
F Problems

This section covers some of the decision problems used throughout this book.
Table F.1 summarizes some of the important properties of these problems.

Problem |I| |S| |A| |O| γ

Hex world — varies 6 — 0.9
2048 — ∞ 4 — 1

Cart-pole — (⊂ R
4) 2 — 1

Mountain car — (⊂ R
2) 3 — 1

Simple regulator — (⊂ R) (⊂ R) — 1 or 0.9
Aircraft collision avoidance — (⊂ R

3) 3 — 1
Crying baby — 2 3 2 0.9
Machine replacement — 3 4 2 1
Catch — 4 10 2 0.9
Prisoner’s dilemma 2 — 2 per agent — 1
Rock-paper-scissors 2 — 3 per agent — 1
Traveler’s dilemma 2 — 99 per agent — 1
Predator-prey hex world varies varies 6 per agent — 0.9
Multicaregiver crying baby 2 2 3 per agent 2 per agent 0.9
Collaborative predator-prey hex world varies varies 6 per agent 2 per agent 0.9

Table F.1. Problem summary.
The DecisionMakingProblems.jl
package implements these prob-
lems.

F.1 Hex World

The hex world problem is a simple MDP in which we must traverse a tile map to
reach a goal state. Each cell in the tile map represents a state in the MDP. We
can attempt to move in any of the six directions. The effects of these actions are
stochastic. As shown in figure F.1, we move 1 step in the specified direction with a
probability of 0.7, and we move 1 step in one of the neighboring directions, each
with a probability of 0.15. If we bump against the outer border of the grid, then
we do not move at all, at a cost of 1.0.

P = 0.7

P = 0.15

P = 0.15

Figure F.1. Actions in the hexworld
problem have probabilistic effects.

610 appendix f. problems

Taking any action in certain cells gives us a specified reward and then transports
us to a terminal state. No further reward is received in the terminal state. The total
number of states in the hex world problem is thus the number of tiles plus 1, for
the terminal state. Figure F.2 shows an optimal policy for two hex world problem
configurations used throughout this book. We refer to the larger instance as ‘‘hex
world’’ and to the smaller, simpler instance as ‘‘straight-line hex world.’’1 The

1 The straight-line formulation is
similar to the hall problem, a com-
mon benchmark MDP. See, for ex-
ample, L. Baird, “Residual Algo-
rithms: Reinforcement Learning
with Function Approximation,” in
International Conference on Machine
Learning (ICML), 1995.

straight-line hex world formulation is used to illustrate how reward is propagated
from its single reward-bearing state on the rightmost cell.

standard hex world straight-line hex world

-10
5

10 10

−10 −8 −6 −4 −2 0 2 4 6 8 10

Figure F.2. The standard hexworld
and straight-line hex world prob-
lems. The top row shows the base
problem setup and colors hexes
that have terminal rewards. The
bottom row shows an optimal pol-
icy for each problem, colored ac-
cording to the expected value, with
arrows indicating the action to take
in each state.

F.2 2048

The 2048 problem is based on a popular tile game played on a 4× 4 board.2 It has 2 This game was developed by
Gabriele Cirulli in 2014.discrete state and action spaces. The board is initially empty except for two tiles,

each of which can have value 2 or 4. A randomly selected starting state is shown
in figure F.3.

2
4

Figure F.3. A random starting state
in the 2048 problem consists of two
tiles, each with value 2 or 4.

The agent can move all tiles left, down, right, or up. Choosing a direction
pushes all the tiles in that direction. A tile stops when it hits a wall or another tile
of a different value. A tile that hits another tile of the same value merges with that
tile, forming a new tile with their combined value. After shifting and merging, a
new tile of value 2 or 4 is spawned in a random open space. This process is shown
in figure F.4.

The game ends when we can no longer shift tiles to produce an empty space.
Rewards are obtained only when merging two tiles, and they are equal to the

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

f.3. cart-pole 611

2
4 4

2
4
2

4shift tiles spawn tile Figure F.4. An action in 2048 shifts
all tiles in the chosen direction and
then spawns a new tile in an empty
space.

merged tile’s value. An example state-action transition with a merge is shown in
figure F.5.

