
13 Actor-Critic Methods

The previous chapter discussed ways to improve a parameterized policy through
gradient information estimated from rollouts. This chapter introduces actor-critic
methods, which use an estimate of a value function to help direct the optimization.
The actor, in this context, is the policy, and the critic is the value function. Both
are trained in parallel. We will discuss several methods that differ in whether
they approximate the value function, advantage function, or action value func-
tion. Most focus on stochastic policies, but we will also discuss one method that
supports deterministic policies that output continuous actions. Finally, we will
discuss a way to incorporate an online method for generating more informative
trajectories for training the actor and critic.

13.1 Actor-Critic

In actor-critic methods, we have an actor represented by a policy πθ, param-
eterized by θ with the help of a critic that provides an estimate of the value
function Uφ(s), Qφ(s, a), or Aφ(s, a) parameterized by φ. We will start this
chapter with a simple actor-critic approach in which the optimization of πθ is
done through gradient ascent, with the gradient of our objective being the same
as in equation (11.44):

∇U(θ) = Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))γk−1 Aθ

(

s(k), a(k)
)

]

(13.1)

The advantage when following a policy parameterized by θ can be estimated
using a set of observed transitions from s to s′ with reward r:

Aθ(s, a) = Er,s′
[

r + γUπθ(s′)−Uπθ(s)
] (13.2)

268 chapter 13. actor-critic methods

The r + γUπθ(s′)−Uπθ(s) inside the expectation is referred to as the temporal
difference residual.

The critic allows us to estimate the true value function Uπθ when following
πθ, resulting in the following gradient for the actor:

∇U(θ) ≈ Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))γk−1
(

r(k) + γUφ(s(k+1))−Uφ(s(k))
)

]

(13.3)

This expectation can be estimated through rollout trajectories, as done in chap-
ter 11.

The critic is also updated through gradient optimization. We want to find aφ
that minimizes our loss function:

ℓ(φ) =
1

2
Es

[

(

Uφ(s)−Uπθ(s)
)2
]

(13.4)

To minimize this objective, we can take steps in the opposite direction of the
gradient:

∇ℓ(φ) = Es

[(

Uφ(s)−Uπθ(s)
)

∇φUφ(s)
] (13.5)

Of course, we do not know Uπθ exactly, but it can be estimated using the reward-
to-go along rollout trajectories, resulting in

∇ℓ(φ) = Eτ

[

d

∑
k=1

(

Uφ(s(k))− r
(k)
to-go

)

∇φUφ(s(k))

]

(13.6)

where r
(k)
to-go is the reward-to-go at step k in a particular trajectory τ.

Algorithm 13.1 shows how to estimate ∇U(θ) and ∇ℓ(φ) from rollouts. With
each iteration, we step θ in the direction of ∇U(θ) to maximize utility, and we
stepφ in the opposite direction of ∇ℓ(φ) to minimize our loss. This approach
can become unstable due to the dependency between the estimation of θ and
φ, but this approach has worked well for a variety of problems. It is a common
practice to update the policy more frequently than the value function to improve
stability. The implementations in this chapter can easily be adapted to update the
value function only for a subset of the iterations that the policy is updated.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

13.2. generalized advantage estimation 269

struct ActorCritic
𝒫 # problem
b # initial state distribution
d # depth
m # number of samples
∇logπ # gradient of log likelihood ∇logπ(θ,a,s)
U # parameterized value function U(ϕ, s)
∇U # gradient of value function ∇U(ϕ,s)

end

function gradient(M::ActorCritic, π, θ, ϕ)
𝒫, b, d, m, ∇logπ = M.𝒫, M.b, M.d, M.m, M.∇logπ
U, ∇U, γ = M.U, M.∇U, M.𝒫.γ
πθ(s) = π(θ, s)
R(τ,j) = sum(r*γ^(k-1) for (k,(s,a,r)) in enumerate(τ[j:end]))
A(τ,j) = τ[j][3] + γ*U(ϕ,τ[j+1][1]) - U(ϕ,τ[j][1])
∇Uθ(τ) = sum(∇logπ(θ,a,s)*A(τ,j)*γ^(j-1) for (j, (s,a,r))

