
1 Introduction

Many important problems involve decision making under uncertainty, including
aircraft collision avoidance, wildfire management, and disaster response. When
designing automated decision-making systems or decision-support systems, it is
important to account for various sources of uncertainty while carefully balanc-
ing multiple objectives. We will discuss these challenges from a computational
perspective, aiming to provide the theory behind decision-making models and
computational approaches. This chapter introduces the problem of decision mak-
ing under uncertainty, provides some examples of applications, and outlines
the space of computational approaches. It then summarizes how various disci-
plines have contributed to our understanding of intelligent decision making and
highlights areas of potential societal impact. We conclude with an outline of the
remainder of the book.

1.1 Decision Making

An agent is an entity that acts based on observations of its environment. Agents
may be physical entities, like humans or robots, or they may be nonphysical enti-
ties, such as decision support systems that are implemented entirely in software.
As shown in figure 1.1, the interaction between the agent and the environment
follows an observe-act cycle or loop.

The agent at time t receives an observation of the environment, denoted as ot.
Observations may be made, for example, through a biological sensory process,
as in humans, or by a sensor system, like radar in an air traffic control system.
Observations are often incomplete or noisy; humans may not see an approaching
aircraft or a radar system might miss a detection due to electromagnetic interfer-
ence. The agent then chooses an action at through some decision-making process.
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Environment Agent

Observation (ot)

Action (at)

Figure 1.1. Interaction between an
agent and its environment.

This action, such as sounding an alert, may have a nondeterministic effect on the
environment.

Our focus is on agents that interact intelligently to achieve their objectives over
time. Given the past sequence of observations, o1, . . . , ot, and knowledge of the
environment, the agent must choose an action at that best achieves its objectives
in the presence of various sources of uncertainty,1 including the following: 1 We focus here on discrete time

problems. Continuous time prob-
lems are studied in the field of
control theory. See D. E. Kirk, Opti-
mal Control Theory: An Introduction.
Prentice-Hall, 1970.

• outcome uncertainty, where the effects of our actions are uncertain,

• model uncertainty, where our model of the problem is uncertain,

• state uncertainty, where the true state of the environment is uncertain, and

• interaction uncertainty, where the behavior of the other agents interacting in the
environment is uncertain.

This book is organized around these four sources of uncertainty. Making decisions
in the presence of uncertainty is central to the field of artificial intelligence,2 as 2 A comprehensive introduction to

artificial intelligence is provided
by S. Russell and P. Norvig, Artifi-
cial Intelligence: A Modern Approach,
4th ed. Pearson, 2021.

well as many other fields, as outlined in section 1.4. We will discuss a variety of
algorithms, or descriptions of computational processes, for making decisions that
are robust to uncertainty.

1.2 Applications

The decision-making framework presented in the previous section can be applied
to a wide variety of domains. This section discusses a few conceptual examples
with real-world applications. Appendix F outlines additional notional problems
that are used throughout this text to demonstrate the algorithms we discuss.
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1.2.1 Aircraft Collision Avoidance
To help prevent midair collisions between aircraft, we want to design a system
that can alert pilots to potential threats and direct them how to maneuver to
avoid them.3 The system communicates with the transponders of other aircraft 3 This application is discussed in

a chapter titled ‘‘Collision Avoid-
ance’’ by M. J. Kochenderfer, De-
cision Making Under Uncertainty:
Theory and Application. MIT Press,
2015.

to identify their positions with some degree of accuracy. Deciding what guidance
to provide to the pilots is challenging. There is uncertainty in how quickly the
pilots will respond and how aggressively they will comply with the guidance.
In addition, there is uncertainty in the behavior of other aircraft. We want our
system to alert sufficiently early to provide enough time for pilots to maneuver
their aircraft to avoid collisions, but we do not want our system to issue alerts too
early, which would result in many unnecessary maneuvers. Since this system is to
be used continuously worldwide, we need the system to provide an exceptional
level of safety.