2 4

4

2 8 2 8

2shift & merge spawn tile

+8 reward Figure F.5. Here, the down action is
used to shift all tiles, resulting in
the merging of two 4 tiles to pro-
duce an 8 tile and receive a reward
of 8.

A common strategy is to choose a corner and alternate between the two actions
that lead in that direction. This tends to stratify the tiles such that the larger-valued
ones are in the corner and the newly spawned tiles are in the periphery.

F.3 Cart-Pole

The cart-pole problem,3 also sometimes called the pole balancing problem, has the 3 A.G. Barto, R. S. Sutton, and C.W.
Anderson, “Neuronlike Adaptive
Elements That Can Solve Diffi-
cult Learning Control Problems,”
IEEE Transactions on Systems, Man,
and Cybernetics, vol. SMC-13, no. 5,
pp. 834–846, 1983.

agent move a cart back and forth. As shown in figure F.6, this cart has a rigid pole
attached to it by a swivel, so that as the cart moves back and forth, the pole begins
to rotate. The objective is to keep the pole vertically balanced while keeping the
cart within the allowed lateral bounds. As such, 1 reward is obtained each time
step in which these conditions are met, and transition to a terminal zero-reward
state occurs whenever they are not.

The actions are to either apply a left or right force F to the cart. The state
space is defined by four continuous variables: the lateral position of the cart x, its
lateral velocity v, the angle of the pole θ, and the pole’s angular velocity ω. The
problem involves a variety of parameters, including the mass of the cart mcart, the
mass of the pole mpole, the pole length ℓ, the force magnitude |F|, gravitational
acceleration g, the time step ∆t, the maximum x deviation, the maximum angular
deviation, and friction losses between the cart and the pole or between the cart
and its track.4

4 We use the parameters imple-
mented in the OpenAI Gym. G.
Brockman, V. Cheung, L. Petters-
son, J. Schneider, J. Schulman, J.
Tang, and W. Zaremba, “OpenAI
Gym,” 2016. arXiv: 1606.01540v1.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

https://arxiv.org/abs/1606.01540v1

612 appendix f. problems

x

θ

F
gravity

Figure F.6. In the cart-pole prob-
lem, a vehicle must alternate be-
tween accelerating left and right in
order to balance a pole. The pole
is not allowed to fall past a given
angle, and the cart is not allowed
to travel outside of given limits.

Given an input force F, the angular acceleration of the pole is

α =
g sin(θ)− τ cos(θ)

ℓ

2

(

4
3 −

mpole
mcart+mpole

cos(θ)2
) (F.1)

where
τ =

F + ω2ℓ sin θ/2

mcart + mpole
(F.2)

and the lateral cart acceleration is

a = τ − ℓ

2
α cos(θ)

mpole
mcart + mpole

(F.3)

The state is updated with Euler integration:
x ← x + v∆t

v← v + a∆t

θ ← θ + ω∆t

ω ← ω + α∆t

(F.4)

The cart-pole problem is typically initialized with each random value drawn
from U(−0.05, 0.05). Rollouts are run until the lateral or angular deviations are
exceeded.

F.4 Mountain Car

In the mountain car problem,5 a vehicle must drive to the right, out of a valley.

5 This problem was introduced
in A. Moore, “Efficient Memory-
Based Learning for Robot Control,”
Ph.D. dissertation, University of
Cambridge, 1990. Its popular, sim-
pler form, with a discrete action
space, was first given in S. P. Singh
and R. S. Sutton, “Reinforcement
Learningwith Replacing Eligibility
Traces,” Machine Learning, vol. 22,
pp. 123–158, 1996.

The valley walls are steep enough that blindly accelerating toward the goal with
insufficient speed causes the vehicle to come to a halt and slide back down. The
agent must learn to accelerate left first in order to gain enough momentum on
the return to make it up the hill.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

f.5 . s imple regulator 613

The state is the vehicle’s horizontal position x ∈ [−1.2, 0.6] and speed v ∈
[−0.07, 0.07]. At any given time step, the vehicle can accelerate left (a = −1),
accelerate right (a = 1), or coast (a = 0). We receive −1 reward every turn, and
terminate when the vehicle makes it up the right side of the valley past x = 0.6.
A visualization of the problem is given in figure F.7.

x

goal

gravity

Figure F.7. In the mountain car
problem, a vehicle must alternate
between accelerating left and right
in order to power itself up a hill.
The goal region is shown in blue.

