
D Neural Representations

Neural networks are parametric representations of nonlinear functions.1 The func- 1 The name derives from the loose
inspiration of networks of neurons
in biological brains.Wewill not dis-
cuss these biological connections,
but an overview and historical per-
spective is provided by B. Müller,
J. Reinhardt, and M.T. Strickland,
Neural Networks. Springer, 1995.

tion represented by a neural network is differentiable, allowing gradient-based
optimization algorithms such as stochastic gradient descent to optimize their
parameters to better approximate desired input-output relationships.2 Neural

2 This optimization process when
applied to neural networks with
many layers, as we will discuss
shortly, is often called deep learn-
ing. Several textbooks are dedi-
cated entirely to these techniques,
including I. Goodfellow, Y. Bengio,
and A. Courville, Deep Learning.
MIT Press, 2016. The Julia package
Flux.jl provides efficient imple-
mentations of various learning al-
gorithms.

representations can be helpful in a variety of contexts related to decision making,
such as representing probabilistic models, utility functions, and decision policies.
This appendix outlines several relevant architectures.

D.1 Neural Networks

A neural network is a differentiable function y = fθ(x) that maps inputs x to
produce outputs y and is parameterized by θ. Modern neural networks may
have millions of parameters and can be used to convert inputs in the form of
high-dimensional images or video into high-dimensional outputs like multidi-
mensional classifications or speech.

The parameters of the network θ are generally tuned to minimize a scalar loss
function ℓ(fθ(x), y) that is related to how far the network output is from the desired
output. Both the loss function and the neural network are differentiable, allowing
us to use the gradient of the loss function with respect to the parameterization
∇θℓ to iteratively improve the parameterization. This process is often referred to
as neural network training or parameter tuning. It is demonstrated in example D.1.

Neural networks are typically trained on a data set of input-output pairs D. In
this case, we tune the parameters to minimize the aggregate loss over the data
set:

arg min
θ

∑
(x,y)∈D

ℓ(fθ(x), y) (D.1)

582 appendix d. neural representations

Consider a very simple neural network, fθ(x) = θ1 + θ2x. We wish our
neural network to take the square footage x of a home and predict its price
ypred. We want to minimize the square deviation between the predicted
housing price and the true housing price by the loss function ℓ(ypred, ytrue) =
(ypred − ytrue)2. Given a training pair, we can compute the gradient:

∇θℓ(f (x), ytrue) = ∇θ(θ1 + θ2x− ytrue)2

=

[

2(θ1 + θ2x− ytrue)
2(θ1 + θ2x− ytrue)x

]

If our initial parameterizationwereθ = [10,000, 123] andwe had the input-
output pair (x = 2,500, ytrue = 360,000), then the loss gradient would be
∇θℓ = [−85,000,−2.125× 108]. We would take a small step in the opposite
direction to improve our function approximation.

Example D.1. The fundamentals
of neural networks and parameter
tuning.

Data sets for modern problems tend to be very large, making the gradient of
equation (D.1) expensive to evaluate. It is common to sample random subsets of
the training data in each iteration, using these batches to compute the loss gradient.
In addition to reducing computation, computing gradients with smaller batch
sizes introduces some stochasticity to the gradient, which helps training to avoid
getting stuck in local minima.

D.2 Feedforward Networks

Neural networks are typically constructed to pass the input through a series of
layers.3 Networks with many layers are often called deep. In feedforward networks,

3 A sufficiently large, single-layer
neural network can, in theory, ap-
proximate any function. See A.
Pinkus, “Approximation Theory
of the MLP Model in Neural
Networks,” Acta Numerica, vol. 8,
pp. 143–195, 1999.

each layer applies an affine transform, followed by a nonlinear activation function
applied elementwise:4

4 The nonlinearity introduced by
the activation function provides
something analogous to the acti-
vation behavior of biological neu-
rons, in which input buildup even-
tually causes a neuron to fire. A. L.
Hodgkin and A. F. Huxley, “A
Quantitative Description of Mem-
brane Current and Its Applica-
tion to Conduction and Excitation
in Nerve,” Journal of Physiology,
vol. 117, no. 4, pp. 500–544, 1952.

