Jingyi Liao

LinkedIn: linkedin.com/in/jingyi-liao-a828471a9/

Google Scholar: scholar.google.com/citations?user=Hd1pxLEAAAAJ

Address: Meistentie 2, A 015, 02150 Espoo, Finland.

A highly self-motivated engineer in ambient IoT, wireless communication, PHY layer, and signal processing.

Education

2022-now	Ph.D. in Communication Engineering	Aalto University, Finland (Est	imated graduate: 2026 Jul)
2025	Visiting Scholar in Electrical and Compu	ter Engineering	University of Houston, USA
2018-2021	M.Eng. in Communication Engineering	University of Electronic Science and	Technology of China, China
2014-2018	B.Eng. in Electronic Engineering	University of Electronic Science and	Technology of China, China

Employment

2021-2022 RF Algorithm Engineer

Huawei Technologies Co., Ltd., China

Email: jingyi.liao@aalto.fi

Website: users.aalto.fi/~liaoj5/

Projects

May 2022-now

Ambient Backscatter Communication Leveraging Existing Infrastructures Aalto University

- Designed **Ambient Backscatter Communication (AmBC)** models using **4G LTE/5G NR** pilot signals, deriving closed-form performance expressions that matched MATLAB simulation results.
- Built a **hardware AmBC prototype**; validated theory through over-the-air (OTA) experiments using **LTE**. OTA results were **independently reproduced** by Orange Paris.
- Proposed a **data-assisted AmBC framework**, analyzing its performance in **5G NR** and **Starlink** environments, and demonstrated ambient IoT feasibility on the **DECT-2020 NR+** platform.
- Contributed to **2** Europe's the largest 6G research projects and **1** project towards standardized 6G in **3GPP/IEEE/ETSI**; collaborated with industry: **Orange/MediaTek/Sequans**;

Jun 2021-Apr 2022 5G Micro Base Station Chip: RF Algorithm Verification

Huawei Technologies Co., Ltd.

- Developed **digital predistortion (DPD)** algorithms based on Least Mean Square (LMS) to mitigate for power amplifiers nonlinearity, analog fiber induced distortion, and non-ideal component delay effect of **5G base station**.
- Analyzed and corrected **I/Q imbalance** from numerically controlled oscillators (NCOs), reducing **mirror-image interference** in Zero Intermediate Frequency (ZIF) architectures and improving error vector magnitude (EVM).
- Simulated **PHY (L1) DSP algorithms** in MATLAB and Python, implemented fixed-point **Register-Transfer Level (RTL)** versions for hardware verification, and validated subsystem performance through bit-accurate testing.

Sep 2018-Jun 2021 LPI Radar Signal Processing

University of Electronic Science and Technology of China

- Designed LPI radar detection and sorting algorithms using **MUSIC**, **Beamforming**, **blind source separation** methods.
- Proposed a novel visibility **graph signal processing** approach for weak radar signal detection; validated performances through MATLAB simulations.
- Designed **machine learning**-based architectures for radar signal processing, including **CNN**, **ResNet** and **LSTM** models for detection, modulation classification, and emitter identification.
- Produced **5** publications and **2** deliverables; led a **3**-student research team and cooperated with **3** research institutes.

Skills

Awards and Grants

- Machine Learning: Pytorch, Tensorflow, Scikit, Pandas;
- Numerical Simulation: Matlab, Sci-Lab;
- **Programming**: Assembly Language; Pascal, C/C++, Python;
- Software Defined Radio: GNU radio USRP;
- Digital Hardware: VLSI, FPGA, VHDL;
- Circuit Simulation: Cadence, Altium Designer, LTspice;
- Embedded System: Raspberry Pi, STM32, MSP430;
- Parallel Computing: CUDA;
- Automation: Unix/Linux, Git, Make/Cmake, Shell;
- Language: Professional working English; native Chinese.

- Nokia Foundation Scholarship (top 29/293)
- HPY Research Foundation Grant (top 10/300)
- State Scholarship Fund \times 4
- First National Scholarship (top 10%) × 2
- IEEEXtreme Programming Competition (83/9400)
- Second National Scholarship (top 25%)
- Algorithm Design Contest Second Prize
- Dean Scholarship (top 5%)
- Second Scholarship (top 4%)
- National Oympiad in Informatics Province 2nd Prize