1.2.2 Automated Driving
We want to build an autonomous vehicle that can safely drive in urban environ-
ments.4 The vehicle must rely on a suite of sensors to perceive its environment in 4 A similar application was ex-

plored by M. Bouton, A. Nakhaei,
K. Fujimura, and M. J. Kochender-
fer, “Safe Reinforcement Learning
with Scene Decomposition for Nav-
igating Complex Urban Environ-
ments,” in IEEE Intelligent Vehicles
Symposium (IV), 2019.

order tomake safe decisions. One type of sensor is lidar, which involvesmeasuring
laser reflections off the environment to determine distances to obstacles. Another
type of sensor is a camera, which, through computer vision algorithms, can detect
pedestrians and other vehicles. Both of these types of sensors are imperfect and
susceptible to noise and occlusions. For example, a parked truck may occlude a
pedestrianwhomay be trying to cross at a crosswalk. Our systemmust predict the
intentions and future paths of other vehicles, pedestrians, and other road users
from their observable behaviors in order to navigate safely to our destination.

1.2.3 Breast Cancer Screening
Worldwide, breast cancer is the most common cancer in women. Detecting breast
cancer early can help save lives, with mammography being the most effective
screening tool available. However, mammography carries with it potential risks,
including false positives, which can result in unnecessary and invasive diagnos-
tic follow-up. Research over the years has resulted in various population-based
screening schedules based on age to balance the benefits and risks of testing.
Developing a system that can make recommendations based on personal risk
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characteristics and screening history has the potential to result in better health
outcomes.5 The success of such a system can be compared to populationwide 5 Such a concept is proposed by T.

Ayer, O. Alagoz, and N.K. Stout,
“A POMDP Approach to Personal-
ize Mammography Screening Deci-
sions,” Operations Research, vol. 60,
no. 5, pp. 1019–1034, 2012.

screening schedules in terms of total expected quality-adjusted life years, the num-
ber of mammograms, the prevalence of false positives, and the risk of undetected,
invasive cancer.

1.2.4 Financial Consumption and Portfolio Allocation
Suppose that we want to build a system that recommends how much of an
individual’s wealth should be consumed that year and how much should be
invested.6 The investment portfolio may include stocks and bonds with different 6 A related problem was studied

by R.C. Merton, “Optimum Con-
sumption and Portfolio Rules in a
Continuous-Time Model,” Journal
of Economic Theory, vol. 3, no. 4,
pp. 373–413, 1971.

levels of risk and expected return. The evolution of wealth is stochastic due to
uncertainty in both earned and investment income, often increasing until the
investor is near retirement, and then steadily decreasing. The enjoyment that
comes from the consumption of a unit of wealth in a year typically diminishes
with the amount consumed, resulting in a desire to smooth consumption over
the lifespan of the individual.

1.2.5 Distributed Wildfire Surveillance
Situational awareness is a major challenge when fighting wildfires. The state of a
fire evolves over time, influenced by factors such as wind and the distribution
of fuel in the environment. Many wildfires span large geographic regions. One
concept for monitoring a wildfire is to use a team of drones equipped with
sensors to fly above it.7 The sensing range of individual drones is limited, but

7 This application was explored by
K.D. Julian and M. J. Kochender-
fer, “Distributed Wildfire Surveil-
lance with Autonomous Aircraft
Using Deep Reinforcement Learn-
ing,”AIAA Journal of Guidance, Con-
trol, and Dynamics, vol. 42, no. 8,
pp. 1768–1778, 2019.