x′ = φ.(Wx + b) (D.2)
where matrix W and vector b are parameters associated with the layer. A fully
connected layer is shown in figure D.1. The dimension of the output layer is
different from that of the input layer when W is nonsquare. Figure D.2 shows a
more compact depiction of the same network.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

d.2. feedforward networks 583

x1

x2

x3

x′3

x′4

x′5

x′2

x′1 = φ(w1,1x1 + w1,2x2 + w1,3x3 + b1)

= φ(w2,1x1 + w2,2x2 + w2,3x3 + b2)

= φ(w3,1x1 + w3,2x2 + w3,3x3 + b3)

= φ(w4,1x1 + w4,2x2 + w4,3x3 + b4)

= φ(w5,1x1 + w5,2x2 + w5,3x3 + b5)

Figure D.1. A fully connected layer
with a three-component input and
a five-component output.

x ∈ R
3

fully connected + φ

x′ ∈ R
5

Figure D.2. A more compact de-
piction of figure D.1. Neural net-
work layers are often represented
as blocks or slices for simplicity.

If there are no activation functions between them, multiple successive affine
transformations can be collapsed into a single, equivalent affine transform:

W2(W1x + b1) + b2 = W2W1x + (W2b1 + b2) (D.3)

These nonlinearities are necessary to allow neural networks to adapt to fit arbitrary
target functions. To illustrate, figure D.3 shows the output of a neural network
trained to approximate a nonlinear function.

0 2 4 6 8 10

−2

−1

0

1
true function
training samples
learned model

Figure D.3. A deep neural net-
work fit to samples from a nonlin-
ear function so as to minimize the
squared error. This neural network
has four affine layers, with 10 neu-
rons in each intermediate represen-
tation.

There are many types of activation functions that are commonly used. Similar
to their biological inspiration, they tend to be close to zero when their input is
low and large when their input is high. Some common activation functions are
shown in figure D.5.

Sometimes special layers are incorporated to achieve certain effects. For ex-
ample, in figure D.4, we used a softmax layer at the end to force the output to
represent a two-element categorical distribution. The softmax function applies

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

584 appendix d. neural representations

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x1

x
3

0

0.2

0.4

0.6

0.8

1

x ∈ R
2

fully connected + sigmoid

fully connected + softmax

ypred ∈ R
2

∈ R
5

Figure D.4. A simple, two-layer,
fully connected network trained
to classify whether a given coor-
dinate lies within a circle (shown
in white). The nonlinearities
allow neural networks to form
complicated, nonlinear decision
boundaries.

−1

0

1

2

φ
(x
)

sigmoid
1/(1 + exp(−x))

tanh
tanh(x)

softplus
log(1 + exp(x))

−2 −1 0 1 2
−1

0

1

2

x

φ
(x
)

relu
max(0, x)

−2 −1 0 1 2

x

leaky relu
max(αx, x)

−2 −1 0 1 2

x

swish
x sigmoid(x)

Figure D.5. Several common acti-
vation functions.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

d.3. parameter regularization 585

the exponential function to each element, which ensures that they are positive
and then renormalizes the resulting values:

softmax(x)i =
exp(xi)

∑j exp(xj)
(D.4)

Gradients for neural networks are typically computed using reverse accumu-
lation.5 The method begins with a forward step, in which the neural network is 5 This process is commonly called

backpropagation, which specifically
refers to reverse accumulation ap-
plied to a scalar loss function. D. E.
Rumelhart, G. E. Hinton, and R. J.
Williams, “Learning Representa-
tions by Back-Propagating Errors,”
Nature, vol. 323, pp. 533–536, 1986.

evaluated using all input parameters. In the backward step, the gradient of each
term of interest is computed working from the output back to the input. Reverse
accumulation uses the chain rule for derivatives:

∂f(g(h(x)))

∂x
=

∂f(g(h))

∂h

∂h(x)

∂x
=

(

∂f(g)

∂g

∂g(h)

∂h

)

∂h(x)

∂x
(D.5)

Example D.2 demonstrates this process. Many deep learning packages compute
gradients using such automatic differentiation techniques.6 Users rarely have to 6 A. Griewank and A.Walther, Eval-

uating Derivatives: Principles and
Techniques of Algorithmic Differentia-
tion, 2nd ed. SIAM, 2008.

provide their own gradients.