in enumerate(τ[1:end-1]))
∇ℓϕ(τ) = sum((U(ϕ,s) - R(τ,j))*∇U(ϕ,s) for (j, (s,a,r))

in enumerate(τ))
trajs = [simulate(𝒫, rand(b), πθ, d) for i in 1:m]
return mean(∇Uθ(τ) for τ in trajs), mean(∇ℓϕ(τ) for τ in trajs)

end

Algorithm 13.1. A basic actor-critic
method for computing both a pol-
icy gradient and a value function
gradient for an MDP 𝒫 with initial
state distribution b. The policy π
is parameterized by θ and has a
log-gradient ∇logπ. The value func-
tion U is parameterized by ϕ and the
gradient of its objective function is
∇U. This method runs m rollouts to
depth d. The results are used to up-
date θ and ϕ. The policy parame-
terization is updated in the direc-
tion of ∇θ tomaximize the expected
value, whereas the value function
parameterization is updated in the
negative direction of ∇ϕ to mini-
mize the value loss.

13.2 Generalized Advantage Estimation

Generalized advantage estimation (algorithm 13.2) is an actor-critic method that
uses a more general version of the advantage estimate shown in equation (13.2)
that allows us to balance between bias and variance.1 Approximation with the 1 J. Schulman, P. Moritz, S. Levine,

M. Jordan, and P. Abbeel, “High-
Dimensional Continuous Control
Using Generalized Advantage Esti-
mation,” in International Conference
on Learning Representations (ICLR),
2016. arXiv: 1506.02438v6.

temporal difference residual has low variance, but it introduces bias due to a
potentially inaccurate Uφ used to approximate Uπθ . An alternative is to replace
r + γUπθ(s′) with the sequence of rollout rewards r1, . . . , rd:

Aθ(s, a) = Er1,...,rd

[

r1 + γr2 + γ2r3 + · · ·+ γd−1rd −Uπθ(s)
]

(13.7)

= Er1,...,rd

[

−Uπθ(s) +
d

∑
ℓ=1

γℓ−1rℓ

]

(13.8)

We can obtain an unbiased estimate of this expectation through rollout trajectories,
as done in the policy gradient estimation methods (chapter 11). However, the
estimate is high variance, meaning that we need many samples to arrive at an
accurate estimate.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

https://arxiv.org/abs/1506.02438v6

270 chapter 13. actor-critic methods

The approach taken by generalized advantage estimation is to balance between
these two extremes of using temporal difference residuals and full rollouts. We
define Â(k) to be the advantage estimate obtained from k steps of a rollout and
the utility associated with the resulting state s′:

Â(k)(s, a) = Er1,...,rk ,s′
[

r1 + γr2 + · · ·+ γk−1rk + γkUπθ(s′)−Uπθ(s)
]

(13.9)

= Er1,...,rk ,s′

[

−Uπθ(s) + γkUπθ(s′) +
k

∑
ℓ=1

γℓ−1rℓ

]

(13.10)

An alternative way to write Â(k) is in terms of an expectation over temporal
difference residuals. We can define

δt = rt + γU(st+1)−U(st) (13.11)

where st, rt, and st+1 are the state, reward, and subsequent state along a sampled
trajectory and U is our value function estimate. Then,

Â(k)(s, a) = E

[

k

∑
ℓ=1

γℓ−1δℓ

]

(13.12)

Instead of committing to a particular value for k, generalized advantage esti-
mation introduces a parameter λ ∈ [0, 1] that provides an exponentially weighted
average of Â(k) for k ranging from 1 to d:2

2 The exponentially weighted aver-
age of a series x1, x2, . . . is
(1− λ)(x1 + λx2 + λ2x3 + · · ·).

ÂGAE(s, a) |d=1 = Â(1) (13.13)
ÂGAE(s, a) |d=2 = (1− λ)Â(1) + λÂ(2) (13.14)
ÂGAE(s, a) |d=3 = (1− λ)Â(1) + λ

(

(1− λ)Â(2) + λÂ(3)
)

(13.15)

= (1− λ)Â(1) + λ(1− λ)Â(2) + λ2 Â(3) (13.16)
...