the information from the team can be fused to provide a unified snapshot of the
situation to drive resource allocation decisions. We would like the team members
to autonomously determine how to collaborate with each other to provide the best
coverage of the fire. Effective monitoring requires deciding how to maneuver to
cover areas where new sensor information is likely to be useful; spending time in
areas where we are certain of whether the fire is burning or not would be wasteful.
Identifying important areas to explore requires reasoning about the stochastic
evolution of the fire, given only imperfect knowledge of its current state.
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1.2.6 Mars Science Exploration
Rovers have made important discoveries on and increased our understanding
of Mars. However, a major bottleneck in scientific exploration has been the com-
munication link between the rover and the operations team on Earth. It can take
as much as half an hour for sensor information to be sent from Mars to Earth
and for commands to be sent from Earth to Mars. In addition, guidance to rovers
needs to be planned in advance because there are limited upload and download
windows with Mars due to the positions of orbiters serving as information relays
between the planets. Recent research has suggested that the efficiency of science
exploration missions can be improved by a factor of five through the introduction
of greater levels of autonomy.8 Human operators would still provide high-level 8 This concept is presented and

evaluated by D. Gaines, G. Doran,
M. Paton, B. Rothrock, J. Russino, R.
Mackey, R. Anderson, R. Francis, C.
Joswig, H. Justice, K. Kolcio, G. Ra-
bideau, S. Schaffer, J. Sawoniewicz,
A. Vasavada, V. Wong, K. Yu,
andA.-a. Agha-mohammadi, “Self-
Reliant Rovers for Increased Mis-
sion Productivity,” Journal of Field
Robotics, vol. 37, no. 7, pp. 1171–
1196, 2020.

guidance on mission objectives, but the rover would have the flexibility to select
its own science targets using the most up-to-date information. In addition, it
would be desirable for rovers to respond appropriately to various hazards and
system failures without human intervention.

1.3 Methods

There are many methods for designing decision-making agents. Depending on
the application, some may be more appropriate than others. They differ in the
responsibilities of the designer and the tasks left to automation. This section
briefly overviews a collection of these methods. The book will focus primarily
on planning and reinforcement learning, but some of the techniques will involve
elements of supervised learning and optimization.

1.3.1 Explicit Programming
The most direct method for designing a decision-making agent is to anticipate all
the scenarios that the agent might find itself in and explicitly program what the
agent should do in response to each one. The explicit programming approachmay
work well for simple problems, but it places a large burden on the designer to pro-
vide a complete strategy. Various agent programming languages and frameworks
have been proposed to make programming agents easier.
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1.3.2 Supervised Learning
With some problems, it may be easier to show an agent what to do rather than to
write a program for the agent to follow. The designer provides a set of training
examples, and an automated learning algorithmmust generalize from these exam-
ples. This approach is known as supervised learning and has been widely applied
to classification problems. This technique is sometimes called behavioral cloning
when applied to learning mappings from observations to actions. Behavioral
cloning works well when an expert designer actually knows the best course of
action for a representative collection of situations. Although a wide variety of
different learning algorithms exist, they generally cannot perform better than
human designers in new situations.

1.3.3 Optimization
Another approach is for the designer to specify the space of possible decision
strategies and a performance measure to be maximized. Evaluating the perfor-
mance of a decision strategy generally involves running a batch of simulations.
The optimization algorithm then performs a search in this space for the optimal
strategy. If the space is relatively small and the performance measure does not
have many local optima, then various local or global search methods may be
appropriate. Although knowledge of a dynamic model is generally assumed to
run the simulations, it is not otherwise used to guide the search, which can be
important for complex problems.

1.3.4 Planning
Planning is a form of optimization that uses a model of the problem dynamics
to help guide the search. A broad base of literature explores various planning
problems, much of it focused on deterministic problems. For some problems,
it may be acceptable to approximate the dynamics with a deterministic model.
Assuming a deterministic model allows us to use methods that can more easily
scale to high-dimensional problems. For other problems, accounting for future
uncertainty is critical. This book focuses entirely on problems in which accounting
for uncertainty is important.
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1.3.5 Reinforcement Learning
Reinforcement learning relaxes the assumption in planning that a model is known
ahead of time. Instead, the decision-making strategy is learned while the agent
interacts with the environment. The designer only has to provide a performance
measure; it is up to the learning algorithm to optimize the behavior of the agent.
One of the interesting complexities that arises in reinforcement learning is that the
choice of action affects not only the immediate success of the agent in achieving its
objectives, but also the agent’s ability to learn about the environment and identify
the characteristics of the problem that it can exploit.

