
A Mathematical Concepts

This appendix provides a brief overview of some of the mathematical concepts
used in this book.

A.1 Measure Spaces

Before introducing the definition of a measure space, we will first discuss the
notion of a sigma-algebra over a set Ω. A sigma-algebra is a collection Σ of subsets
of Ω such that

1. Ω ∈ Σ.

2. If E ∈ Σ, then Ω \ E ∈ Σ (closed under complementation).

3. If E1, E2, E3, . . . ∈ Σ, then E1 ∪ E2 ∪ E3 . . . ∈ Σ (closed under countable unions).

An element E ∈ Σ is called a measurable set.
A measure space is defined by a set Ω, a sigma-algebra Σ, and a measure µ : Ω→

R ∪ {∞}. For µ to be a measure, the following properties must hold:

1. If E ∈ Σ, then µ(E) ≥ 0 (nonnegativity).

2. µ(∅) = 0.

3. If E1, E2, E3, . . . ∈ Σ are pairwise disjoint, then µ(E1 ∪ E2 ∪ E3 . . .) = µ(E1) +

µ(E2) + µ(E3) + · · · (countable additivity).
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A.2 Probability Spaces

A probability space is ameasure space (Ω, Σ, µ)with the requirement that µ(Ω) = 1.
In the context of probability spaces, Ω is called the sample space, Σ is called the
event space, and µ (or, more commonly, P) is the probability measure. The probability
axioms1 refer to the nonnegativity and countable additivity properties of measure

1 These axioms are sometimes
called the Kolmorogov axioms.
A. Kolmogorov, Foundations of
the Theory of Probability, 2nd ed.
Chelsea, 1956.

spaces, together with the requirement that µ(Ω) = 1.

A.3 Metric Spaces

A set with a metric is called a metric space. A metric d, sometimes called a distance
metric, is a function that maps pairs of elements in X to nonnegative real numbers
such that for all x, y, z ∈ X:
1. d(x, y) = 0 if and only if x = y (identity of indiscernibles).
2. d(x, y) = d(y, x) (symmetry).
3. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

A.4 Normed Vector Spaces

A normed vector space consists of a vector space X and a norm ‖·‖ thatmaps elements
of X to nonnegative real numbers such that for all scalars α and vectors x, y ∈ X:
1. ‖x‖ = 0 if and only if x = 0.
2. ‖αx‖ = |α|‖x‖ (absolutely homogeneous).
3. ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).

The Lp norms are a commonly used set of norms parameterized by a scalar
p ≥ 1. The Lp norm of vector x is

‖x‖p = lim
ρ→p

(|x1|ρ + |x2|ρ + · · ·+ |xn|ρ)
1
ρ (A.1)

where the limit is necessary for defining the infinity norm, L∞. Several Lp norms
are shown in figure A.1.

Norms can be used to induce distance metrics in vector spaces by defining the
metric d(x, y) = ‖x− y‖. We can then, for example, use an Lp norm to define
distances.
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L1: ‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|
This metric is often referred to as the taxicab
norm.

L2: ‖x‖2 =
√

x2
1 + x2

2 + · · ·+ x2
n

This metric is often referred to as the
Euclidean norm.

L∞: ‖x‖∞ = max(|x1|, |x2|, · · · , |xn|)
This metric is often referred to as the max
norm, Chebyshev norm, or chessboard norm.
The latter name comes from the minimum
number of moves that a king needs to move
between two squares in chess.

Figure A.1. Common Lp norms.
The illustrations show the shape of
the norm contours in two dimen-
sions. All points on the contour are
equidistant from the origin under
that norm.
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A.5 Positive Definiteness

A symmetric matrix A is positive definite if x⊤Ax is positive for all points other than
the origin. In otherwords, x⊤Ax > 0 for all x 6= 0. A symmetricmatrixA is positive
semidefinite if x⊤Ax is always nonnegative. In other words, x⊤Ax ≥ 0 for all x.

A.6 Convexity

A convex combination of two vectors x and y is the result of

αx + (1− α)y (A.2)

for some α ∈ [0, 1]. Convex combinations can be made from m vectors:

w1v(1) + w2v(2) + · · ·+ wmv(m) (A.3)

with nonnegative weights w that sum to 1.
A convex set is a set for which a line drawn between any two points in the set is

entirely within the set. Mathematically, a set S is convex if we have

αx + (1− α)y ∈ S (A.4)

for all x, y in S and for all α in [0, 1]. A convex and a nonconvex set are shown in
figure A.2.

a convex set a nonconvex set

FigureA.2. Convex and nonconvex
sets.