Transitions in the mountain car problem are deterministic:

v′ ← v + 0.001a− 0.0025 cos(3x)

x′ ← x + v′

The gravitational term in the speed update is what drives the underpowered
vehicle back toward the valley floor. Transitions are clamped to the bounds of the
state space.

The mountain car problem is a good example of a problem with delayed
return. Many actions are required to get to the goal state, making it difficult for an
untrained agent to receive anything other than consistent unit penalties. The best
learning algorithms are able to efficiently propagate knowledge from trajectories
that reach the goal back to the rest of the state space.

F.5 Simple Regulator

The simple regulator problem is a simple linear quadratic regulator problem with a
single state. It is an MDP with a single real-valued state and a single real-valued

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

614 appendix f. problems

action. Transitions are linear Gaussian, such that a successor state s′ is drawn from
the Gaussian distribution N (s + a, 0.12

). Rewards are quadratic, R(s, a) = −s2,
and do not depend on the action. The examples in this book use the initial state
distribution N (0.3, 0.12

).
Optimal finite horizon policies cannot be derived using the methods from

section 7.8. In this case, Ts = [1], Ta = [1], Rs = [−1], Ra = [0], and w is drawn
from N (0, 0.12

). Applications of the Riccati equation require that Ra be negative
definite, which it is not.

The optimal policy is π(s) = −s, resulting in a successor state distribution
centered at the origin. In the policy gradient chapters, we learned parameterized
policies of the form πθ(s) = N

(

θ1s, θ2
2

). In such cases, the optimal parameteriza-
tion for the simple regulator problem is θ1 = −1 and θ2 is asymptotically close to
zero.

The optimal value function for the simple regulator problem is also centered
about the origin, with reward decreasing quadratically:

U(s) = −s2 +
γ

1− γ
Es∼N (0,0.12)

[

−s2
]

≈ −s2 − 0.010
γ

1− γ

F.6 Aircraft Collision Avoidance

The aircraft collision avoidance problem involves deciding when to issue a climb or
descend advisory to an aircraft to avoid an intruder aircraft.6 There are three 6 This formulation is a highly sim-

plified version of the problem de-
scribed by M. J. Kochenderfer and
J. P. Chryssanthacopoulos, “Ro-
bust Airborne Collision Avoidance
Through Dynamic Programming,”
Massachusetts Institute of Technol-
ogy, Lincoln Laboratory, Project Re-
port ATC-371, 2011.

actions corresponding to no advisory, commanding a 5 m/s descend, and com-
manding a 5 m/s climb. The intruder is approaching us head on, with a constant
horizontal closing speed. The state is specified by the altitude h of our aircraft
measured relative to the intruder aircraft, our vertical rate ḣ, the previous action
aprev, and the time to potential collision tcol. Figure F.8 illustrates the problem
scenario.

Given action a, the state variables are updated as follows:
h← h + ḣ∆t (F.5)
ḣ← ḣ + (ḧ + ν)∆t (F.6)

aprev ← a (F.7)
tcol ← tcol − ∆t (F.8)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

f.7. crying baby 615

our aircraft

intruder

tcol (s)
ḣ (m/s)

h (m)

Figure F.8. State variables for
the aircraft collision avoidance
problem.

where ∆t = 1 s and ν is selected from a discrete distribution over−2, 0, or 2 m/s2

with associated probabilities 0.25, 0.5, and 0.25. The value ḧ is given by

ḧ =















0 if a = no advisory
a/∆t if |a− ḣ|/∆t < ḧlimit
sign(a− ḣ)ḧlimit otherwise

(F.9)

where ḧlimit = 1 m/s2.
The episode terminates when taking an action when tcol < 0. There is a penalty

of 1 when the intruder comes within 50 m when tcol = 0, and there is a penalty
of 0.01 when a 6= aprev.

