
EUROGRAPHICS 2010 / T. Akenine-Möller and M. Zwicker
(Guest Editors)

Volume 29 (2010), Number 2

Sketching Clothoid Splines Using Shortest Paths

Ilya Baran1 Jaakko Lehtinen1 Jovan Popović1,2,3

1 MIT CSAIL 2 Adobe Systems Inc., Advanced Technology Labs 3 University of Washington

Abstract

Clothoid splines are gaining popularity as a curve representation due to their intrinsically pleasing curvature,
which varies piecewise linearly over arc length. However, constructing them from hand-drawn strokes remains
difficult. Building on recent results, we describe a novel algorithm for approximating a sketched stroke with a
fair (i.e., visually pleasing) clothoid spline. Fairness depends on proper segmentation of the stroke into curve
primitives — lines, arcs, and clothoids. Our main idea is to cast the segmentation as a shortest path problem on
a carefully constructed weighted graph. The nodes in our graph correspond to a vastly overcomplete set of curve
primitives that are fit to every subsegment of the sketch, and edges correspond to transitions of a specified degree
of continuity between curve primitives. The shortest path in the graph corresponds to a desirable segmentation of
the input curve. Once the segmentation is found, the primitives are fit to the curve using non-linear constrained
optimization. We demonstrate that the curves produced by our method have good curvature profiles, while staying
close to the user sketch.

1. Introduction

Constructing high-quality curves from hand-drawn input
is important in both freehand illustration and sketch-based
modeling applications (e.g., [IMT99,BBS08]). However, the
curve literature has traditionally concentrated more on spec-
ification of curves through geometric constraints, such as
fixed positions or tangents, rather than directly by sketching.
In this work, we leverage the use of clothoid splines [MT91]
as a first-class representation for sketched strokes. Clothoid
splines have a piecewise linear curvature profile: they consist
of a sequence of lines, circular arcs, and clothoid curves. The
defining property of a clothoid (or Euler spiral) is that its cur-
vature changes linearly with arclength. Levien [Lev09] pro-
vides an excellent discussion of the history and properties
of clothoids. We describe an algorithm for fitting clothoid
splines to complex, possibly closed sketches, using a combi-
nation of discrete and continuous optimization. We simulta-
neously minimize the number of curve segments, as required
by fairness, and deviation from the stroke, while strictly en-
forcing a maximal order of continuity between segments. We
demonstrate high-quality results on complex examples and
provide comparisons to both state of the art techniques and
commercial illustration software.

Specifically, we address the key challenge of segment-

Figure 1: A clothoid spline sketched using our algorithm.
The red comb illustrates curvature along the path.

ing the input stroke into curve primitives — lines, arcs,
and clothoids — by casting it as a shortest path problem
on a weighted graph. After the segmentation is found, the
individual primitives are matched up using nonlinear con-
strained optimization to guarantee continuity across the seg-

c⃝ 2010 The Author(s)
Journal compilation c⃝ 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

DOI: 10.1111/j.1467-8659.2009.01635.x

655

http://www.eg.org
http://diglib.eg.org


Baran, Lehtinen, Popović / Sketching Clothoid Splines Using Shortest Paths

Figure 2: A clothoid spline is inflated into a surface.

ments. Our method allows both open and closed sketches of
high complexity to be represented faithfully using few curve
primitives. Figure 1 provides an example curve, and Figure 2
shows a 3D surface inflated from a curve sketched using our
method. By controlling the edge costs using a few intuitive
parameters, the user can generate a broad range of results –
for example, the user may choose to produce only G1 line-
arc splines, favor fewer segments over approximation accu-
racy, disallow lines and arcs as primitives, or penalize inflec-
tions to varying degree (Figure 3). In addition, we describe
an algorithm for editing curves by oversketching such that
fairness is maintained, including in the part where the edit
is connected to the rest of the stroke. Alternatively, exist-
ing algorithms for editing clothoid splines through control
points [Lev09] could be used.