D.3 Parameter Regularization

Neural networks are typically underdetermined, meaning that there are multiple
parameter instantiations that can result in the same optimal training loss.7 It 7 For example, suppose that we

have a neural network with a final
softmax layer. The inputs to that
layer can be scaled while produc-
ing the same output, and therefore
the same loss.

is common to use parameter regularization, also called weight regularization, to
introduce an additional term to the loss function that penalizes large parameter
values. Regularization also helps prevent overfitting, which occurs when a network
over-specializes to the training data but fails to generalize to unseen data.

Regularization often takes the form of an L2-norm of the parameterization
vector:

arg min
θ

∑
(x,y)∈D

ℓ(fθ(x), y) + β‖θ‖2 (D.6)

where the positive scalar β controls the strength of the parameter regularization.
The scalar is often quite small, with values as low as 10−6, to minimize the degree
to which matching the training set is sacrificed by introducing regularization.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

586 appendix d. neural representations

Recall the neural network and loss function from example D.1. Here we have
drawn the computational graph for the loss calculation:

x

θ2

θ1

× c1

+ ypred

− c2

ytrue
c2

2 ℓ

Reverse accumulation begins with a forward pass, in which the compu-
tational graph is evaluated. We will again use θ = [10,000, 123] and the
input-output pair (x = 2,500, ytrue = 360,000) as follows:

x

θ2

θ1

× c1

+ ypred

− c2

ytrue
c2

2 ℓ

2,500

123

10,000

307,500

317,500

360,000

−42,500 1.81× 109

The gradient is then computed by working back up the tree:
x

θ2

θ1

× c1

+ ypred

− c2

ytrue

c2
2 ℓ

2,500

123

10,000

307,500

317,500

360,000

−42,500 1.81× 109

∂ℓ/∂c2 = −85,000

∂c2/∂ypred = 1

∂ypred/∂c1 = 1

∂ypred/∂θ1 = 1

∂c1/∂θ2 = 2,500

Finally, we compute:

∂ℓ
∂θ1

= ∂ℓ
∂c2

∂c2
∂ypred

∂ypred
∂θ1

= −85,000 · 1 · 1 = −85,000

∂ℓ
∂θ2

= ∂ℓ
∂c2

∂c2
∂ypred

∂ypred
∂c1

∂c1
∂θ2

= −85,000 · 1 · 1 · 2500 = −2.125× 108

Example D.2. How reverse accu-
mulation is used to compute pa-
rameter gradients given training
data.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

d.4. convolutional neural networks 587

D.4 Convolutional Neural Networks

Figure D.6. Multidimensional in-
puts like images generalize vectors
to tensors. Here, we show a three-
layer RGB image. Such inputs can
have very many entries.

Neural networks may have images or other multidimensional structures such
as lidar scans as inputs. Even a relatively small 256× 256 RGB image (similar to
figure D.6) has 256× 256× 3 = 196,608 entries. Any fully connected layer taking
an m×m× 3 image as input and producing a vector of n outputs would have
a weight matrix with 3m2n values. The large number of parameters to learn is
not only computationally expensive, it is also wasteful. Information in images
is typically translation-invariant; an object in an image that is shifted right by 1

pixel should produce a similar, if not identical, output.
Convolutional layers8 both significantly reduce the amount of computation and 8 Y. LeCun, L. Bottou, Y. Bengio,

and P. Haffner, “Gradient-Based
Learning Applied to Document
Recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

support translation invariance by sliding a smaller, fully connected window to
produce their output. Significantly fewer parameters need to be learned. These
parameters tend to be receptive to local textures in much the same way that the
neurons in the visual cortex respond to stimuli in their receptive fields.

input tensor

receptive field

filter
filter output

Figure D.7. A convolutional layer
repeatedly applies filters across an
input tensor, such as an image, to
produce an output tensor. This il-
lustration shows how each applica-
tion of the filter acts like a small,
fully connected layer applied to
a small receptive field to produce
a single entry in the output ten-
sor. Each filter is shifted across
the input according to a prescribed
stride. The resulting output has as
many layers as there are filters.

