
E Search Algorithms

A search problem is concerned with finding an appropriate sequence of actions to
maximize the obtained reward over subsequent deterministic transitions. Search
problems are Markov decision processes (covered in part II) with determinis-
tic transition functions. Some well-known search problems include sliding tile
puzzles, the Rubik’s Cube, Sokoban, and finding the shortest path to a destination.

E.1 Search Problems

In a search problem, we choose action at at time t based on observing state st

and then receive a reward rt. The action space A is the set of possible actions,
and the state space S is the set of possible states. Some of the algorithms assume
that these sets are finite, but this is not required in general. The state evolves
deterministically and depends only on the current state and action taken. We
use A(s) to denote the set of valid actions from state s. When there are no valid
actions, the state is considered to be absorbing and yields zero reward for all future
time steps. Goal states, for example, are typically absorbing.

The deterministic state transition function T(s, a) gives the successor state s′.
The reward function R(s, a) gives the reward received when executing action a

from state s. Search problems typically do not include a discount factor γ that
penalizes future rewards. The objective is to choose a sequence of actions that
maximizes the sum of rewards, or return. Algorithm E.1 provides a data structure
for representing search problems.

600 appendix e. search algorithms

struct Search
𝒮 # state space
𝒜 # valid action function
T # transition function
R # reward function

end

AlgorithmE.1. The search problem
data structure.

E.2 Search Graphs

A search problem with finite state and action spaces can be represented as a
search graph. The nodes correspond to states, and edges correspond to transitions
between states. Associated with each edge from a source to a destination state
are both an action that results in that state transition and the expected reward
when taking that action from the source state. Figure E.1 depicts a subset of such
a search graph for a 3× 3 sliding tile puzzle.

1 2 3
4

5 67 8

1 2 3
4 5 67 8

1 2 3
4 5 67 8

1 2 3
4
5 67 8

1
2

3
4

5 67 8

1 2 3
4

567 8

−1

−1 −1

−1 0

initial state terminal state

Figure E.1. A few states in a sliding
tile puzzle, portrayed as a graph.
Two transitions can be taken from
the initial state to arrive at the ter-
minal solution state. The numbers
on the edges represent rewards.

Many graph search algorithms conduct a search from an initial state and fan
out from there. In so doing, these algorithms trace out a search tree. The initial
state is the root node, and any time we transition from s to s′ during search, an
edge from s to a new node s′ is added to the search tree. A search tree for the
same sliding tile puzzle is shown in figure E.2.

E.3 Forward Search

Perhaps the simplest graph search algorithm is forward search (algorithm E.2),
which determines the best action to take from an initial state s by looking at all
possible action-state transitions up to a depth (or horizon) d. At depth d, the
algorithm uses an estimate of the value of the state U(s).1 The algorithm calls

1 The approximate value functions
in this chapter are expected to re-
turn 0 when in a state with no avail-
able actions.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

e.4. branch and bound 601

1 2 3
4

5 67 8

1 2 3
4 5 67 8

1 2 3
4 5 67 8

1 2 3
4
5 67 8

1
2

3
4

5 67 8

1 2 3
4

567 8

−1 −1 −1−1

0

Figure E.2. The graph for the 3× 3
sliding tile puzzle in figure E.1 can
be represented as a tree search
problem. The search begins at the
root node and flows down the tree.
In this case, a path can be traversed
to the desired terminal state.

itself recursively in a depth-first manner, resulting in a search tree and returning
a tuple with an optimal action a and its finite-horizon expected value u.

function forward_search(𝒫::Search, s, d, U)
𝒜, T, R = 𝒫.𝒜(s), 𝒫.T, 𝒫.R
if isempty(𝒜) || d ≤ 0

return (a=nothing, u=U(s))
end
best = (a=nothing, u=-Inf)
for a in 𝒜

s′ = T(s,a)
u = R(s,a) + forward_search(𝒫, s′, d-1, U).u
if u > best.u

best = (a=a, u=u)
end

end
return best

end

Algorithm E.2. The forward search
algorithm for finding an approxi-
mately optimal action for a discrete
search problem 𝒫 from a current
state s. The search is performed to
depth d, at which point the termi-
nal value is estimated with an ap-
proximate value function U. The re-
turned named tuple consists of the
best action a and its finite-horizon
expected value u.

Figure E.3 shows an example of a search tree obtained by running forward
search on a sliding tile puzzle. Depth-first search can be wasteful; all reachable
states for the given depth are visited. Searching to depth d will result in a search
tree with O(|A|d) nodes for a problem with |A| actions.