2. Related Work

Modeling and representing planar curves is one of the ear-
liest applications of computer aided design and computer
graphics. While we seek to represent hand-drawn strokes in
a fair manner, early work on curve specification and edit-
ing is, in contrast, generally more concerned with interpola-
tion of point data [Mor92]. However, the question of how to
quantify the fairness of curves, and to design representations
and algorithms that produce such curves, has received sig-
nificant attention. Fairness is universally accepted to mean
that the curvature of a curve behaves “nicely”. According to
Farin et al. [FRSW87], “[...] curvature (should) be almost
piecewise linear, with a small number of segments.” Note
that this definition naturally includes straight lines, circular
arcs, and clothoids (curves with a linear curvature profile).

Traditionally, sketched strokes are represented by fitting
piecewise polynomial curves to the input, and additional
fairing (smoothing) steps [FRSW87, SF90] are carried out
to increase visual quality. Most often fairing techniques can-
not, however, achieve pleasing curvature without deviating
significantly from the original stroke. These algorithms typ-
ically use curve representations that are not designed to be
intrinsically fair. A canonical example is the cubic spline: it
is easy to fit to point data, but few guarantees can be given
about its curvature profile.

Figure 3: Four curves generated from a single sketch by
varying the parameters. Left to right: default G2, only
clothoids with no inflection penalty and a lower error cost,
G1 arcs and lines, and polyline. Lines are red, arcs are
green, and clothoids are blue.

This paper is inspired by the work of McCrae and
Singh [MS08]. They presented a simple method for fitting
a piecewise clothoid curve to a sketch using a combination
of discrete and continuous optimization. The method relies
on piecewise linear approximation of the discrete curvature
profile computed from the sketch, and integrating the result-
ing curvature twice to yield the actual curve. While this pro-
duces good results for many inputs, the approximation error
in the curvature space also gets integrated twice, causing the
result to drift from the original stroke (Figure 10). In ad-
dition, the method cannot generate closed curves, although
a modified method can [MS09]. Prior to this work, clothoid
segments have been fit to geometric point and curvature con-
straints [NMK72, PN77, Sch78] and used for constructing
splines [MW89, MT91, SK00], but their use as a sketching
primitive has not been widely investigated.

Arc splines and biarc splines are G1 sequences of circular
arcs. Several authors have investigated their use for approx-
imating point sequences and curves, e.g. [MW92, HE05].
The algorithm of Drysdale et al. [DRS08] computes a biarc
spline that is guaranteed to have the minimum number of
primitives while remaining within a set tolerance from the
input. To obtain a provable guarantee, they only consider
biarcs that start and end at input points and have prescribed
tangents, which is a severe restriction. Similar in spirit to
our work, they cast the segmentation into a shortest path
problem on a graph constructed from overlapping biarc fits.
However, they treat the input points as nodes and primitives
as edges, while we treat the primitives as nodes and tran-
sitions between them as edges, enabling us to optimize over
transitions, and not just the primitives. While we cannot give
provable guarantees, incorporating the quality of transitions
into the shortest path cost enables us to enforce G2 continu-
ity by avoiding unworkable transitions.

3. Method

The input to our algorithm is a sequence of 2D points from
a user’s mouse or stylus. Our method performs several pro-

c⃝ 2010 The Author(s)
Journal compilation c⃝ 2010 The Eurographics Association and Blackwell Publishing Ltd.