The aircraft collision avoidance problem can be efficiently solved over a dis-
cretized grid using backward induction value iteration (section 7.6) because the
dynamics deterministically reduce tcol. Slices of the optimal value function and
policy are depicted in figure F.9.

F.7 Crying Baby

The crying baby problem7 is a simple POMDP with two states, three actions, and

7 The version of the crying baby
problem presented in this text is
an extension of the original, sim-
pler crying baby problem in M. J.
Kochenderfer, Decision Making Un-
der Uncertainty: Theory and Applica-
tion. MIT Press, 2015.

two observations. Our goal is to care for a baby, and we do so by choosing at each
time step whether to feed the baby, sing to the baby, or ignore the baby.

The baby becomes hungry over time. We do not directly observe whether the
baby is hungry; instead, we receive a noisy observation in the form of whether
the baby is crying. The state, action, and observation spaces are as follows:

S = {sated,hungry}
A = {feed, sing, ignore}
O = {crying,quiet}

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

616 appendix f. problems

−200

−100

0

100

200

h
(m

)

ḣ = 0.0(m/s) ḣ = 5.0(m/s)

−1

−0.8

−0.6

−0.4

−0.2

0

0 10 20 30 40
−200

−100

0

100

200

tcol(s)

h
(m

)

0 10 20 30 40

tcol(s)

no advisory
descend
climb

Figure F.9. Optimal value function
slices (top) and policy slices (bot-
tom) for the aircraft collision avoid-
ance problem. The value function
and policy are symmetric about 0
when the vertical separation rate is
0, but are skewedwhen the vertical
separation rate is nonzero. Overall,
our aircraft need not take action un-
til the intruder aircraft is close.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

f.8. machine replacement 617

Feeding will always sate the baby. Ignoring the baby risks a sated baby be-
coming hungry, and ensures that a hungry baby remains hungry. Singing to the
baby is an information-gathering action with the same transition dynamics as
ignoring, but without the potential for crying when sated (not hungry) and with
an increased chance of crying when hungry.

The transition dynamics are as follows:

T(sated | hungry, feed) = 100 %

T(hungry | hungry, sing) = 100 %

T(hungry | hungry, ignore) = 100 %

T(sated | sated, feed) = 100 %

T(hungry | sated, sing) = 10 %

T(hungry | sated, ignore) = 10 %

The observation dynamics are as follows:

O(cry | feed,hungry) = 80 %

O(cry | sing,hungry) = 90 %

O(cry | ignore,hungry) = 80 %

O(cry | feed, sated) = 10 %

O(cry | sing, sated) = 0 %

O(cry | ignore, sated) = 10 %

The reward function assigns −10 reward if the baby is hungry, independent
of the action taken. The effort of feeding the baby adds a further −5 reward,
whereas singing adds −0.5 reward. As baby caregivers, we seek the optimal
infinite-horizon policywith discount factor γ = 0.9. Figure F.10 shows the optimal
value function and associated policy.

0 0.2 0.4 0.6 0.8 1

−20

−15

−10

P(hungry)

U
(b
)

ignore
feed

Figure F.10. The optimal policy
for the crying baby problem. This
infinite horizon solution does not
recommend singing for any belief
state. As shown in figure 20.3, it
is optimal to sing in some finite-
horizon versions of this problem.

F.8 Machine Replacement

The machine replacement problem is a discrete POMDP in which we maintain a
machine that creates products.8 This problem is used for its relative simplicity

8 R.D. Smallwood and E. J. Sondik,
“The Optimal Control of Partially
Observable Markov Processes over
a Finite Horizon,” Operations Re-
search, vol. 21, no. 5, pp. 1071–1088,
1973. The original problem formu-
lation includes salvage values, or ter-
minal rewards that are equal to the
number of working parts. We do
not model terminal rewards sep-
arately in this book. Terminal re-
wards could be included in our
framework by explicitly including
the horizon in the problem state.

and the varied size and shape of the optimal policy regions. The optimal policy
for certain horizons even has disjoint regions in which the same action is optimal,
as shown in figure F.11.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

618 appendix f. problems

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P
(0 failed components)P

(1
fai

led
co
mp

on
en

t)

P(2 failed components)

manufacture
examine
interrupt
replace

Figure F.11. The 14-step optimal
policy for themachine replacement
problemhas disjoint regionswhere
manufacturing is optimal. Each
polygon corresponds to the region
in which a particular alpha vector
dominates.