ÂGAE(s, a) = (1− λ)
(

Â(1) + λÂ(2) + λ2 Â(3) + · · ·+ λd−2 Â(d−1)
)

+ λd−1 Â(d) (13.17)

For an infinite horizon, the generalized advantage estimate simplifies to

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

13.2. generalized advantage estimation 271

ÂGAE(s, a) = (1− λ)
(

Â(1) + λÂ(2) + λ2 Â(3) + · · ·
)

(13.18)

= (1− λ)
(

δ1

(

1 + λ + λ2 + · · ·
)

+ γδ2

(

λ + λ2 + · · ·
)

+ γ2δ3

(

λ2 + · · ·
)

+ · · ·
)

(13.19)

= (1− λ)

(

δ1
1

1− λ
+ γδ2

λ

1− λ
+ γ2δ3

λ2

1− λ
+ · · ·

)

(13.20)

= E

[

∞

∑
k=1

(γλ)k−1δk

]

(13.21)

We can tune parameter λ to balance between bias and variance. If λ = 0,
then we have the high-bias, low-variance estimate for the temporal difference
residual from the previous section. If λ = 1, we have the unbiased full rollout
with increased variance. Figure 13.1 demonstrates the algorithm with different
values for λ.

struct GeneralizedAdvantageEstimation
𝒫 # problem
b # initial state distribution
d # depth
m # number of samples
∇logπ # gradient of log likelihood ∇logπ(θ,a,s)
U # parameterized value function U(ϕ, s)
∇U # gradient of value function ∇U(ϕ,s)
λ # weight ∈ [0,1]

end

function gradient(M::GeneralizedAdvantageEstimation, π, θ, ϕ)
𝒫, b, d, m, ∇logπ = M.𝒫, M.b, M.d, M.m, M.∇logπ
U, ∇U, γ, λ = M.U, M.∇U, M.𝒫.γ, M.λ
πθ(s) = π(θ, s)
R(τ,j) = sum(r*γ^(k-1) for (k,(s,a,r)) in enumerate(τ[j:end]))
δ(τ,j) = τ[j][3] + γ*U(ϕ,τ[j+1][1]) - U(ϕ,τ[j][1])
A(τ,j) = sum((γ*λ)^(ℓ-1)*δ(τ, j+ℓ-1) for ℓ in 1:d-j)
∇Uθ(τ) = sum(∇logπ(θ,a,s)*A(τ,j)*γ^(j-1)

for (j, (s,a,r)) in enumerate(τ[1:end-1]))
∇ℓϕ(τ) = sum((U(ϕ,s) - R(τ,j))*∇U(ϕ,s)

for (j, (s,a,r)) in enumerate(τ))
trajs = [simulate(𝒫, rand(b), πθ, d) for i in 1:m]
return mean(∇Uθ(τ) for τ in trajs), mean(∇ℓϕ(τ) for τ in trajs)

end

Algorithm 13.2. Generalized ad-
vantage estimation for computing
both a policy gradient and a value
function gradient for an MDP 𝒫
with initial state distribution b. The
policy is parameterized by θ and
has a log-gradient ∇logπ. The value
function U is parameterized by ϕ
and has gradient ∇U. This method
runs m rollouts to depth d. The gen-
eralized advantage is computed
with exponential weighting λ using
equation (13.21) with a finite hori-
zon. The implementation here is a
simplified version of what was pre-
sented in the original paper, which
included aspects of trust regions
when taking steps.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

272 chapter 13. actor-critic methods

−0.4 −0.2 0 0.2

0

0.5

1

θ1

θ 2

policy parameterization

0 0.5 1
−1

−0.5

0

φ1

φ
2

value function parameterization

actor-critic generalized advantage estimation, λ = 0.5

generalized advantage estimation, λ = 0.7 generalized advantage estimation, λ = 0.9

Figure 13.1. A comparison of basic
actor-critic to generalized advan-
tage estimation on the simple regu-
lator problemwith γ = 0.9, a Gaus-
sian policy πθ(s) = N (θ1s, θ2

2),
and an approximate value func-
tion Uφ(s) = φ1s + φ2s2. We find
that generalized advantage estima-
tion is more efficiently able to ap-
proachwell-performing policy and
value function parameterizations.
(Recall that the optimal policy pa-
rameterization is [−1, 0] and the
optimal value function parameteri-
zation is near [0,−0.7].)