The convolutional layer consists of a set of features, or kernels, each of which is
equivalent to a fully connected layer into which one can input a smaller region
of the input tensor. A single kernel is being applied once in figure D.7. These
features have full depth, meaning that if an input tensor is n×m× d, the features
will also have a third dimension of d. The features are applied many times by
sliding them over the input in both the first and second dimensions. If the stride
is 1× 1, then all k filters are applied to every possible position and the output
dimension will be n×m× k. If the stride is 2× 2, then the filters are shifted by 2

in the first and second dimensions with every application, resulting in an output
of size n/2×m/2× k. It is common for convolutional neural networks to increase
in the third dimension and reduce in the first two dimensions with each layer.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

588 appendix d. neural representations

Convolutional layers are translation-invariant because each filter behaves the
same regardless of where in the input is applied. This property is especially useful
in spatial processing because shifts in an input image can yield similar outputs,
making it easier for neural networks to extract common features. Individual
features tend to learn how to recognize local attributes such as colors and textures.

conv 5× 5 stride 2 + relu

conv 3× 3 stride 2 + relu

conv 3× 3 stride 2 + relu

conv 3× 3 stride 2 + relu

conv 2× 2 stride 1 + relu

flatten

fully connected + softmax

ypred

28× 28× 1

14× 14× 8

7× 7× 16

4× 4× 32

2× 2× 32

1× 1× 32

32

10

The MNIST data set contains handwritten dig-
its in the form of 28× 28 monochromatic im-
ages. It is a often used to test image classifi-
cation networks. To the right, we have a sam-
ple convolutional neural network that takes an
MNIST image as input and produces a cate-
gorical probability distribution over the 10 pos-
sible digits. Convolutional layers are used to
efficiently extract features. The model shrinks
in the first two dimensions and expands in the
third dimension (the number of features) as
the network depth increases. Eventually reach-
ing a first and second dimension of 1 ensures
that information from across the entire image
can affect every feature. The flatten operation
takes the 1× 1× 32 input and flattens it into
a 32-component output. Such operations are
common when transitioning between convolu-
tional and fully connected layers. This model
has 19,722 parameters. The parameters can be
tuned to maximize the likelihood of the train-
ing data.

Example D.3. A convolutional neu-
ral network for the MNIST data set.
Y. LeCun, L. Bottou, Y. Bengio, and
P. Haffner, “Gradient-Based Learn-
ing Applied to Document Recog-
nition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

D.5 Recurrent Networks

The neural network architectures discussed so far are ill suited for temporal
or sequential inputs. Operations on sequences occur when processing images

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

d.5. recurrent networks 589

from videos, when translating a sequence of words, or when tracking time-series
data. In such cases, the outputs depend on more than just the most recent input.
In addition, the neural network architectures discussed so far do not naturally
produce variable-length outputs. For example, a neural network that writes an
essay would be difficult to train using a conventional, fully connected neural
network.

neural network

{x1, x2, x3, . . .}

y

many-to-one

neural network

x

{y1, y2, y3, . . .}

one-to-many

neural network

{x1, x2, x3, . . .}

{y1, y2, y3, . . .}

many-to-many

Figure D.8. Traditional neural
networks do not naturally accept
variable-length inputs or produce
variable-length outputs.

When a neural network has sequential input, sequential output, or both (fig-
ure D.8), we can use a recurrent neural network to act over multiple iterations.
These neural networks maintain a recurrent state r, sometimes called its memory,
to retain information over time. For example, in translation, a word used early in
a sentence may be relevant to the proper translation of words later in the sentence.
Figure D.9 shows the structure of a basic recurrent neural network and how the
same neural network can be understood to be a larger network unrolled in time.

neural network

x

y

r neural networkxk−1

rk−2

yk−1

neural networkxk yk

rk−1

neural networkxk+1 yk+1

rk

rk+1

Figure D.9. A recurrent neural net-
work (left) and the same recurrent
neural network unrolled in time
(right). These networks maintain a
recurrent state r that allows the net-
work to develop a sort of memory,
transferring information across it-
erations.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

590 appendix d. neural representations

This unrolled structure can be used to produce a rich diversity of sequential
neural networks, as shown in figure D.10. Many-to-many structures come in mul-
tiple forms. In one form, the output sequence begins with the input sequence. In
another form, the output sequence does not begin with the input sequence. When
using variable-length outputs, the neural network output itself often indicates
when a sequence begins or ends. The recurrent state is often initialized to zero, as
are extra inputs after the input sequence has been passed in, but this need not be
the case.

xx

0

y1

x0 y2

r1

x0 y3

r2

r3

xx1

0

y

xx2 y

r1

xx3 y

r2

r3

xx1

0

y1

xx2 y2

r1

xx3 y3

r2

r3

xx1

0

y1

xx2 y2

r1

xx3 y3

r2

x0 y4

r3

x0 y5

r4

r5

many-to-manyone-to-many many-to-one many-to-many

Figure D.10. A recurrent neural
network can be unrolled in time
to produce different relationships.
Unused or default inputs and out-
puts are grayed out.