E.4 Branch and Bound

A general method known as branch and bound (algorithm E.3) can significantly
reduce computation by using domain information about the upper and lower

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

602 appendix e. search algorithms

1 2 3
4

5 67 8

1 2 3
4 5 67 8

1 2 3
4 5 67 8

1 2 3
4

5 67 8

1 2 3
4 5 67 8

1 2 3
4
5 67 8

1 2 3
4
5 67

8
1

2 3
4
5 67 8

1 2 3
4

5 67 8

1
2

3
4

5 67 8

1 2 3
4

5 67 8

1
2

3
4

5 67 8

1
2
3

4
5 67 8

1 2 3
4

567 8

1 2 3
4

567 8
1 2 3
4

5 67 8

1 2
34

567 8

−1 −1 −1 −1

−1 −1 0 −1 −1 −1 −1 −1 −1 −1 −1 −1

Figure E.3. A search tree arising
from running forward search to
depth 2 on a sliding tile puzzle. All
states reachable in two steps are
visited, and some are visited more
than once. We find that there is
one path to the terminal node. That
path has a return of −1, whereas
all other paths have a return of −2.

bounds on expected reward. The upper bound on the return from taking action a

from state s is Q(s, a). The lower bound on the return from state s is U(s). Branch
and bound follows the same procedure as depth-first-search, but it iterates over
the actions according to their upper bound, and proceeds to a successor node
only if the best possible value it could return is higher than what has already been
discovered by following an earlier action. Branch and bound search is compared
to forward search in example E.1.

function branch_and_bound(𝒫::Search, s, d, Ulo, Qhi)
𝒜, T, R = 𝒫.𝒜(s), 𝒫.T, 𝒫.R
if isempty(𝒜) || d ≤ 0

return (a=nothing, u=Ulo(s))
end
best = (a=nothing, u=-Inf)
for a in sort(𝒜, by=a->Qhi(s,a), rev=true)

if Qhi(s,a) ≤ best.u
return best # safe to prune

end
u = R(s,a) + branch_and_bound(𝒫,T(s,a),d-1,Ulo,Qhi).u
if u > best.u

best = (a=a, u=u)
end

end
return best

end

Algorithm E.3. The branch and
bound search algorithm for find-
ing an approximately optimal ac-
tion for a discrete search problem
𝒫 from a current state s. The search
is performed to depth d with a
value function lower bound Ulo
and an action value function upper
bound Qhi. The returned named tu-
ple consists of the best action a and
its finite-horizon expected value u.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

e.4. branch and bound 603

Consider using branch and bound on a hex world search problem. Actions
in search problems cause deterministic transitions, so unlike the hex-world
MDP, we always correctly transition between neighboring tiles when the
corresponding action is taken.

The circle indicates the start state. All transitions incur a reward of −1.
The blue tile is terminal and produces reward 5 when entered.

Here, we show the search trees for both forward search and branch and
bound to depth 4. For branch and bound, we used a lower bound U(s) = −6

and an upper bound Q(s, a) = 5− δ(T(s, a)), where the function δ(s) is the
minimum number of steps from the given state to the terminal reward state.
The search tree of branch and bound is a subset of that of forward search
because branch and bound can ignore portions it knows are not optimal.

Due to the upper bound, branch and bound evaluates moving right first,
and because that happens to be optimal, it is able to immediately identify the
optimal sequence of actions and avoid exploring other actions. If the start
and goal states were reversed, the search tree would be larger. In the worst
case, it can be as large as forward search.

forward search branch and bound

Example E.1. A comparison of the
savings that branch and bound can
have over forward search. Branch
and bound can be significantly
more efficient with appropriate
bounds.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

604 appendix e. search algorithms

Branch and bound is not guaranteed to reduce computation over forward
search. Both approaches have the same worst-case time complexity. The efficiency
of the algorithm greatly depends on the heuristic.

E.5 Dynamic Programming

Neither forward search nor branch and bound remembers whether a state has
been previously visited; each wastes computational resources by evaluating these
states multiple times. Dynamic programming (algorithm E.4) avoids duplicate
effort by remembering when a particular subproblem has been previously solved.
Dynamic programming can be applied to problems in which an optimal solution
can be constructed from optimal solutions of its subproblems, a property called
optimal substructure. For example, if the optimal sequence of actions from s1 to s3

goes through s2, then the subpaths from s1 to s2 and from s2 to s3 are also optimal.
This substructure is shown in figure E.4.

1
2

3
4

5 67 8

1
2

3
4

5 67 8

1 2 3
4

5 67 8

1 2 3
4 5 67 8

1 2 3
4 5 67 8

initial state intermediate state terminal state

Figure E.4. The sequence of states
on the left form an optimal path
from the initial state to the termi-
nal state. Shortest path problems
have optimal substructure, mean-
ing that the sequence from the ini-
tial state to the intermediate state
is also optimal, as is the sequence
from the intermediate state to the
terminal state.

In the case of graph search,when evaluating a state, we first check a transposition
table to see whether the state has been previously visited, and if it has, we return
its stored value.2 Otherwise, we evaluate the state as normal and store the result

2 Caching the results of expen-
sive computations so that they can
be retrieved rather than being re-
computed in the future is called
memoization.

in the transposition table. A comparison to forward search is shown in figure E.5.