13.3 Deterministic Policy Gradient

The deterministic policy gradient approach3 involves optimizing a deterministic pol- 3 D. Silver, G. Lever, N. Heess,
T. Degris, D. Wierstra, and M.
Riedmiller, “Deterministic Policy
Gradient Algorithms,” in Interna-
tional Conference on Machine Learn-
ing (ICML), 2014.

icy πθ(s) that produces continuous actions with the help of a critic in the form of
a parameterized action value function Qφ(s, a). As with the actor-critic methods
discussed so far, we define a loss function with respect to the parameterizationφ:

ℓ(φ) =
1

2
E

s,a,r,s′

[

(

r + γQφ(s′, πθ(s
′))−Qφ(s, a)

)2
]

(13.22)

where the expectation is over the experience tuples generated by rollouts of πθ.
This loss function attempts to minimize the residual of Qφ, similar to how the
actor-critic method in the first section tried to minimize the residual of Uφ.

Similar to the other methods, we update φ by taking a step in the opposite
direction of the gradient:

∇ℓ(φ) = E
s,a,r,s′

[(

r + γQφ(s′, πθ(s
′))−Qφ(s, a)

)(

γ∇φQφ(s′, πθ(s
′))−∇φQφ(s, a)

)] (13.23)

We thus need a differentiable parameterized action value function from which
we can compute ∇φQφ(s, a), such as a neural network.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

13.3. deterministic policy gradient 273

For the actor, we want to find a value of θ that maximizes

U(θ) = E
s∼bγ,θ

[

Qφ(s, πθ(s))
] (13.24)

where the expectation is over the states from the discounted visitation frequency
when following πθ. Again, we can use gradient ascent to optimize θ with the
gradient given by

∇U(θ) = Es

[

∇θQφ(s, πθ(s))
] (13.25)

= Es

[

∇θπθ(s)∇aQφ(s, a)|a=πθ(s)

]

(13.26)

Here,∇θπθ(s) is a Jacobianmatrix whose ith column is the gradient with respect
to the ith action dimension of the policy under parameterization θ. An example
for this term is given in example 13.1. The gradient∇aQφ(s, a)|a=πθ(s)

is a vector
that indicates how much our estimated action value changes as we perturb the
action given by our policy at state s. In addition to the Jacobian, we need to supply
this gradient to use this method.

Consider the following deterministic policy for a two-dimensional action
space and a one-dimensional state space:

πθ(s) =

[

θ1 + θ2s + θ3s2

θ1 + sin(θ4s) + cos(θ5s)

]

The matrix ∇θπθ(s) then takes the following form:

∇θπθ(s) =
[

∇θπθ(s) |a1
∇θπθ(s) |a2

]

=

1 1

s 0

s2 0

0 cos(θ4s)s

0 − sin(θ5s)s

Example 13.1. An example of the
Jacobian in the deterministic policy
gradient.

As with the other actor-critic methods, we perform gradient descent on ℓ(φ)

and gradient ascent on U(θ). For this approach to work in practice, a few addi-
tional techniques are needed. One is to generate experiences from a stochastic
policy to allow better exploration. It is often adequate to simply add zero-mean

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

274 chapter 13. actor-critic methods

Gaussian noise to actions generated by our deterministic policy πθ, as done
in algorithm 13.3. To encourage stability when learning θ and φ, we can use
experience replay.4

4 We will discuss experience re-
play in section 17.7 in the context
of reinforcement learning. Other
techniques for stabilizing learn-
ing include using target parameter-
izations, described in the context
of neural representations by T. P.
Lillicrap, J. J. Hunt, A. Pritzel, N.
Heess, T. Erez, Y. Tassa, D. Sil-
ver, and D. Wierstra, “Continu-
ous Control with Deep Reinforce-
ment Learning,” in International
Conference on Learning Representa-
tions (ICLR), 2016. arXiv: 1509.029
71v6.