656



Baran, Lehtinen, Popović / Sketching Clothoid Splines Using Shortest Paths

f ) e) d)

a) b) c)
source

sink

Figure 4: The steps in our method. a) The input stroke. b) A zoomed-in view of the top part of the letter ’e’, showing the re-
sampled input. c) An overcomplete set of curve primitives is fit to the samples. Red denotes lines, green denotes arcs, and blue
denotes clothoids. d) A graph is constructed from the curve primitives. Nodes denote primitives and edges denote transitions
between primitives. The shortest path in the graph corresponds to good segmentation of the input into segments. e) The segmen-
tation that corresponds to the shortest path. Note that the primitives do not quite match up. f) The final result, with primitives
rendered in different colors, obtained by solving a non-linear program that enforces the desired order of continuity between
primitives in the shortest path.

cessing steps on these points to end up with a fair curve ap-
proximating the user input (Figure 4):

1. Closed Curve Detection — determine whether the
sketched curve is almost closed, and, if so, make it pre-
cisely closed.

2. Corner Detection — determine which samples are in-
tended to be sharp corners. This partitions the stroke into
disjoint sub-strokes with G0 joins.

3. Resampling — to reduce the problem size and make the
sampling more regular, resample the sketched stroke in a
curvature-sensitive way.

4. Primitive Fitting — for every contiguous subsequence
of samples, fit a candidate line, arc, and clothoid. This
results in an overcomplete set of overlapping primitives.

5. Graph Construction — construct a weighted graph with
the primitives as nodes and transitions between primitives
as edges, such that weights denote quality of the transi-
tion. To control the output of our algorithm, the user pro-
vides the costs for a line, an arc, and a clothoid, for G0,
G1, and G2 transitions, for inflections (points where the
curvature changes sign), the approximation error cost and
the penalty for short primitives.

6. Shortest Path — find an acceptable shortest path through
the graph, validating transitions in the process. This step
picks out a high-quality segmentation of the input stroke

into curve primitives and transitions between them. For
closed curves, we find an approximate shortest cycle.

7. Merging — enforce the continuity constraints on the
chosen primitives by solving a nonlinear program.

In our work, all curves (including polylines) are param-
eterized by arclength parameter s. The tolerances and other
distances are in pixels, and we assume that the monitor or
tablet is roughly 100 DPI.

3.1. Closed Curve and Corner Detection

To determine whether the curve is closed, we threshold the
distance between the first and last point, using 15 pixels as
the cutoff. If the curve is closed, we find the two points on
opposite ends of the curve that are closest to each other and
make them the new start and end points, trimming off the
ends. We then geometrically close the curve by moving all
of the points as follows: let v be the vector from the first to
the last point. Each point is moved by (0.5− s/l) ⋅ v, where
s is the arclength parameter of the point along the curve and
l is the total curve length.

For corner detection, we developed a method that mea-
sures how likely a sample point is to be a corner by com-
paring how well its neighborhood can be approximated by a
single arc against how well it can be approximated by two

c⃝ 2010 The Author(s)
Journal compilation c⃝ 2010 The Eurographics Association and Blackwell Publishing Ltd.

657



Baran, Lehtinen, Popović / Sketching Clothoid Splines Using Shortest Paths

Figure 5: In this figure, the target resampling interval r(s)
is computed from curvature estimates at six original samples
si. The value of r(si) at the original samples is 2π/γci except
at s3, where that would result in too large a sample interval,
given the neighbors. The slope of all of the lines is ±β.

arcs that meet at that point. However, the focus of this paper
is not corner detection and we do not claim it as a contribu-
tion. Better results could likely be obtained by incorporating
stroke speed, as done by Sezgin [Sez01].

3.2. Resampling

The initial mouse or tablet samples can be very numerous,
redundant, and irregular. We carefully resample the polyline
formed by the initial samples: too many samples will result
in poor performance, while too few will lead to poor repro-
duction of the user input.