Recurrent neural networks with many layers, unrolled over multiple time steps,
effectively produce a very deep neural network. During training, gradients are
computedwith respect to the loss function. The contribution of layers farther from
the loss function tends to be smaller than that of layers close to the loss function.
This leads to the vanishing gradient problem, in which deep neural networks have
vanishingly small gradients in their upper layers. These small gradients slow
training.

Very deep neural networks can also suffer from exploding gradients, in which
successive gradient contributions through the layers combine to produce very
large values. Such large values make learning unstable. Example D.4 shows both
exploding and vanishing gradients.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

d.5. recurrent networks 591

To illustrate vanishing and exploding gradients, consider a deep neural net-
work made of one-dimensional, fully connected layers with relu activations.
For example, if the network has three layers, its output is

fθ(x) = relu(w3 relu(w2 relu(w1x1 + b1) + b2) + b3)

The gradient with respect to a loss function depends on the gradient of
fθ.

We can get vanishing gradients in the parameters of the first layer, w1

and b1, if the gradient contributions in successive layers are less than 1. For
example, if any of the layers has a negative input to its relu function, the
gradient of its inputs will be zero, so the gradient vanishes entirely. In a less
extreme case, suppose that the weights are all w = 0.5 1, the offsets are all
b = 0, and the input x is positive. In this case, the gradient with respect to
w1 is

∂ f

∂w1

= x1 · w2 · w3 · w4 · w5 . . .

The deeper the network, the smaller the gradient will be.
We can get exploding gradients in the parameters of the first layer if the

gradient contributions in successive layers are greater than 1. If we merely
increase our weights to w = 2 1, the very same gradient is suddenly doubling
every layer.

Example D.4. A demonstration
of how vanishing and exploding
gradients arise in deep neural net-
works. This example uses a very
simple neural network. In larger,
fully connected layers, the same
principles apply.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

592 appendix d. neural representations

While exploding gradients can often be handled with gradient clipping, regu-
larization, and initializing parameters to small values, these solutions merely shift
the problem toward that of vanishing gradients. Recurrent neural networks often
use layers specifically constructed to mitigate the vanishing gradients problem.
They function by selectively choosing whether to retain memory, and these gates
help regulate the memory and the gradient. Two common recurrent layers are
long short-term memory (LSTM)9 and gated recurrent units (GRU).10

9 S. Hochreiter and J. Schmidhuber,
“Long Short-TermMemory,”Neural
Computation, vol. 9, no. 8, pp. 1735–
1780, 1997.
10 K. Cho, B. van Merriënboer,
C. Gulcehre, D. Bahdanau, F.
Bougares, H. Schwenk, and
Y. Bengio, “Learning Phrase
Representations Using RNN
Encoder-Decoder for Statistical
Machine Translation,” in Confer-
ence on Empirical Methods in Natural
Language Processing (EMNLP),
2014.

D.6 Autoencoder Networks

Neural networks are often used to process high-dimensional inputs such as im-
ages or point clouds. These high-dimensional inputs are often highly structured,
with the actual information content being much lower-dimensional than the high-
dimensional space in which it is presented. Pixels in images tend to be highly
correlated with their neighbors, and point clouds often have many regions of
continuity. Sometimes we wish to build an understanding of the information
content of our data sets by converting them to a much smaller set of features,
or an embedding. This compression, or representation learning, has many advan-
tages.11 Lower-dimensional representations can help facilitate the application of

11 Such dimensionality reduction
can also be done using traditional
machine learning techniques, such
as principal component analysis.
Neural models allow more flexibil-
ity and can handle nonlinear rep-
resentations.

traditional machine learning techniques like Bayesian networks to what would
have otherwise been intractable. The features can be inspected to develop an
understanding of the information content of the data set, and these features can
be used as inputs to other models.

encoding z

x

x′

en
co

de
r

de
co

de
r

Figure D.11. An autoencoder
passes a high-dimensional input
through a low-dimensional bot-
tleneck and then reconstructs the
original input. Minimizing recon-
struction loss can result in an effi-
cient low-dimensional encoding.

