
C Computational Complexity

When discussing various algorithms, it is useful to analyze their computational
complexity, which refers to the resources required to run them to completion.1 We 1 The analysis of algorithms rep-

resents a large field within com-
puter science. For an introductory
textbook, see O. Goldreich, Com-
putational Complexity: A Conceptual
Perspective. Cambridge University
Press, 2008. A rigorous treatment
requires the introduction of con-
cepts and computational models,
such as Turing machines, which we
will bypass in our discussion here.

are generally interested in either time or space complexity. This appendix reviews
asymptotic notation, which is what is generally used to characterize complexity.
We then review a few of the complexity classes that are relevant to the algorithms
in the book and discuss the problem of decidability.

C.1 Asymptotic Notation

Asymptotic notation is often used to characterize the growth of a function. This
notation is sometimes called big-Oh notation, since the letter O is used because
the growth rate of a function is often called its order. This notation can be used
to describe the error associated with a numerical method or the time or space
complexity of an algorithm. This notation provides an upper bound on a function
as its argument approaches a certain value.

Mathematically, if f (x) = O(g(x)) as x → a, then the absolute value of f (x) is
bounded by the absolute value of g(x) times some positive and finite c for values
of x sufficiently close to a:

| f (x)| ≤ c|g(x)| for x → a (C.1)

Writing f (x) = O(g(x)) is a common abuse of the equal sign. For example,
x2 = O(x2) and 2x2 = O(x2), but, of course, x2 6= 2x2. In some mathematical
texts, O(g(x)) represents the set of all functions that do not grow faster than g(x).
For example, 5x2 ∈ O(x2). Example C.1 demonstrates asymptotic notation.

If f (x) is a linear combination2 of terms, then O( f ) corresponds to the order of

2 A linear combination is a
weighted sum of terms. If
the terms are in a vector x,
then the linear combination is
w1x1 + w2x2 + · · · = w⊤x.the fastest-growing term. Example C.2 compares the orders of several terms.
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Consider f (x) = 106ex as x → ∞. Here, f is a product of the constant 106

and ex. The constant can simply be incorporated into the bounding constant
c as follows:

| f (x)| ≤ c|g(x)|
106|ex| ≤ c|g(x)|
|ex| ≤ c|g(x)|

Thus, f = O(ex) as x → ∞.

Example C.1. Asymptotic notation
for a constant times a function.

Consider f (x) = cos(x) + x + 10x3/2 + 3x2. Here, f is a linear combination
of terms. The terms cos(x), x, x3/2, x2 are arranged in order of increasing
value as x approaches infinity. We plot f (x) along with c|g(x)|, where c has
been chosen for each term such that c|g(x = 2)| exceeds f (x = 2).
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There is no constant c such that f (x) is always less than c|x3/2| for suffi-
ciently large values of x. The same is true for cos(x) and x.

We find that f (x) = O(x3), and in general, f (x) = O(xm) for m ≥ 2, along
with other function classes like f (x) = ex. We typically discuss the order that
provides the tightest upper bound. Thus, f = O(x2) as x → ∞.

Example C.2. Finding the order of
a linear combination of terms.
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C.2 Time Complexity Classes

The difficulty of solving certain problems can be grouped into different time
complexity classes. Important classes that appear frequently throughout this
book include

• P: problems that can be solved in polynomial time,

• NP: problems whose solutions can be verified in polynomial time,

• NP-hard: problems that are at least as hard as the hardest problems in NP, and

• NP-complete: problems that are both NP-hard and in NP.

The formal definitions of these complexity classes are rather involved. It is
generally believed that P 6= NP, but it has not been proven and remains one of
the most important open problems in mathematics. In fact, modern cryptography
depends on the fact that there are no known efficient (i.e., polynomial time)
algorithms for solving NP-hard problems. Figure C.1 illustrates the relationships
among the complexity classes, under the assumption that P 6= NP.
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Figure C.1. Complexity classes.

A common approach to proving whether a particular problem Q is NP-hard is
to come upwith a polynomial transformation from a knownNP-complete problem3

3 There are many well-known NP-
complete problems, as surveyed by
R.M. Karp, “Reducibility Among
Combinatorial Problems,” in Com-
plexity of Computer Computations,
R. E. Miller and J.W. Thatcher, eds.,
Plenum, 1972, pp. 85–103.

Q′ to an instance of Q. The 3SAT problem is the first knownNP-complete problem
and is discussed in example C.3.

C.3 Space Complexity Classes

Another set of complexity classes pertain to space, referring to the amount of
memory required to execute an algorithm to completion. The complexity class
PSPACE contains the set of all problems that can be solved with a polynomial
amount of space, without any considerations about time. There is a fundamental
difference between time and space complexity, in that time cannot be reused, but
space can be. We know that P and NP are subsets of PSPACE. It is not yet known,
but it is suspected, that PSPACE includes problems not inNP. Through polynomial
time transformations, we can define PSPACE-hard and PSPACE-complete classes,
just as we did with NP-hard and NP-complete classes.
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The problem of Boolean satisfiability involves determining whether a Boolean
formula is satisfiable. The Boolean formula consists of conjunctions (∧), dis-
junctions (∨), and negations (¬) involving n Boolean variables x1, . . . xn. A
literal is a variable xi or its negation ¬xi. A 3SAT clause is a disjunction of
up to three literals (e.g., x3 ∨ ¬x5 ∨ x6). A 3SAT formula is a conjunction of
3SAT clauses like

F(x1, x2, x3, x4) =

( x1 ∨ x2 ∨ x3 ) ∧
( ¬x1 ∨ ¬x2 ∨ x3 ) ∧
( x2 ∨ ¬x3 ∨ x4 )

The challenge in 3SAT is to determine whether a possible assignment of truth
values to variables exists that makes the formula true. In the formula above,

F(true, false, false, true) = true

Hence, the formula is satisfiable. Although a satisfying assignment can be
easily found for some 3SAT problems, sometimes just by quick inspection,
they are difficult to solve in general. One way to determine whether a satisfy-
ing assignment can be made is to enumerate the 2n possible truth values of
all the variables. Although determining whether a satisfying truth assign-
ment exists is difficult, verification of whether a truth assignment leads to
satisfaction can be done in linear time.

Example C.3. The 3SAT prob-
lem, which is the first known NP-
complete problem.
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C.4 Decidability

An undecidable problem cannot always be solved in finite time. Perhaps one of
the most famous undecidable problems is the halting problem, which involves
taking any program written in a sufficiently expressive language4 as input and 4 The technical requirement is that

the language is Turing complete or
computationally universal, meaning
that it can be used to simulate any
Turing machine.

deciding whether it will terminate. It was proved that there is no algorithm that
can perform such an analysis in general. Although algorithms exist that can
correctly determine whether some programs terminate, there is no algorithm that
can determine whether any arbitrary program will terminate.
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