The machine produces products for us when it is working properly. Over
time, the two primary components in the machine may break down, together or
individually, leading to defective products. We can indirectly observe whether
the machine is faulty by examining the products, or by directly examining the
components in the machine.

The problem has states S = {0, 1, 2}, corresponding to the number of faulty
internal components. There are four actions, used prior to each production cycle:

1. manufacture, manufacture product and do not examine the product,

2. examine, manufacture product and examine the product,

3. interrupt, interrupt production, inspect, and replace failed components, and

4. replace, replace both components after interrupting production.

When we examine the product, we can observe whether it is defective. All
other actions observe only nondefective products.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

f.9. catch 619

The components in the machine independently have a 10 % chance of break-
ing down with each production cycle. Each failed component contributes a 50 %

chance of creating a defective product. A nondefective product nets 1 reward,
whereas a defective product nets 0 reward. The transition dynamics assume that
component breakdown is determined before a product is made, so the manu-
facture action on a fully-functional machine does not have a 100 % chance of
producing 1 reward.

The manufacture action incurs no penalty. Examining the product costs 0.25.
Interrupting the line costs 0.5 to inspect the machine, causes no product to be
made, and incurs a cost of 1 for each broken component. Simply replacing both
components always incurs a cost of 2, but it does not have an inspection cost.

The transition, observation, and reward functions are given in table F.2. Optimal
policies for increasing horizons are shown in figure F.12.

Action T(s′ | s, a) O(o | a, s′) R(s, a)

manufacture
s′

s





0.81 0.18 0.01
0 0.9 0.1
0 0 1





o

s′





1 0
1 0
1 0



 s





0.9025
0.475
0.25





examine s





0.81 0.18 0.01
0 0.9 0.1
0 0 1



 s′





1 0
0.5 0.5
0.25 0.75



 s





0.6525
0.225
0





interrupt s





1 0 0
1 0 0
1 0 0



 s′





1 0
1 0
1 0



 s





−0.5
−1.5
−2.5





replace s





1 0 0
1 0 0
1 0 0



 s′





1 0
1 0
1 0



 s





−2
−2
−2





Table F.2. The transition, observa-
tion, and reward functions for the
machine replacement problem.

F.9 Catch

In the catch problem, Johnny would like to successfully catch throws from his
father, and he prefers catching longer-distance throws. However, he is uncertain
about the relationship between the distances of a throw and the probability of
a successful catch. He does know that the probability of a successful catch is
the same, regardless of whether he is throwing or catching; and he has a finite
number of attempted catches to maximize his expected utility before he has to go
home.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

620 appendix f. problems

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P
(1

fai
led

co
mp

on
en

t)
5-step plan

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

6-step plan
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P
(0 failed components)

7-step plan

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

8-step plan
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

9-step plan
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

10-step plan

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P(2 failed components)

11-step plan
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

12-step plan
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

13-step plan

manufacture
examine
interrupt
replace

Figure F.12. Optimal policies for
the machine replacement problem
for increasing horizons. Each poly-
gon corresponds to the region in
which a particular alpha vector
dominates.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

f.10. prisoner’s dilemma 621

As shown in figure F.13, Johnny models the probability of successfully catching
a ball thrown a distance d as

P(catch | d) = 1− 1

1 + exp
(

− d−s
15

) (F.10)

where the proficiency s is unknown and does not change over time. To keep things
manageable, he assumes that s belongs to the discrete set S = {20, 40, 60, 80}. 0 20 40 60 80 100

0

0.5

1

d

P
(c
at
ch
|d

)

s = 20 s = 40

s = 60 s = 80

Figure F.13. The catch probability
as a function of throw distance d
for the four proficiencies in S .

The reward for a successful catch is equal to the distance. If the catch is un-
successful, then the reward is zero. Johnny wants to maximize the reward over a
finite number of attempted throws. With each throw, Johnny chooses a distance
from a discrete set A = {10, 20, . . . , 100}. He begins with a uniform distribution
over S .