1.4 History

The theory of automating the process of decision making has its roots in the
dreams of early philosophers, scientists, mathematicians, and writers. The ancient
Greeks began incorporating automation into myths and stories as early as 800 BC.
The word automaton was first used in Homer’s Iliad, which contains references to
the notion of automatic machines, including mechanical tripods used to serve
dinner guests.9 In the seventeenth century, philosophers proposed the use of logic 9 S. Vasileiadou, D. Kalligeropou-

los, and N. Karcanias, “Systems,
Modelling and Control in An-
cient Greece: Part 1: Mythical Au-
tomata,” Measurement and Control,
vol. 36, no. 3, pp. 76–80, 2003.

rules to automatically settle disagreements. Their ideas created the foundation
for mechanized reasoning.

Beginning in the late eighteenth century, inventors began creating automatic
machines to perform labor. In particular, a series of innovations in the textile
industry led to the development of the automatic loom, which in turn laid the
foundation for the first factory robots.10 In the early nineteenth century, the use of 10 N. J. Nilsson, The Quest for Artifi-

cial Intelligence. Cambridge Univer-
sity Press, 2009.intelligent machines to automate labor began to make its way into science fiction

novels. The word robot originated in the Czech writer Karel Čapek’s play titled
R.U.R., short for Rossum’s Universal Robots, about machines that could perform
work that humans would prefer not to do. The play inspired other science fiction
writers to incorporate robots into their writing. In the mid-twentieth century, the
notable writer and professor Isaac Asimov laid out his vision for robotics in his
famous Robot series.

A major challenge in practical implementations of automated decision making
is accounting for uncertainty. Even at the end of the twentieth century, George
Dantzig, most famous for developing the simplex algorithm, stated in 1991:
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In retrospect it is interesting to note that the original problem that startedmy research
is still outstanding—namely the problem of planning or scheduling dynamically
over time, particularly planning dynamically under uncertainty. If such a problem
could be successfully solved it could (eventually through better planning) contribute
to the well-being and stability of the world.11 11 G.B. Dantzig, “Linear Program-

ming,” Operations Research, vol. 50,
no. 1, pp. 42–47, 2002.While decision making under uncertainty still remains an active area of research,

over the past few centuries, researchers and engineers have come closer to mak-
ing the concepts posed by these early dreamers possible. Current state-of-the-art
decision-making algorithms rely on a convergence of concepts developed in multi-
ple disciplines, including economics, psychology, neuroscience, computer science,
engineering, mathematics, and operations research. This section highlights some
major contributions from these disciplines. The cross-pollination between disci-
plines has led to many recent advances and will likely continue to support growth
in the future.

1.4.1 Economics
Economics requires models of human decision making. One approach to build-
ing such models involves utility theory, which was first introduced in the late
eighteenth century.12 Utility theory provides a means to model and compare the 12 G. J. Stigler, “TheDevelopment of

Utility Theory. I,” Journal of Political
Economy, vol. 58, no. 4, pp. 307–327,
1950.

desirability of various outcomes. For example, utility can be used to compare the
desirability of monetary quantities. In the Theory of Legislation, Jeremy Bentham
summarized the nonlinearity in the utility of money:

1st. Each portion of wealth has a corresponding portion of happiness.
2nd. Of two individuals with unequal fortunes, he who has the most wealth has the
most happiness.
3rd. The excess in happiness of the richer will not be so great as the excess of his
wealth.13 13 J. Bentham, Theory of Legislation.