An example of this method and the effect of σ on performance is given in
example 13.2.

struct DeterministicPolicyGradient
𝒫 # problem
b # initial state distribution
d # depth
m # number of samples
∇π # gradient of deterministic policy π(θ, s)
Q # parameterized value function Q(ϕ,s,a)
∇Qϕ # gradient of value function with respect to ϕ
∇Qa # gradient of value function with respect to a
σ # policy noise

end

function gradient(M::DeterministicPolicyGradient, π, θ, ϕ)
𝒫, b, d, m, ∇π = M.𝒫, M.b, M.d, M.m, M.∇π
Q, ∇Qϕ, ∇Qa, σ, γ = M.Q, M.∇Qϕ, M.∇Qa, M.σ, M.𝒫.γ
π_rand(s) = π(θ, s) + σ*randn()*I
∇Uθ(τ) = sum(∇π(θ,s)*∇Qa(ϕ,s,π(θ,s))*γ^(j-1) for (j,(s,a,r))

in enumerate(τ))
∇ℓϕ(τ,j) = begin

s, a, r = τ[j]
s′ = τ[j+1][1]
a′ = π(θ,s′)
δ = r + γ*Q(ϕ,s′,a′) - Q(ϕ,s,a)
return δ*(γ*∇Qϕ(ϕ,s′,a′) - ∇Qϕ(ϕ,s,a))

end
∇ℓϕ(τ) = sum(∇ℓϕ(τ,j) for j in 1:length(τ)-1)
trajs = [simulate(𝒫, rand(b), π_rand, d) for i in 1:m]
return mean(∇Uθ(τ) for τ in trajs), mean(∇ℓϕ(τ) for τ in trajs)

end

Algorithm 13.3. The deterministic
policy gradient method for com-
puting a policy gradient ∇θ for a
deterministic policy π and a value
function gradient ∇ϕ for a continu-
ous action MDP 𝒫 with initial state
distribution b. The policy is param-
eterized by θ and has a gradient
∇π that produces a matrix where
each column is the gradient with
respect to that continuous action
component. The value function Q is
parameterized by ϕ and has a gradi-
ent ∇Qϕ with respect to the param-
eterization and gradient ∇Qa with
respect to the action. This method
runs m rollouts to depth d, and per-
forms exploration using 0-mean
Gaussian noise with standard de-
viation σ.

13.4 Actor-Critic with Monte Carlo Tree Search

We can extend concepts from online planning (chapter 9) to the actor-critic setting
in which we improve a parameterized policy πθ(a | s) and a parameterized value
function Uφ(s).5 This section discusses the application of Monte Carlo tree search

5 Deterministic policy gradient
used Qφ, but this approach uses
Uφ like the other actor-critic
methods discussed in this chapter.(section 9.6) to learning a stochastic policy with a discrete action space. We use

our parameterized policy and value function to guide Monte Carlo tree search,

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

https://arxiv.org/abs/1509.02971v6
https://arxiv.org/abs/1509.02971v6

13.4. actor-critic with monte carlo tree search 275

Consider applying the deterministic policy gradient algorithm to the simple
regulator problem. Suppose we use a simple parameterized deterministic
policy πθ(s) = θ1 and the parameterized state-action value function:

Qφ(s, a) = φ1 + φ2s + φ3s2 + φ4(s + a)2

Here, we plot a progression of the deterministic policy gradient algorithm
starting with θ = [0] and φ = [0, 1, 0,−1] for different values of σ. Each
iteration was run with five rollouts to depth 10 with γ = 0.9.

−0.4

−0.2

po
lic

yp
er
fo
rm

an
ce

0 5 10 15 20 25 30 35 40 45 50

10−4

10−3

10−2

iteration

va
lu

ef
un

cti
on

lo
ss

σ = 0.1 σ = 0.5 σ = 1.0 σ = 2.0

For this simple problem, the policy quickly converges to optimality almost
regardless of σ. However, if σ is either too small or too large, the value
function takes longer to improve. In the case of very small values of σ, our
policy conducts insufficient exploration from which to effectively learn the
value function. For larger values of σ, we explore more, but we also tend to
make poor move choices more frequently.