We use the corners to partition the input points into sep-
arate polylines and process each polyline individually for
resampling. Let s be the arclength parameter of a polyline
and si be the parameters at the polyline vertices. For re-
sampling, we first construct a sampling rate function r(s)
that defines the desired local step size along the curve (Fig-
ure 5). Our function ensures that the sampling is denser in
areas of high curvature, while enforcing that the rate changes
smoothly. This is similar to a guidance field used for remesh-
ing [SSFS06]. We estimate the curvature ci at the polyline
vertices and define

r(s) = min
i

(β∣s− si∣+2π/γci) ,

where β is the sample rate falloff (we use 0.2), and γ is the
number of points we want in a circle (we use 15). We clamp
r(s) to be between two and 1000 pixels to avoid patholog-
ical cases. The curvature at a vertex is estimated by fitting
an arc to the neighborhood of the vertex (15 pixels in each
direction) using the method in Section 3.3 and taking the arc
curvature as ci.

We compute the resampling by starting from s = 0 and
taking steps according to r(s) such that the step between
samples is as large as possible, without violating the sam-
pling rate requirement. More precisely, we find parameters
s′j for the new points such that s′0 = 0 and:

s′j− s′j−1 ≤ min
s∈[s′j−1,s

′
j ]

r(s).

We stop when we go past the end of the curve. At this point,
because ∣r(a)− r(b)∣ ≤ β∣a−b∣, the ratio between two adja-
cent sample intervals is at most 1+β. However, we now have
the last sample past the end of the polyline and we need to
move it to the end. Simply moving it to the end would re-
sult in a non-uniform sampling, while scaling all parameters
could move samples off high-curvature regions. We there-
fore only move the last four samples inward so that the last
sample coincides with the end of the curve. We finally com-
pute the new sample points p j along the polyline using the
parameters s′j.

3.3. Primitive Fitting

To enable optimization over primitive curve shapes, we need
each primitive curve to be defined in terms of a few vari-
ables. We use a starting point, a starting direction, and a
length to define a line segment. An arc segment also has a
starting curvature, and a clothoid also has an ending curva-
ture. Using these definitions allows an arc to degenerate to a
line segment or a clothoid to an arc.

Both fitting primitives to a sequence of samples and en-
forcing continuity constraints involves optimizing the vari-
ables that define the primitives, using distance to the sam-
ples as an objective function. For example, a point on a line
segment L at distance s from the start is L(x,y,α, l,s), where
x, y, α, and l are the four variables that define the line seg-
ment. In order to perform optimization, we need to be able
to compute the Jacobian of the point position with respect to
the variables, as well as the parameter s.

While this is easy for a line, we need to be careful even
with arcs: when an arc has very small curvature (say, κ = ε),
we cannot use sines and cosines to evaluate it because the
center is very far away. Approximating the arc with a line
when ε is below a threshold, i.e., setting C(x,y,α, l,κ,s) ≈
L(x,y,α, l,s) gives good results for the position, but ∂C/∂κ

is wrong. Using C ≈ L(x,y,α, l,s) + κs2(sinα,−cosα)/2
yields the correct derivatives. Clothoids that degenerate to
lines or arcs similarly need approximations that can be de-
rived by finding a perturbation of the line or arc that has the
same curvature profile as the clothoid to first order. Because
we use automatic differentiation, this is easier than approxi-
mating the Jacobian directly near degenerate configurations.

From the resampling, we have n sample points pi and
we fit primitives to every subsequence of them that does
not span a corner, resulting in a set of overlapping primi-
tives. Primitives that are too far off from the sketch are dis-
carded from further consideration. To make the fitting inde-
pendent of the sampling rate, with each sample point, we
associate a weight, wi = ∥pi−1−pi∥+∥pi+1−pi∥ (with in-
dices clamped if the curve is open and taken modulo n if the
curve is closed). For a sequence of points pi, . . . ,pi+k (where
the index is taken modulo n if the curve is closed) and a can-
didate curve C, we evaluate the quality of the fit with the

c⃝ 2010 The Author(s)
Journal compilation c⃝ 2010 The Eurographics Association and Blackwell Publishing Ltd.