Jingyi Liao | School of Electronic Engineering, Aalto University, Finland

Last updated: October, 2025 | 1 of 2

Selected Publications

Journal Papers

- 1. **J. Liao**, X. Wang, K. Ruttik, et al., "Ambient Backscatter Communications in 5G Downlink with Periodically Nonuniform Sampling," in *IEEE Transactions on Cognitive Communications and Networking*, to be submitted.
- 2. **J. Liao**, T. Zhang, K. Ruttik, et al., "Ambient Backscatter Communication in LTE Uplink Using Sounding Reference Signals," in *IEEE Internet of Things Journal*, doi: 10.1109/JIOT.2025.3612303.
- 3. A. Al-nahari, **J. Liao**, R. Jäntti, et al., "Ambient IoT Connectivity Topologies: Technology Enablers, Applications, and Challenges," *IEEE Internet of Things Magazine*, doi: 10.1109/MIOT.2025.3596177.
- J. Liao, R. Jäntti (co-first author), T. Zhang, et al., "Integration of Backscatter-based Ambient IoT to Cellular Communication Systems," IEEE Communications Standards Magazine, doi: 10.1109/MCOMSTD.2025.3573817.
- J. Liao, X. Wang, K. Ruttik, et al., "In-Band Ambient FSK Backscatter Communications Leveraging LTE Cell-Specific Reference Signals," *IEEE Journal of Radio Frequency Identification*, vol. 7, pp. 267-277, May 2023, doi: 10.1109/JRFID.2023.3280108. (Awarded in IEEE RFID-TA 2024)

Conference Papers

- 1. **J. Liao**, K. Ruttik, R. Jäntti and Z. Han, "Data Assisted Backscatter Communications using DECT-2020 NR+ as Ambient Signal," *IEEE 26th SPAWC*, Surrey, UK, 2025, doi: 10.1109/SPAWC66079.2025.11143257.
- 2. **J. Liao**, K. Ruttik, R. Jäntti and Z. Han, "Starlink Ku-band Downlink Based Ambient Backscatter Communication," *IEEE 26th SPAWC*, Surrey, UK, 2025, doi: 10.1109/SPAWC66079.2025.11143459.
- 3. **J. Liao**, K. Ruttik, R. Jäntti, et al., "Measurement of Coded Backscatter Communication Utilizing Commercial LTE Ambient Signal," *3rd 6GNet*, Paris, France, 2024, doi: 10.1109/6GNet63182.2024.10765673.
- 4. **J. Liao**, K. Ruttik and R. Jäntti, "Data Assistance Cellular Signal Based Ambient Backscatter Receiver," *IEEE 25th SPAWC*, Lucca, Italy, 2024, doi: 10.1109/SPAWC60668.2024.10694415.
- 5. **J. Liao**, X. Wang, K. Koskinen, et al., "Indoor Backscattering Communication by Using Commercial LTE Pilots," *IEEE VTC2024-Spring*, Singapore, 2024, doi: 10.1109/VTC2024-Spring62846.2024.10683260.

Chapters

- 1. **J. Liao**, B. Xie and D.-T. Phan-Huy, "Cellular-backscattered ZEDs," in *Final Design of Enabling Technologies for 6G Devices and Infrastructure*, European Union, 2025.
- 2. **J. Liao** and D.-T. Phan-Huy, "ZE PoC," in *Initial Design and Validation of Technologies and Architecture of 6G Devices and Infrastructure*, European Union, 2024.

Demonstrations

- 1. **J. Liao**, K. Ruttik, R. Jäntti and D.-T. Phan-Huy, "Demo: Ambient Backscatter Communication with Convolutional Code based on LTE Pilots," *EuCNC/6G Summit*, Antwerp, Belgium, 2024, doi: 10.5281/zenodo.15642846.
- 2. **J. Liao**, K. Koskinen, X. Wang, et al., "Demo: UE Assisted Ambient Internet of Things in LTE Downlink, Energy Autonomous," 6G Summit Abu Dhabi, 2023, doi: 10.5281/zenodo.10171662.
- 3. **J. Liao**, K. Ruttik, R. Jäntti and D.-T. Phan-Huy, "Demo: UE Assisted Ambient IoT in LTE Downlink, in Real-time and Open Source," *ACM MobiSys* '23, Helsinki, Finland, 2023, doi: 10.1145/3581791.3597285.

Software

- 1. 4G Downlink Receiver based on C++ USRP: github.com/Aalto5G/CellularAmBC
- 2. 5G DECT-2020 MATLAB Toolbox: github.com/Aalto5G/DECT-NR-Matlab-Toolbox

Service

Teaching

- Teaching Assistant for 5 courses, e.g., Real-time OS, VLSI, Digital System Design, Electric Power, Dynamics & Control.
- Thesis Advisor for **5** Master Theses and **1** Bachelor thesis.
- Research Project Mentor for 3 projects.

Committee Service

- Deputy Doctoral Student Representative in Aalto University, School of ELEC Doctoral Programme Committee.
- Peer Reviewer for 2 journal and conference papers.
- Student Volunteer for 1 conference.

Funding Proposal

- NSF 25-539: Verticals-enabling Intelligent Network Systems (VINES).

Referees

PhD. Supervising Professor: **Prof. Riku Jäntti** (riku.jantti@aalto.fi)
PhD. Thesis Advisor: **Dr. Kalle Ruttik** (kalle.ruttik@aalto.fi)

Professor, Aalto University, Finland.

Senior University Lecturer, Aalto University, Finland.