A convex function is a bowl-shaped function whose domain is a convex set. By
‘‘bowl-shaped,’’ we mean that it is a function such that any line drawn between
two points in its domain does not lie below the function. A function f is convex
over a convex set S if, for all x, y in S and for all α in [0, 1],

f (αx + (1− α)y) ≤ α f (x) + (1− α) f (y) (A.5)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com



a.7. information content 565
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FigureA.3. Convex and nonconvex
portions of a function.

Convex and concave regions of a function are shown in figure A.3.
A function f is strictly convex over a convex set S if, for all x, y in S and α in

(0, 1),
f (αx + (1− α)y) < α f (x) + (1− α) f (y) (A.6)

Strictly convex functions have at most one minimum, whereas a convex function
can have flat regions.2 Examples of strict and nonstrict convexity are shown in

2 Optimization of convex functions
is the subject of the textbook by S.
Boyd and L. Vandenberghe, Con-
vex Optimization. Cambridge Uni-
versity Press, 2004.

figure A.4.

x∗
ex

strictly convex function with
one global minimum

convex function without a
unique global minimum

strictly convex function
without a global minimum

Figure A.4. Not all convex func-
tions have single global minima.A function f is concave if − f is convex. Furthermore, f is strictly concave if − f

is strictly convex.

A.7 Information Content

If we have a discrete distribution that assigns probability P(x) to value x, the
information content3 of observing x is given by

3 Sometimes information content is
referred to as Shannon information,
in honor of Claude Shannon, the
founder of the field of information
theory. C. E. Shannon, “A Math-
ematical Theory of Communica-
tion,” Bell System Technical Journal,
vol. 27, no. 4, pp. 623–656, 1948.I(x) = − log P(x) (A.7)
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The unit of information content depends on the base of the logarithm. We
generally assume natural logarithms (with base e), making the unit nat, which is
short for natural. In information theoretic contexts, the base is often 2, making the
unit bit. We can think of this quantity as the number of bits required to transmit
the value x according to an optimal message encoding when the distribution over
messages follows the specified distribution.

A.8 Entropy

Entropy is an information theoretic measure of uncertainty. The entropy associated
with a discrete random variable X is the expected information content:

H(X) = Ex[I(x)] = ∑
x

P(x)I(x) = −∑
x

P(x) log P(x) (A.8)

where P(x) is the mass assigned to x.
For a continuous distribution where p(x) is the density assigned to x, the

differential entropy (also known as continuous entropy) is defined to be

h(X) =
∫

p(x)I(x) dx = −
∫

p(x) log p(x)dx (A.9)

A.9 Cross Entropy

The cross entropy of one distribution relative to another can be defined in terms
of expected information content. If we have one discrete distribution with mass
function P(x) and another with mass function Q(x), then the cross entropy of P

relative to Q is given by

H(P, Q) = −Ex∼P[log Q(x)] = −∑
x

P(x) log Q(x) (A.10)

For continuous distributions with density functions p(x) and q(x), we have

H(p, q) = −
∫

p(x) log q(x)dx (A.11)
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A.10 Relative Entropy

Relative entropy, also called the Kullback-Leibler (KL) divergence, is a measure of
how one probability distribution is different from a reference distribution.4 If 4 Named for the two American

mathematicians who introduced
this measure, Solomon Kullback
(1907–1994) and Richard A.
Leibler (1914–2003). S. Kullback
and R.A. Leibler, “On Informa-
tion and Sufficiency,” Annals of
Mathematical Statistics, vol. 22,
no. 1, pp. 79–86, 1951. S. Kullback,
Information Theory and Statistics.
Wiley, 1959.

P(x) and Q(x) are mass functions, then the KL divergence from Q to P is the
expectation of the logarithmic differences, with the expectation using P:

DKL(P || Q) = ∑
x

P(x) log
P(x)

Q(x)
= −∑

x

P(x) log
Q(x)

P(x)
(A.12)

This quantity is defined only if the support of P is a subset of that of Q. The
summation is over the support of P to avoid division by zero.

For continuous distributions with density functions p(x) and q(x), we have

DKL(p || q) =
∫

p(x) log
p(x)

q(x)
dx = −

∫

p(x) log
q(x)

p(x)
dx (A.13)

Similarly, this quantity is defined only if the support of p is a subset of that of q.
The integral is over the support of p to avoid division by zero.