An autoencoder is a neural network trained to discover a low-dimensional feature
representation of a higher-level input. An autoencoder network takes in a high-
dimensional input x and produces an output x′ with the same dimensionality. We
design the network architecture to pass through a lower-dimensional intermediate
representation called a bottleneck. The activations z at this bottleneck are our low-
dimensional features, which exist in a latent space that is not explicitly observed.
Such an architecture is shown in figure D.11.

We train the autoencoder to reproduce its input. For example, to encourage the
output x′ to match x as closely as possible, we may simply minimize the L2-norm,

minimize
θ

E
x∈D

[‖ fθ(x)− x‖2] (D.7)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

d.6. autoencoder networks 593

Noise is often added to the input to produce a more robust feature embedding:

minimize
θ

E
x∈D

[‖ fθ(x + ǫ)− x‖2] (D.8)

Training to minimize the reconstruction loss forces the autoencoder to find the
most efficient low-dimensional encoding that is sufficient to accurately reconstruct
the original input. Furthermore, training is unsupervised, in that we do not need
to guide the training to a particular feature set.

After training, the upper portion of the autoencoder above the bottleneck can
be used as an encoder that transforms an input into the feature representation.
The lower portion of the autoencoder can be used as a decoder that transforms the
feature representation into the input representation. Decoding is useful when
training neural networks to generate images or other high-dimensional outputs.
Example D.5 shows an embedding learned for handwritten digits.

encoding distribution P(z)

z ∼ P(z)

x

x′

en
co

de
r

de
co

de
r

Figure D.12. A variational autoen-
coder passes a high-dimensional
input through a low-dimensional
bottleneck that produces a prob-
ability distribution over the en-
coding. The decoder reconstructs
samples from this encoding to re-
construct the original input. Varia-
tional autoencoders can therefore
assign confidence to each encoded
feature. The decoder can thereafter
be used as a generative model.

A variational autoencoder, shown in figure D.12, extends the autoencoder frame-
work to learn a probabilistic encoder.12 Rather than outputting a deterministic

12 D. Kingma and M. Welling,
“Auto-Encoding Variational
Bayes,” in International Conference
on Learning Representations (ICLR),
2013.

sample, the encoder produces a distribution over the encoding, which allows the
model to assign confidence to its encoding. Multivariate Gaussian distributions
with diagonal covariance matrices are often used for their mathematical conve-
nience. In such a case, the encoder outputs both an encoding mean and diagonal
covariance matrix.

Variational autoencoders are trained to both minimize the expected reconstruc-
tion loss while keeping the encoding components close to unit Gaussian. The
former is achieved by taking a single sample from the encoding distribution with
each passthrough, z ∼ N

(

µ,σ⊤Iσ
). For backpropagation to work, we typically

include random noise w ∼ N (0, I) as an additional input to the neural network
and obtain our sample according to z = µ+ w⊙σ.

The components are kept close to unit Gaussian by also minimizing the KL
divergence (appendix A.10).13 This objective encourages smooth latent space

13 The KL divergence for two unit
Gaussians is

log

(

σ2

σ1

)

+
σ2

1 + (µ1 − µ2)
2

2σ2
2

− 1

2

representations. The network is penalized for spreading out the latent representa-
tions (large values for ‖µ‖) and for focusing each representation into a very small
encoding space (small values for ‖σ‖), ensuring better coverage of the latent
space. As a result, smooth variations into the decoder can result in smoothly
varying outputs. This property allows decoders to be used as generative models,
where samples from a unit multivariate Gaussian can be input to the decoder to

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

594 appendix d. neural representations

produce realistic samples in the original space. The combined loss function is

minimize
θ

E
x∈D

[

‖x′ − x‖2 + c
|µ|
∑
i=1

DKL
(

N
(

µi, σ2
i ,
)∣

∣

∣

∣

∣

∣ N (0, 1)
)

]

subject to µ,σ = encoder(x + ǫ)
x′ = decoder(µ+ w⊙σ)

(D.9)

where the trade-off between the two losses is tuned by the scalar c > 0. Exam-
ple D.6 demonstrates this process on a latent space learned from handwritten
digits.