Trübner & Company, 1887.
By combining the concept of utility with the notion of rational decision making,
economists in the mid-twentieth century established a basis for the maximum
expected utility principle. This principle is a key concept behind the creation of
autonomous decision-making agents. Utility theory also gave rise to the devel-
opment of game theory, which attempts to understand the behavior of multiple
agents acting in the presence of one another to maximize their interests.14

14 O. Morgenstern and J. von Neu-
mann, Theory of Games and Eco-
nomic Behavior. Princeton Univer-
sity Press, 1953.
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1.4.2 Psychology
Psychologists also study human decision making, typically from the perspective
of human behavior. By studying the reactions of animals to stimuli, psychologists
have been developing theories of trial-and-error learning since the nineteenth
century. Researchers noticed that animals tend to make decisions based on the
satisfaction or discomfort they experienced in previous similar situations. Russian
psychologist Ivan Pavlov combined this idea with the concept of reinforcement
after observing the salivation patterns of dogs when fed. Psychologists found
that a pattern of behavior could be strengthened or weakened using continuous
reinforcement of a particular stimulus. In the mid-twentieth century, the mathe-
matician and computer scientist Alan Turing expressed the possibility of allowing
machines to learn in the same manner:

The organization of a machine into a universal machine would be most impressive if
the arrangements of interference involve very few inputs. The training of a human
child depends largely on a system of rewards and punishments, and this suggests
that it ought to be possible to carry through the organising with only two interfering
inputs, one for ‘‘pleasure’’ or ‘‘reward’’ (R) and the other for ‘‘pain’’ or ‘‘punishment’’
(P).15 15 A.M. Turing, “Intelligent Ma-

chinery,” National Physical Labo-
ratory, Report, 1948.The work of psychologists laid the foundation for the field of reinforcement

learning, a critical technique used to teach agents to make decisions in uncertain
environments.16 16 R. S. Sutton and A.G. Barto, Rein-

forcement Learning: An Introduction,
2nd ed. MIT Press, 2018.

1.4.3 Neuroscience
While psychologists study human behavior as it happens, neuroscientists focus on
the biological processes used to create the behavior. At the end of the nineteenth
century, scientists found that the brain is composed of an interconnected network
of neurons, which is responsible for its ability to perceive and reason about the
world. Artificial intelligence pioneer Nils Nilsson describes the application of
these findings to decision making as follows:

Because it is the brain of an animal that is responsible for converting sensory in-
formation into action, it is to be expected that several good ideas can be found in
the work of neurophysiologists and neuroanatomists who study brains and their
fundamental components, neurons.17

17 N. J. Nilsson, The Quest for Artifi-
cial Intelligence. Cambridge Univer-
sity Press, 2009.
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In the 1940s, researchers first proposed that neurons could be considered as
individual ‘‘logic units” capable of performing computational operations when
pieced together into a network. This work served as a basis for neural networks,
which are used in the field of artificial intelligence to perform a variety of complex
tasks.

1.4.4 Computer Science
In the mid-twentieth century, computer scientists began formulating the problem
of intelligent decision making as a problem of symbolic manipulation through
formal logic. The computer program Logic Theorist, written in the mid-twentieth
century to perform automated reasoning, used this way of thinking to provemath-
ematical theorems. Herbert Simon, one of its inventors, addressed the symbolic
nature of the program by relating it to the human mind:

We invented a computer program capable of thinking nonnumerically, and thereby
solved the venerable mind/body problem, explaining how a system composed of
matter can have the properties of mind.18 18 Quoted by J. Agar, Science in the

20th Century and Beyond. Polity,
2012.These symbolic systems relied heavily on human expertise. An alternative ap-

proach to intelligence, called connectionism, was inspired in part by developments
in neuroscience and focuses on the use of artificial neural networks as a substrate
for intelligence. With the knowledge that neural networks could be trained for
pattern recognition, connectionists attempt to learn intelligent behavior from data
or experience rather than the hard-coded knowledge of experts. The connection-
ist paradigm underpinned the success of AlphaGo, the autonomous program
that beat a human professional at the game of Go, as well as much of the devel-
opment of autonomous vehicles. Algorithms that combine both symbolic and
connectionist paradigms remain an active area of research today.