A.11 Gradient Ascent

Gradient ascent is a general approach for attempting to maximize a function f (x)

when f is a differentiable function. We begin at a point x and iteratively apply
the following update rule:

x← x + α∇ f (x) (A.14)
where α > 0 is called a step factor. The idea of this optimization approach is that
we take steps in the direction of the gradient until reaching a local maximum.
There is no guarantee that we will find a global maximum using this method.
Small values for α will generally require more iterations to come close to a local
maximum. Large values for α will often result in bouncing around the local
optimum without quite reaching it. If α is constant over iterations, it is sometimes
called a learning rate. Many applications involve a decaying step factor, where, in
addition to updating x at each iteration, we update α according to

α← γα (A.15)

where 0 < γ < 1 is the decay factor.
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A.12 Taylor Expansion

The Taylor expansion,5 also called the Taylor series, of a function is important to 5 Named for the English mathe-
matician Brook Taylor (1685–1731)
who introduced the concept.many approximations used in this book. From the first fundamental theorem of

calculus,6 we know that 6 The first fundamental theorem of
calculus relates a function to the
integral of its derivative:

f (b)− f (a) =
∫ b

a
f ′(x)dx

f (x + h) = f (x) +
∫ h

0
f ′(x + a)da (A.16)

Nesting this definition produces the Taylor expansion of f about x:

f (x + h) = f (x) +
∫ h

0

(

f ′(x) +
∫ a

0
f ′′(x + b)db

)

da (A.17)

= f (x) + f ′(x)h +
∫ h

0

∫ a

0
f ′′(x + b)db da (A.18)

= f (x) + f ′(x)h +
∫ h

0

∫ a

0

(

f ′′(x) +
∫ b

0
f ′′′(x + c)dc

)

db da (A.19)

= f (x) + f ′(x)h +
f ′′(x)

2!
h2 +

∫ h

0

∫ a

0

∫ b

0
f ′′′(x + c)dc db da (A.20)

... (A.21)

= f (x) +
f ′(x)

1!
h +

f ′′(x)

2!
h2 +

f ′′′(x)

3!
h3 + . . . (A.22)

=
∞

∑
n=0

f (n)(x)

n!
hn (A.23)

In the formulation given here, x is typically fixed and the function is evaluated
in terms of h. It is often more convenient to write the Taylor expansion of f (x)

about a point a such that it remains a function of x:

f (x) =
∞

∑
n=0

f (n)(a)

n!
(x− a)n (A.24)

The Taylor expansion represents a function as an infinite sum of polynomial
terms based on repeated derivatives at a single point. Any analytic function can
be represented by its Taylor expansion within a local neighborhood.

A function can be locally approximated by using the first few terms of the Taylor
expansion. Figure A.5 shows increasingly better approximations for cos(x) about
x = 1. Including more terms increases the accuracy of the local approximation,
but error still accumulates as one moves away from the expansion point.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com



a.13. monte carlo estimation 569

−4 −2 0 2 4 6
−3

−2

−1

0

1

2

3

x

cos(x)

0th degree
1st degree
2nd degree
3rd degree
4th degree
5th degree

Figure A.5. Successive approxima-
tions of cos(x) about 1 based on
the first n terms of the Taylor ex-
pansion.

A linear Taylor approximation uses the first two terms of the Taylor expansion:
f (x) ≈ f (a) + f ′(a)(x− a) (A.25)

A quadratic Taylor approximation uses the first three terms:

f (x) ≈ f (a) + f ′(a)(x− a) +
1

2
f ”(a)(x− a)2 (A.26)

and so on.
In multiple dimensions, the Taylor expansion about a generalizes to

f (x) = f (a) +∇ f (a)⊤(x− a) +
1

2
(x− a)⊤∇2 f (a)(x− a) + . . . (A.27)

The first two terms form the tangent plane at a. The third term incorporates
local curvature. This book will use only the first three terms shown here.

A.13 Monte Carlo Estimation

Monte Carlo estimation allows us to evaluate the expectation of a function f when
its input x follows a probability density function p:

Ex∼p[ f (x)] =
∫

f (x)p(x)dx ≈ 1

n ∑
i

f (x(i)) (A.28)
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where x(1), . . . , x(n) are drawn from p. The variance of the estimate is equal to
Varx∼p[ f (x)]/n.