Example 13.2. An application of
the deterministic policy gradient
method to the simple regulator
problem and an exploration of the
impact of the policy stochasticity
parameter σ.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

276 chapter 13. actor-critic methods

and we use the results from Monte Carlo tree search to refine our parameterized
policy and value function. As with the other actor critic methods, we apply
gradient-based optimization of θ andφ.6

6 This general approach was intro-
duced by D. Silver, J. Schrittwieser,
K. Simonyan, I. Antonoglou, A.
Huang, A. Guez, T. Hubert, L.
Baker, M. Lai, A. Bolton, et al.,
“Mastering the Game of Go With-
out Human Knowledge,” Nature,
vol. 550, pp. 354–359, 2017. The
discussion here loosely follows
their AlphaGo Zero algorithm, but
instead of trying to solve the game
of Go, we are trying to solve a
general MDP. Both the fact that
Alpha Zero plays as both Go
players and that games tend to
have a winner and a loser allow the
original method to reinforce the
winning behavior and punish the
losing behavior. The generalized
MDP formulation will tend to
suffer from sparse rewards when
applied to similar problems.

As we perform Monte Carlo tree search, we want to direct our exploration to
some extent by our parameterized policy πθ(a | s). One approach is to use an
action that maximizes the probabilistic upper confidence bound:

a = arg max
a

Q(s, a) + cπθ(a | s)

√

N(s)

1 + N(s, a)
(13.27)

where Q(s, a) is the action value estimated through the tree search, N(s, a) is the
visit count as discussed in section 9.6, and N(s) = ∑a N(s, a).7

7 There are some notable differ-
ences from the upper confidence
bound presented in equation (9.1);
for example, there is no logarithm
in equation (13.27) and we add 1
to the denominator to follow the
form used by AlphaGo Zero.

After running tree search, we can use the statistics that we collect to obtain
πMCTS(a | s). One way to define this is in terms of the counts:8

8 In algorithm 9.5, we select the
greedy action with respect to Q.
Other strategies are surveyed by
C. B. Browne, E. Powley, D. White-
house, S.M. Lucas, P. I. Cowling, P.
Rohlfshagen, S. Tavener, D. Perez,
S. Samothrakis, and S. Colton, “A
Survey of Monte Carlo Tree Search
Methods,” IEEE Transactions on
Computational Intelligence and AI in
Games, vol. 4, no. 1, pp. 1–43, 2012.
The approach suggested here fol-
lows AlphaGo Zero.

πMCTS(a | s) ∝ N(s, a)η (13.28)

where η ≥ 0 is a hyperparameter that controls the greediness of the policy. If
η = 0, then πMCTS will generate actions at random. As η → ∞, it will select the
action that was selected the most from that state.

In our optimization of θ, we want our model πθ to match what we obtain
through Monte Carlo tree search. One loss function that we can define is the
expected cross entropy of πθ(· | s) relative to πMCTS(· | s):

ℓ(θ) = −Es

[

∑
a

πMCTS(a | s) log πθ(a | s)

]

(13.29)

where the expectation is over states experienced during the tree exploration. The
gradient is

∇ℓ(θ) = −Es

[

∑
a

πMCTS(a | s)

πθ(a | s)
∇θπθ(a | s)

]

(13.30)

To learnφ, we define a loss function in terms of a value function generated
during the tree search:

UMCTS(s) = max
a

Q(s, a) (13.31)
which is defined at least at the states that we explore during tree search. The loss
function aims to make Uφ agree with the estimates from the tree search:

ℓ(φ) =
1

2
Es

[

(

Uφ(s)−UMCTS(s)
)2
]

(13.32)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

13.5. summary 277

The gradient is

∇ℓ(φ) = Es

[(

Uφ(s)−UMCTS(s)
)

∇φUφ(s)
] (13.33)

Like the actor-critic method in the first section, we need to be able to compute the
gradient of our parameterized value function.