1.4.5 Engineering
The field of engineering has focused on allowing physical systems, such as robots,
to make intelligent decisions. World-renowned roboticist Sebastian Thrun de-
scribes the components of these systems as follows:

Robotics systems have in common that they are situated in the physical world,
perceive their environments through sensors, and manipulate their environment
through things that move.19

19 S. Thrun, “Probabilistic Robot-
ics,” Communications of the ACM,
vol. 45, no. 3, pp. 52–57, 2002.
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To design these systems, engineers must address perception, planning, and acting.
Physical systems perceive the world by using their sensors to create a representa-
tion of the salient features of their environment. The field of state estimation has
focused on using sensor measurements to construct a belief about the state of the
world. Planning requires reasoning about the ways to execute the tasks they are
designed to perform. The planning process has been enabled by advances in the
semiconductor industry spanning many decades.20 Once a plan has been devised, 20 G.E. Moore, “Cramming More

Components onto Integrated Cir-
cuits,” Electronics, vol. 38, no. 8,
pp. 114–117, 1965.

an autonomous agent must act on it in the real world. This task requires both
hardware (in the form of actuators) and algorithms to control the actuators and
reject disturbances. The field of control theory has focused on the stabilization
of mechanical systems through feedback control.21 Automatic control systems 21 D.A. Mindell, Between Human

and Machine: Feedback, Control, and
Computing Before Cybernetics. JHU
Press, 2002.

are widely used in industry, from the regulation of temperature in an oven to the
navigation of aerospace systems.

1.4.6 Mathematics
An agent must be able to quantify its uncertainty to make informed decisions in
uncertain environments. The field of decisionmaking relies heavily on probability
theory for this task. In particular, Bayesian statistics plays an important role in this
text. In 1763, a paper of Thomas Bayes was published posthumously, containing
what would later be known as Bayes’ rule. His approach to probabilistic inference
fell in and out of favor until the mid-twentieth century, when researchers began to
find Bayesian methods useful in a number of settings.22 Mathematician Bernard 22 W.M. Bolstad and J.M. Curran,

Introduction to Bayesian Statistics.
Wiley, 2016.Koopman found practical use for the theory during World War II:

Every operation involved in search is beset with uncertainties; it can be understood
quantitatively only in terms of [...] probability. This may now be regarded as a truism,
but it seems to have taken the developments in operational research of the Second
World War to drive home its practical implications.23 23 B.O. Koopman, Search and Screen-

ing: General Principles withHistorical
Applications. Pergamon Press, 1980.Sampling-based methods (sometimes referred to as Monte Carlo methods) devel-

oped in the early twentieth century for large-scale calculations as part of the
Manhattan Project, made some inference techniques possible that would pre-
viously have been intractable. These foundations serve as a basis for Bayesian
networks, which increased in popularity later in the twentieth century in the field
of artificial intelligence.
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1.4.7 Operations Research
Operations research is concerned with finding optimal solutions to decision-making
problems such as resource allocation, asset investment, and maintenance schedul-
ing. In the late nineteenth century, researchers began to explore the application of
mathematical and scientific analysis to the production of goods and services. The
field was accelerated during the Industrial Revolution when companies began to
subdivide their management into departments responsible for distinct aspects of
overall decisions. During World War II, the optimization of decisions was applied
to allocating resources to an army. Once the war came to an end, businesses began
to notice that the same operations research concepts previously used to make
military decisions could help them optimize business decisions. This realization
led to the development of management science, as described by the organizational
theorist Harold Koontz:

The abiding belief of this group is that, if management, or organization, or planning,
or decision making is a logical process, it can be expressed in terms of mathematical
symbols and relationships. The central approach of this school is the model, for it is
through these devices that the problem is expressed in its basic relationships and in
terms of selected goals or objectives.24 24 H. Koontz, “The Management

Theory Jungle,”Academy ofManage-
ment Journal, vol. 4, no. 3, pp. 174–
188, 1961.