E.6 Heuristic Search

Heuristic search3 (algorithm E.5) improves on branch and bound by ordering its 3 Heuristic search is also known as
informed search or best-first search.actions based on a provided heuristic function U(s), which is an upper bound

of the return. Like dynamic programming, heuristic search has a mechanism by
which state evaluations can be cached to avoid redundant computation. Further-
more, heuristic search does not require the lower bound value function needed
by branch and bound.4

4 Our implementation does use two
value functions: the heuristic for
guiding the search and an approxi-
mate value function for evaluating
terminal states.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

e.6. heuristic search 605

function dynamic_programming(𝒫::Search, s, d, U, M=Dict())
if haskey(M, (d,s))

return M[(d,s)]
end
𝒜, T, R = 𝒫.𝒜(s), 𝒫.T, 𝒫.R
if isempty(𝒜) || d ≤ 0

best = (a=nothing, u=U(s))
else

best = (a=first(𝒜), u=-Inf)
for a in 𝒜

s′ = T(s,a)
u = R(s,a) + dynamic_programming(𝒫, s′, d-1, U, M).u
if u > best.u

best = (a=a, u=u)
end

end
end
M[(d,s)] = best
return best

end

Algorithm E.4. Dynamic program-
ming applied to forward search,
which includes a transposition ta-
ble M. Here, M is a dictionary that
stores depth-state tuples from pre-
vious evaluations, allowing the
method to return previously com-
puted results. The search is per-
formed to depth d, at which point
the terminal value is estimated
with an approximate value func-
tion U. The returned named tuple
consists of the best action a and its
finite-horizon expected value u.

1 2 3 4 5

101

102

103

104

depth

nu
m
be

ro
fs

ta
te

ev
alu

at
io
ns forward search

with DP

Figure E.5. A comparison of the
number of state evaluations for
pure forward search and forward
search augmented with dynamic
programming on the hex-world
search problem of example E.1.
Dynamic programming is able to
avoid the exponential growth in
state visitation by caching results.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

606 appendix e. search algorithms

function heuristic_search(𝒫::Search, s, d, Uhi, U, M)
if haskey(M, (d,s))

return M[(d,s)]
end
𝒜, T, R = 𝒫.𝒜(s), 𝒫.T, 𝒫.R
if isempty(𝒜) || d ≤ 0

best = (a=nothing, u=U(s))
else

best = (a=first(𝒜), u=-Inf)
for a in sort(𝒜, by=a->R(s,a) + Uhi(T(s,a)), rev=true)

if R(s,a) + Uhi(T(s,a)) ≤ best.u
break

end
s′ = T(s,a)
u = R(s,a) + heuristic_search(𝒫, s′, d-1, Uhi, U, M).u
if u > best.u

best = (a=a, u=u)
end

end
end
M[(d,s)] = best
return best

end

Algorithm E.5. The heuristic
search algorithm for solving a
search problem 𝒫 starting from
state s and searching to a maxi-
mum depth d. A heuristic Uhi is
used to guide the search, the ap-
proximate value function U is evalu-
ated at terminal states, and a trans-
position table M in the form of a dic-
tionary containing depth-state tu-
ples allows the algorithm to cache
values from previously explored
states.

Actions are sorted based on the immediate reward plus a heuristic estimate of
the future return:

R(s, a) + U(T(s, a)) (E.1)
To guarantee optimality, the heuristic must be both admissible and consistent. An
admissible heuristic is an upper bound of the true value function. A consistent
heuristic is never less than the expected reward gained by transitioning to a
neighboring state:

U(s) ≥ R(s, a) + U(T(s, a)) (E.2)
The method is compared to branch and bound search in example E.2.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

e.6. heuristic search 607

We can apply heuristic search to the same hex world search problem as in
example E.1. We use the heuristic U(s) = 5− δ(s), where δ(s) is the number
of steps from the given state to the terminal reward state. Here, we show the
number of states visited when running either branch and bound (left) or
heuristic search (right) from each starting state. Branch and bound is just
as efficient in states near and to the left of the goal state, whereas heuristic
search is able to search efficiently from any initial state.

12 8 4 6
12 9 6 3 4

10 8 6 4 2 2
6 5 4 3 2 1 2
10 8 6 4 2 2

12 9 6 3 4
12 8 4 6

branch and bound
6 5 4 4

6 5 4 3 3

6 5 4 3 2 2
6 5 4 3 2 1 2

6 5 4 3 2 2
6 5 4 3 3

6 5 4 4

heuristic search

Example E.2. A comparison of
the savings that heuristic search
can have over branch and bound
search. Heuristic search automat-
ically orders actions according to
their lookahead heuristic value.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