F.10 Prisoner’s Dilemma

The prisoner’s dilemma is a classic problem in game theory involving agents with
conflicting objectives. There are two prisoners that are on trial. They can choose
to cooperate, remaining silent about their shared crime, or defect, blaming the
other for their crime. If they both cooperate, they both serve time for one year. If
agent i cooperates and the other agent −i defects, then i serves four years and −i

serves no time. If both defect, then they both serve three years.9 9 A.W. Tucker gave the name to this
game and formulated the story. It
was based on the original problem
formulation of Merrill Flood and
Melvin Dresher at RAND in 1950.
A history is provided by W. Pound-
stone, Prisoner’s Dilemma. Double-
day, 1992.

The game has two agents, I = {1, 2} and A = A1 × A2, with each Ai =

{cooperate,defect}. The table in figure F.14 expresses the individual rewards.
Rows represent actions for agent 1. Columns represent actions for agent 2. The
rewards for agent 1 and 2 are shown in each cell: R1(a1, a2), R2(a1, a2). The game
can be played once or repeated any number of times. In the infinite horizon case,
we use a discount factor of γ = 0.9.

F.11 Rock-Paper-Scissors

One common game played around the world is rock-paper-scissors. There are two
agents who can each choose either rock, paper, or scissors. Rock beats scissors,
resulting in a unit reward for the agent playing rock and a unit penalty for the
agent playing scissors. Scissors beats paper, resulting in a unit reward for the
agent playing scissors and a unit penalty for the agent playing paper. Finally,

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

622 appendix f. problems

−1,−1 −4, 0

0,−4 −3,−3
co

op
er
at
e

de
fec

t

defectcooperate

ag
en

t1

agent 2 Figure F.14. The rewards associ-
ated with the prisoner’s dilemma.

paper beats rock, resulting in a unit reward for the agent playing paper and a
unit penalty for the agent playing rock.

We have I = {1, 2} and A = A1 ×A2 with each Ai = {rock,paper, scissors}.
Figure F.15 shows the rewards associated with the game, with each cell denoting
R1(a1, a2), R2(a1, a2). The game can be played once or repeated any number of
times. In the infinite horizon case, we use a discount factor of γ = 0.9.

0, 0 −1, 1 1,−1

1,−1 0, 0 −1, 1

−1, 1 1,−1 0, 0

ro
ck

pa
pe

r
sc
iss

or
s

rock paper scissors

ag
en

t1

agent 2 Figure F.15. The rewards associ-
ated with the rock-paper-scissors
game.

F.12 Traveler’s Dilemma

The traveler’s dilemma is a game where an airline loses two identical suitcases from
two travelers.10 The airline asks the travelers to write down the value of their

10 K. Basu, “The Traveler’s Dilem-
ma: Paradoxes of Rationality in
Game Theory,” American Economic
Review, vol. 84, no. 2, pp. 391–395,
1994.

suitcases, which can be between $2 and $100, inclusive. If both put down the

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

f.13. predator-prey hex world 623

same value, then they both get that value. Otherwise, the traveler with the lower
value gets their value plus $2 and the traveler with the higher value gets the lower
value minus $2. In other words, the reward function is as follows:

Ri(ai, a−i) =















ai if ai = a−i

ai + 2 if ai < a−i

a−i − 2 otherwise
(F.11)

Most people tend to put down between $97 and $100. However, somewhat coun-
terintuitively, there is a unique Nash equilibrium of only $2.

F.13 Predator-Prey Hex World

The predator-prey hex world problem expands the hex world dynamics to include
multiple agents consisting of predators and prey. A predator tries to capture a
prey as quickly as possible, and a prey tries to escape the predators as long as
possible. The initial state of the hex world is shown in figure F.16. There are no
terminal states in this game.

Figure F.16. The initial state in
the predator-prey hex world. The
predator is red and the prey is
blue. The arrows indicate poten-
tial actions taken by the individual
agents from their initial cells.