This desire to be able to better model and understand business decisions sparked
the development of a number of concepts used today, such as linear programming,
dynamic programming, and queuing theory.25 25 F. S. Hillier, Introduction to Opera-

tions Research. McGraw-Hill, 2012.

1.5 Societal Impact

Algorithmic approaches to decision making have transformed society and will
likely continue to in the future. This section briefly highlights a few ways that
decision-making algorithms can contribute to society and introduces challenges
that remain when attempting to ensure a broad benefit.26 26 A much more thorough discus-

sion is provided by Z.R. Shi, C.
Wang, and F. Fang, “Artificial Intel-
ligence for Social Good: A Survey,”
2020. arXiv: 2001.01818v1.

Algorithmic approaches have contributed to environmental sustainability. In
the context of energy management, for example, Bayesian optimization has been
applied to automated home energy management systems. Algorithms from the
field ofmultiagent systems are used to predict the operation of smart grids, design
markets for trading energy, and predict rooftop solar-power adoption. Algorithms
have also been developed to protect biodiversity. For example, neural networks
are used to automate wildlife censuses, game-theoretic approaches are used to
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combat poaching in forests, and optimization techniques are employed to allocate
resources for habitat management.

Decision-making algorithms have found success in the field of medicine for
decades. Such algorithms have been used for matching residents to hospitals
and organ donors to patients in need. An early application of Bayesian networks,
which we will cover in the first part of this book, was disease diagnosis. Since
then, Bayesian networks have been widely used in medicine for the diagnosis and
prognosis of diseases. The field ofmedical image processing has been transformed
by deep learning, and algorithmic ideas have recently played an important role
in understanding the spread of disease.

Algorithms have enabled us to understand the growth of urban areas and
facilitate their design. Data-driven algorithms have been widely used to improve
public infrastructure. For example, stochastic processes have been used to predict
failures in water pipelines, deep learning has improved traffic management,
and Markov decision processes and Monte Carlo methods have been employed
to improve emergency response. Ideas from decentralized multiagent systems
have optimized travel routes, and path-planning techniques have been used to
optimize the delivery of goods. Decision-making algorithms have been used for
autonomous cars and improving aircraft safety.

Algorithms for optimizing decisions can amplify the impact of its users, regard-
less of their intention. If the objective of the user of these algorithms, for example,
is to spread misinformation during a political election, then optimization pro-
cesses can help facilitate this. However, similar algorithms can be used to monitor
and counteract the spread of false information. Sometimes the implementation
of these decision-making algorithms can lead to downstream consequences that
their users did not intend.27 27 For a general discussion, see B.

Christian, The Alignment Problem.
Norton & Company, 2020. See also
the discussion by D. Amodei, C.
Olah, J. Steinhardt, P. Christiano,
J. Schulman, and D. Mané, “Con-
crete Problems in AI Safety,” 2016.
arXiv: 1606.06565v2.

Although algorithms have the potential to bring significant benefits, there
are also challenges associated with their implementation in society. Data-driven
algorithms often suffer from inherent biases and blind spots due to the way that
data is collected. As algorithms become part of our lives, it is important to under-
stand how the risk of bias can be reduced and how the benefits of algorithmic
progress can be distributed in a manner that is equitable and fair. Algorithms can
also be vulnerable to adversarial manipulation, and it is critical that we design
algorithms that are robust to such attacks. It is also important to extend moral
and legal frameworks for preventing unintended consequences and assigning
responsibility.
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1.6 Overview

This book is divided into five parts. The first part addresses the problem of
reasoning about uncertainty and objectives in simple decisions at a single point
in time. The second extends decision making to sequential problems, where we
must make a sequence of decisions in response to information about the outcomes
of our actions as we proceed. The third addresses model uncertainty, where we
do not start with a known model and must learn how to act through interaction
with the environment. The fourth addresses state uncertainty, where imperfect
perceptual information prevents us from knowing the full environmental state.
The final part discusses decision contexts involving multiple agents.