After performing some number of Monte Carlo tree search simulations, we
update θ by stepping in the direction opposite to ∇ℓ(θ) and φ by stepping in
the direction opposite to ∇ℓ(φ).9 9 The AlphaGo Zero implementa-

tion uses a single neural network
to represent both the value func-
tion and the policy instead of inde-
pendent parameterizations as dis-
cussed in this section. The gradi-
ent used to update the network
parameters is a mixture of equa-
tions (13.30) and (13.33). This en-
hancement significantly reduces
evaluation time and feature learn-
ing time.

13.5 Summary

• In actor-critic methods, an actor attempts to optimize a parameterized policy
with the help of a critic that provides a parameterized estimate of the value
function.

• Generally, actor-critic methods use gradient-based optimization to learn the
parameters of both the policy and value function approximation.

• The basic actor-critic method uses a policy gradient for the actor andminimizes
the squared temporal difference residual for the critic.

• The generalized advantage estimate attempts to reduce the variance of its policy
gradient at the expense of some bias by accumulating temporal difference
residuals across multiple time steps.

• The deterministic policy gradient can be applied to problems with continuous
action spaces and uses a deterministic policy actor and an action value critic.

• Online methods, such as Monte Carlo tree search, can be used to direct the
optimization of the policy and value function estimate.

13.6 Exercises
Exercise 13.1. Would the actor-critic method with Monte Carlo tree search, as presented
in section 13.4, be a good method for solving the cart-pole problem (appendix F.3)?
Solution: The Monte Carlo tree search expands a tree based on visited states. The cart-pole
problem has a continuous state space, leading to a search tree with an infinite branching
factor. Use of this algorithm would require adjusting the problem, such as discretizing the
state space.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

278 chapter 13. actor-critic methods

Exercise 13.2. In the following expressions of advantage functions, determine which ones
are correct and explain what they are referring to:

(a) Er,s′
[

r + γUπθ (s)−Uπθ (s′)
]

(b) Er,s′
[

r + γUπθ (s′)−Uπθ (s)
]

(c) Er1:d ,s′

[

−Uπθ (s) + γkUπθ (s′) +
k

∑
ℓ=1

γl−1rl

]

(d) Er1:d ,s′

[

−Uπθ (s) + γUπθ (s′) +
k

∑
ℓ=1

γl−1rl

]

(e) E

[

−Uπθ (s) +
d

∑
ℓ=1

γl−1rl

]

(f) E

[

−γUπθ (s′) +
d+1

∑
ℓ=1

γl−1rl

]

(g) E

[

k

∑
ℓ=1

γl−1δl−1

]

(h) E

[

k

∑
ℓ=1

γl−1δl

]

(i) E

[

∞

∑
k=1

(γλ)k−1δk

]

(j) E

[

∞

∑
k=1

(λ)k−1δk

]

Solution: The following table lists the correct expressions:

(b) Advantage with temporal difference residual
(c) Advantage estimate after k-step rollouts
(e) Advantage with the sequence of rollout rewards
(h) Advantage estimate with temporal difference residuals
(i) Generalized advantage estimate

Exercise 13.3. What are the benefits of using a temporal difference residual over a sequence
of rollout rewards and vice versa?

Solution: Approximation using a temporal difference residual is more computationally
efficient than using a sequence of rollouts. Temporal difference residual approximation has
low variance but high bias due to using the critic value function Uφ as an approximator of
the true value function Uπθ . On the other hand, rollout approximation has high variance

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

13.6. exercises 279

but is unbiased. Obtaining an accurate estimate using a temporal difference residual ap-
proximation typically requires far fewer samples than when using a rollout approximation,
at the cost of introducing bias into our estimate.

Exercise 13.4. Consider the action value function given in example 13.2, Qφ(s, a) =

φ1 + φ2s + φ3s2 + φ4(s + a)2. Calculate the gradients required for the deterministic policy
gradient approach.

Solution:Weneed to calculate two gradients. For the actor,we need to compute∇φQφ(s, a),
while for the critic, we need to compute ∇aQφ(s, a).

∇φQ(s, a) =
[

1, s, s2, (s + a)2
]

∇aQ(s, a) = 2φ4(s + a)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