A.14 Importance Sampling

Importance sampling allows us to compute Ex∼p[ f (x)] from samples drawn from
a different distribution q:

Ex∼p[ f (x)] =
∫

f (x)p(x)dx (A.29)

=
∫

f (x)p(x)
q(x)

q(x)
dx (A.30)

=
∫

f (x)
p(x)

q(x)
q(x)dx (A.31)

= Ex∼q

[

f (x)
p(x)

q(x)

]

(A.32)

The equation above can be approximated using samples x(1), . . . , x(n) drawn from
q:

Ex∼p[ f (x)] = Ex∼q

[

f (x)
p(x)

q(x)

]

≈ 1

n ∑
i

f (x(i))
p(x(i))

q(x(i))
(A.33)

A.15 Contraction Mappings

A contraction mapping f is defined with respect to a function over a metric space
such that

d( f (x), f (y)) ≤ αd(x, y) (A.34)
where d is the distance metric associated with the metric space and 0 ≤ α < 1. A
contraction mapping thus reduces the distance between any two members of a
set. Such a function is sometimes referred to as a contraction or contractor.

A consequence of repeatedly applying a contraction mapping is that the dis-
tance between any two members of the set is driven to 0. The contraction mapping
theorem or the Banach fixed-point theorem7 states that every contraction mapping

7 Named for the Polish mathemati-
cian Stefan Banach (1892–1945)
who first stated the theorem.

on a complete,8 nonempty metric space has a unique fixed point. Furthermore,

8 A complete metric space is one
where every Cauchy sequence in
that space converges to a point in
that space. A sequence x1, x2, . . . is
Cauchy if, for every positive real
number ǫ > 0, there is a positive in-
teger n such that for all positive in-
tegers i, j > n, we have d(xi , xj) <
ǫ.

for any element x in that set, repeated application of a contraction mapping to
that element results in convergence to that fixed point.
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Showing that a function f is a contraction mapping on a metric space is useful
in various convergence proofs associated with the concepts presented earlier. For
example, we can show that the Bellman operator is a contraction mapping on
the space of value functions with the max-norm. Application of the contraction
mapping theorem allows us to prove that repeated application of the Bellman
operator results in convergence to a unique value function. Example A.1 shows a
simple contraction mapping.

Consider the function f(x) = [x2/2 + 1, x1/2 + 1/2]. We can show that f is a
contraction mapping for the set R

2 and the Euclidean distance function:

d(f(x), f(y)) = ‖f(x)− f(y)‖2

= ‖[x2/2 + 1, x1/2 + 1/2]− [y2/2 + 1, y1/2 + 1/2]‖2

= ‖[1
2
(x2 − y2),

1

2
(x1 − y1)]‖2

=
1

2
‖[(x2 − y2), (x1 − y1)]‖2

=
1

2
d(x, y)

We can plot the effect of repeated applications of f to points in R
2 and

show how they converge toward [5/3, 4/3]:

−2 0 2

−2

0

2

x1

x
2

−2 0 2

x1

−2 0 2

x1

Example A.1. A contraction map-
ping for R

2.
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A.16 Graphs

A graph G = (V, E) is defined by a set of nodes (also called vertices) V and edges E.
Figure A.6 shows an example of a graph. An edge e ∈ E is a pair of nodes (vi, vj).
We focus primarily on directed graphs, where the edges are directed and define
parent-child relationships. An edge e = (vi, vj) is often represented graphically
as an arrow from vi to vj with vi as the parent and vj as the child. If there is an
edge connecting vi and vj, then we say that vi and vj are neighbors. The set of all
parents of a node vi is denoted as Pa(vi).

A

E

F

D C

B

Figure A.6. An example of a graph.
Here, Pa(C) = {A, B}. The se-
quence (A, C, E, F) is a directed
path, and (A, C, B) is an undi-
rected path. Node A is a parent of
C and D. Node E is a descendant
of B. Neighbors of C include A, B,
and E.

A path from node vi to node vj is a sequence of edges connecting vi to vj. If this
path can be followed from node to node along the direction of the edges, then we
call it a directed path. An undirected path is a path without regard to the direction
of the edges. A node vj is a descendant of vi if a directed path exists from vi to vj.
A cycle is a directed path from a node to itself. If a graph does not contain any
cycles, it is acyclic.
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