1.6.1 Probabilistic Reasoning
Rational decisionmaking requires reasoning about our uncertainty and objectives.
This part of the book begins by discussing how to represent uncertainty as a prob-
ability distribution. Real-world problems require reasoning about distributions
over many variables. We will discuss how to construct these models, how to use
them to make inferences, and how to learn their parameters and structure from
data. We then introduce the foundations of utility theory and show how it forms
the basis for rational decision making under uncertainty through the maximum
expected utility principle. We then discuss how notions of utility theory can be
incorporated into the probabilistic graphical models introduced earlier in this
chapter to form what are called decision networks.

1.6.2 Sequential Problems
Many important problems require that we make a series of decisions. The same
principle of maximum expected utility still applies, but optimal decision making
in a sequential context requires reasoning about future sequences of actions and
observations. This part of the book will discuss sequential decision problems in
stochastic environments, where the outcomes of our actions are uncertain. We
will focus on a general formulation of sequential decision problems under the
assumption that the model is known and that the environment is fully observable.
We will relax both of these assumptions later in the book. Our discussion will
begin with the introduction of the Markov decision process (MDP), the standard
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mathematical model for sequential decision problems. We will discuss several
approaches for finding exact solutions to these types of problems. Because large
problems sometimes do not permit exact solutions to be found efficiently, we will
discuss a collection of both offline and online approximate solutionmethods, along
with a type of method that involves directly searching the space of parameterized
decision policies. Finally, we will discuss approaches for validating that our
decision strategies will perform as expected when deployed in the real world.

1.6.3 Model Uncertainty
In our discussion of sequential decision problems up to this point, we have
assumed that the transition and reward models are known. In many problems,
however, the dynamics and rewards are not known exactly, and the agent must
learn to act through experience. By observing the outcomes of its actions in the
form of state transitions and rewards, the agent is to choose actions that maximize
its long-term accumulation of rewards. Solving such problems in which there
is model uncertainty is the subject of the field of reinforcement learning and the
focus of this part of the book. We will discuss several challenges in addressing
model uncertainty. First, the agent must carefully balance the exploration of the
environment with the exploitation of knowledge gained through experience.
Second, rewards may be received long after the important decisions have been
made, so credit for later rewards must be assigned to earlier decisions. Third, the
agent must generalize from limited experience. We will review the theory and
some of the key algorithms for addressing these challenges.

1.6.4 State Uncertainty
In this part, we extend uncertainty to include the state. Instead of observing the
state exactly, we receive observations that have only a probabilistic relationship
with the state. Such problems can be modeled as a partially observable Markov
decision process (POMDP). A common approach to solving POMDPs involves
inferring a belief distribution over the underlying state at the current time step and
then applying a policy that maps beliefs to actions. This part begins by discussing
how to update our belief distribution, given a past sequence of observations and
actions. It then discusses a variety of exact and approximate methods for solving
POMDPs.
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1.6.5 Multiagent Systems
Up to this point, there has only been one agent making decisions within the envi-
ronment. This part expands the previous four parts to multiple agents, discussing
the challenges that arise from interaction uncertainty. We begin by discussing
simple games, where a group of agents simultaneously each select an action.
The result is an individual reward for each agent based on the combined joint
action. The Markov game (MG) represents a generalization of both simple games
to multiple states and the MDP to multiple agents. Consequently, the agents
select actions that can stochastically change the state of a shared environment.
Algorithms for MGs rely on reinforcement learning due to uncertainty about
the policies of the other agents. A partially observable Markov game (POMG) intro-
duces state uncertainty, further generalizing MGs and POMDPs, as agents now
receive only noisy local observations. The decentralized partially observable Markov
decision process (Dec-POMDP) focuses the POMG on a collaborative, multiagent
team where there is a shared reward among the agents. This part of the book
presents these four categories of problems and discusses exact and approximate
algorithms that solve them.
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