There is a set of predators Ipred and a set of prey Iprey, with I = Ipred ∪ Iprey.
The states contain the locations of each agent: S = S1 × · · · × S |I|, with each S i

equal to all hex locations. The joint action space is A = A1 × · · · × A|I|, where
each Ai consists of all six hex directions of movement.

If a predator i ∈ Ipred and prey j ∈ Iprey share the same hex with si = sj,
then the prey is devoured. The prey j is then transported to a random hex cell,
representing its offspring appearing in the world. Otherwise, the state transitions
are independent and are as described in the original hex world.

One or more predators can capture one or more prey if they all happen to be
in the same cell. If n predators and m prey all share the same cell, the predators
receive a reward of m/n. For example, if two predators capture one prey together,
they each get a reward of 1/2. If three predators capture five prey together, they
each get a reward of 5/3. Moving predators receive unit penalty. Prey can move
with no penalty, but they receive a penalty of 100 for being devoured.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

624 appendix f. problems

F.14 Multicaregiver Crying Baby

The multicaregiver crying baby problem is a multiagent extension of the crying baby
problem. For each caregiver i ∈ I = {1, 2}, the states, actions, and observations
are as follows:

S = {hungry, sated} (F.12)
Ai = {feed, sing, ignore} (F.13)
Oi = {crying,quiet} (F.14)

The transition dynamics are similar to the original crying baby problem, except
that either caregiver can feed to satisfy the baby:

T(sated | hungry, (feed, ⋆)) = T(sated | hungry, (⋆, feed)) = 100 % (F.15)

where ⋆ indicates all possible other variable assignments. Otherwise, if the actions
are not feed, then the baby transitions between sated to hungry as before:

T(hungry | hungry, (⋆, ⋆)) = 100 % (F.16)
T(sated | sated, (⋆, ⋆)) = 50 % (F.17)

The observation dynamics are also similar to the single-agent version, but the
model ensures that both caregivers make the same observation of the baby, but
not necessarily of each other’s choice of caregiving action:

O((cry, cry) | (sing, ⋆),hungry) = O((cry, cry) | (⋆, sing),hungry) = 90 % (F.18)
O((quiet,quiet) | (sing, ⋆),hungry) = O((quiet,quiet) | (⋆, sing),hungry) = 10 % (F.19)

O((cry, cry) | (sing, ⋆), sated) = O((cry, cry) | (⋆, sing), sated) = 0 % (F.20)

If the actions are not to sing, then the observations are as follows:

O((cry, cry) | (⋆, ⋆),hungry) = O((cry, cry) | (⋆, ⋆),hungry) = 90 % (F.21)
O((quiet,quiet) | (⋆, ⋆),hungry) = O((quiet,quiet) | (⋆, ⋆),hungry) = 10 % (F.22)

O((cry, cry) | (⋆, ⋆), sated) = O((cry, cry) | (⋆, ⋆), sated) = 0 % (F.23)
O((quiet,quiet) | (⋆, ⋆), sated) = O((quiet,quiet) | (⋆, ⋆), sated) = 100 % (F.24)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

f.15. collaborative predator-prey hex world 625

Both caregivers want to help the baby when the baby is hungry, assigning the
same penalty of −10.0 for both. However, the first caregiver favors feeding and
the second caregiver favors singing. For feeding, the first caregiver receives an
extra penalty of only −2.5, while the second caregiver receives an extra penalty
of −5.0. For singing, the first caregiver is penalized by −0.5, while the second
caregiver is penalized by only −0.25.

F.15 Collaborative Predator-Prey Hex World

The collaborative predator-prey hex world is a variant of the predator-prey hex world
in which a team of predators chase a single, moving prey. The predators must
work together to capture a prey. The prey moves randomly to a neighboring cell
that is not occupied by a predator.

Predators also only make noisy local observations of the environment. Each
predator i detectswhether a prey iswithin a neighboring cellOi = {prey,nothing}.
The predators are penalized with a −1 reward for movement. They receive a re-
ward of 10 if one or more of them capture the prey, meaning that they are in the
same cell as the prey. At this point, the prey is randomly assigned a new cell,
signifying the arrival of a new prey for the predators to begin hunting again.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