Variational autoencoders are derived by representing the encoder as a condi-
tional distribution q(z | x), where x belongs to the observed input space and z

is in the unobserved embedding space. The decoder performs inference in the
other direction, representing p(x | z), in which case it also outputs a probability
distribution.We seek tominimize the KL divergence between q(z | x) and p(z | x),
which is the same as minimizing E[log p(x | z)]− DKL(q(z | x) || p(z)), where
p(z) is our prior, the unit multivariate Gaussian to which we bias our encoding
distribution. We thus obtain our reconstruction loss and our KL divergence.

D.7 Adversarial Networks

We often want to train neural networks to produce high-dimensional outputs,
such as images or sequences of helicopter control inputs.When the output space is
large, the training datamay cover only a very small region of the state space.Hence,
training purely on the available data can cause unrealistic results or overfitting.
We generally want the neural network to produce plausible outputs. For example,
when producing images, we want the images to look realistic. When mimicking
human driving, such as in imitation learning (chapter 18), we want the vehicle to
typically stay in its lane and to react appropriately to other vehicles.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

d.7. adversarial networks 595

We can use an autoencoder to train an embedding for the MNIST data set.
In this example, we use an encoder similar to the convolutional network in
example D.3, except with a two-dimensional output and no softmax layer.
We construct a decoder that mirrors the encoder and train the full network to
minimize the reconstruction loss. Here are the encodings for 10,000 images
from the MNIST data set after training. Each encoding is colored according
to the corresponding digit:

−6 −4 −2 0 2 4 6 8

−2

0

2

4

6

8

10

z1

z 2

0
1
2
3
4
5
6
7
8
9

We find that the digits tend to be clustered into regions that are roughly
radially distributed from the origin. Note how the encodings for 1 and 7 are
similar, as the two digits look alike. Recall that training is unsupervised, and
the network is not given any information about the digit values. Nevertheless,
these clusterings are produced.

Example D.5. A visualization
of a two-dimensional embedding
learned for the MNIST digits.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

596 appendix d. neural representations

In example D.5, we trained an autoencoder on the MNIST data set. We can
adapt the same network to produce two-dimensional mean and variance
vectors at the bottleneck instead of a two-dimensional embedding, and then
train it to minimize both the reconstruction loss and the KL divergence. Here,
we show the mean encodings for the same 10,000 images for the MNIST data
set. Each encoding is again colored according to the corresponding digit:

−2 0 2 4
−4

−2

0

2

z1

z 2

0
1
2
3
4
5
6
7
8
9

The variational autoencoder also produces clusters in the embedding
space for each digit, but this time they are roughly distributed according to
a zero-mean, unit variance Gaussian distribution. We again see how some
encodings are similar, such as the significant overlap for 4 and 9.

Example D.6. A visualization of
a two-dimensional embedding
learned using a variational
autoencoder for the MNIST digits.
Here, we show decoded outputs
from inputs panned over the
encoding space:

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

d.7. adversarial networks 597

x

primary network

y

discriminator

ytrue

P(true)
FigureD.13. A generative adversar-
ial network causes a primary net-
work’s output to be more realistic
by using a discriminator to force
the primary network to produce
more realistic output.

One common approach to penalize off-nominal outputs or behavior is to use
adversarial learning by including a discriminator, as shown in figure D.13.14 A

14 These techniques were intro-
duced by I. Goodfellow, J. Pouget-
Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and
Y. Bengio, “Generative Adversarial
Nets,” in Advances in Neural Infor-
mation Processing Systems (NIPS),
2014.

discriminator is a neural network that acts as a binary classifier that takes in
neural network outputs and learns to distinguish between real outputs from
the training set and the outputs from the primary neural network. The primary
neural network, also called a generator, is then trained to deceive the discriminator,
thereby naturally producing outputs that are more difficult to distinguish from
the data set. The primary advantage of this technique is that we do not need
to design special features to identify or quantify how the output fails to match
the training data, but we can allow the discriminator to naturally learn such
differences.

Learning is adversarial in the sense that we have two neural networks: the
primary neural network that we would like to produce realistic outputs and the
discriminator network that distinguishes between primary network outputs and
real examples. They are each training to outperform the other. Training is an
iterative process in which each network is improved in turn. It can sometimes be
challenging to balance their relative performance; if one network becomes too
good, the other can become stuck.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

