in AAAI Conference on Arti-
ficial Intelligence (AAAI), 2020.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

294 chapter 14. policy validation

With the failure states defined, we can solve for the most likely failure trajectory
by changing the reward function in equation (14.15) to

R′(s, a) =















−∞ if s is terminal and not a failure
0 if s is terminal and a failure
log(T(a | s, π(s))) otherwise

(14.16)

We can find these most likely failures using a variety of approximation methods.
Depending on the approximationmethod, it may be important to relax the infinite
penalty for not reaching a failure at termination so that the search can be guided
to failures. If applying Monte Carlo tree search to collision avoidance, the penalty
could be related to the miss distance.11 11 This strategy was used by R.

Lee, M. J. Kochenderfer, O. J. Meng-
shoel, G. P. Brat, and M.P. Owen,
“Adaptive Stress Testing of Air-
borne Collision Avoidance Sys-
tems,” in Digital Avionics Systems
Conference (DASC), 2015.

We can play back the most likely failure trajectory and gauge whether that
trajectory merits concern. If the trajectory is deemed extremely implausible, then
we can feel more confident that our policy is safe. If the failure trajectory does
merit concern, however, then we might have a few options:

1. Change the action space. We may add more extreme maneuvers to our action set
for our collision avoidance problem.

2. Change the reward function. We may decrease the cost for changing advisories
with the aim of lowering collision risk, as illustrated in the trade-off curve in
example 14.5.

3. Change the transition function. We may increase the acceleration limit so that the
aircraft can achieve the target vertical rates more quickly when directed by our
policy.

4. Improve the solver. We may have used a discretization of the state space that is
too coarse to capture important features of the optimal policy. In exchange for
additional computation time, we may be able to refine the discretization to
obtain a better policy. Alternatively, we may adopt a different approximation
technique.

5. Do not deploy the system. If the policy is unsafe, it may be better not to deploy it
in the real world.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

14.6. summary 295

14.6 Summary

• Performance metrics for policies may be evaluated using the dynamic program-
ming techniques discussed in earlier chapters or through sampling rollouts.

• We can assess our confidence in our performance metric evaluations using stan-
dard error, confidence intervals, or one of the Bayesian approaches discussed
earlier.

• Estimating the probability of rare events can be done more efficiently using a
method called importance sampling.

• Importance sampling involves sampling from an alternative distribution and
weighting the results appropriately.

• Because themodel used for optimizationmay be an inaccurate representation of
the real world, it is important to study the sensitivity of our policy to modeling
assumptions.

• Robust dynamic programming can help improve robustness to model uncer-
tainty by optimizing with respect to a set of different transition and reward
models.

• Trade analysis can help us determine how to balance multiple performance
objectives when optimizing a policy.

• Adversarial analyses involve an adversary that chooses the state to which we
transition at each step so as to minimize our objective while maximizing the
likelihood of the trajectory.

14.7 Exercises
Exercise 14.1. We have a trajectory τ with

s1 a1 s2 a2 s3

6.0 2.2 1.4 0.7 6.0

Our dynamics are linear Gaussian, with T(s′ | s, a) = N (s′ | 2s + a, 52), and our initial
state distribution is given by N (5, 62). What is the log-likelihood of the trajectory τ?
Solution: The log-likelihood of the trajectory is
logN (6.0 | 5, 62) + logN (1.4 | 2 · 6.0 + 2.2, 52) + logN (6.0 | 2 · 1.4 + 0.7, 52) ≈ −11.183

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

296 chapter 14. policy validation

Exercise 14.2. We ran a million simulations and found that our collision avoidance system
resulted in 10 collisions.What is our collision probability estimate and the relative standard
error?

Solution: The collision probability estimate is

µ̂ = 10/106 = 10−5

The ith sample xi is 1 if there is a collision, and 0 otherwise. The standard deviation is

σ̂ =

√

1

106 − 1

n

∑
i=1

(xi − µ̂)2 =

√

1

106 − 1

(

10(1− µ̂)2 + (106 − 10)µ̂2
)

≈ 0.00316

The relative error is
σ̂

µ̂
√

n
≈ 0.00316

10−5
√

106
= 0.316

Exercise 14.3. We want to compute the expectation Ex∼U (0,5)[f (x)], where f (x) is −1 if
|x| ≤ 1, and 0 otherwise. What is the optimal proposal distribution?

Solution: The optimal proposal distribution is

p∗(x) =
| f (x)|p(x)

∫

| f (x)|p(x)dx

which is equivalent to U (0, 1) because f (x) is only nonzero for x ∈ [−1, 1], U (0, 5) only
has support for x ∈ [0, 5], and both f (x) and p(x) produce constant values when nonzero.

Exercise 14.4. Suppose we draw the sample 0.3 from the proposal distribution in the
previous exercise. What is its weight? What is the estimate of Ex∼U (0,5)[f (x)]?

Solution: The weight is p(x)/p∗(x) = 0.2/1. Since f (0.3) = −1, the estimate is−0.2, which
is the exact answer.

Exercise 14.5. Suppose we have the following four policies, which have been evaluated
on three metrics that we want to maximize:

System f1 f2 f3

π1 2.7 1.1 2.8

π2 1.8 2.8 4.5

π3 9.0 4.5 2.3

π4 5.3 6.0 2.8

Which policies are on the Pareto frontier?

Solution: Only π1 is dominated by other policies. Hence, π2, π3, and π4 are on the Pareto
frontier.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