658



Baran, Lehtinen, Popović / Sketching Clothoid Splines Using Shortest Paths

Figure 6: The points on the plane are lifted onto the
paraboloid z = x2 + y2 and a plane is fit to the lifted points.
The intersection of this plane and the paraboloid, projected
onto the xy plane, is a circle that is a good fit to the data
points.

following objective function:

2wi∥pi−C(0)∥2+2wi+k∥pi+k−C(l)∥2+
i+k−1

∑
j=i+1

w jdC(p j)
2,

(1)
where dC is the distance to the curve and C(0) and C(l)
its endpoints. We weigh endpoints more heavily to facilitate
transitions.

For each starting point i, we fit line segments to
pi, . . . ,pi+k for increasing k until the fit error exceeds a spec-
ified tolerance. The method to fit a line is well known: the
line that minimizes the weighted sum of squared distances
to the points passes through the mean p̄ = ∑ j w jp j/∑ j w j
(where j indexes over [i, i+k]) and its direction is the eigen-
vector of ∑ j w j(p j − p̄)(p j − p̄)T that corresponds to the
larger eigenvalue. To get a line segment, we find the end-
points by projecting pi and pi+k onto the fit line.

For arcs, there is no exact solution in closed form, but
very good approximations using algebraic distance are pos-
sible (e.g., [Pra87]). We use a fast and simple method: lift-
ing the points p j = (x j,y j) onto a paraboloid (x j,y j) →
(x j,y j,x2

j + y2
j) = p′j takes circles in 2D to ellipses in

3D (Figure 6). Conversely, the plane of the ellipse uniquely
determines the original circle. Finding the weighted best fit
plane to the 3D points is easy: it passes throught the mean
p̄′ = ∑ j w jp′j/∑ j w j and its normal is the eigenvector of

∑ j w j(p′j − p̄′)(p′j − p̄′)T that corresponds to the smallest
eigenvalue. The projection of the intersection of the plane
and the paraboloid z = x2 + y2 onto the xy plane yields a
circle that fits the 2D points well. This method is not invari-
ant to the choice of coordinate system and we use pi as the
origin.

The line and arc fitting methods are very fast: because the
means and the matrices can be computed incrementally, we
can compute the k− 1 best fit lines (or circles) to pi, . . . ,p j

source

sink

line arc shortest path

Figure 7: A simplified example showing a subset of the prim-
itives fitted to a user stroke (resampled to five samples). Top:
exploded view of primitives. Middle: constructed graph on
these primitives and shortest path. The graph is weighted,
so the single arc is not necessarily the shortest path because
it is a worse approximation. Bottom: the two primitives in
the shortest path.

for all j with 1 < j ≤ k in O(k) time. Because an arc has
more degrees of freedom than a line segment, we can gener-
ally fit arcs to longer subsequences of points.

We fit clothoids numerically. If an arc fits the k points well
enough not to be discarded, we use it as an initial guess, and
if not, we use the clothoid fit to all but the last point, which
we computed previously. Starting with the initial guess, we
use the Gauss-Newton algorithm to optimize the objective
function (1) over the clothoid parameters. An alternative ini-
tial guess would be to fit a line in curvature space [MS08],
or a parabola in direction space.

The objective function is a sum of squares because it sim-
plifies optimization, but for determining if the primitive is
good enough to be considered further, we use maximum er-
ror instead:

τ = max
(
∥pi−C(0)∥, ∥pi+k−C(l)∥, i+k−1

max
j=i+1

dC(p j)

)
(2)

We use a cutoff of five pixels.

3.4. Graph Construction

We now construct a weighted directed graph such that a path
in the graph corresponds to an approximation of the curve
with a sequence of primitives and transitions. The total cost
of the nodes and edges along a path should reflect the quality
of the curve approximation, with user-specific weights de-
termining the behavior. We construct a graph node for every
primitive that we fit earlier. Edges are constructed for every
possible transition between the primitives (Figure 7): a prim-
itive C is connected to all other primitives C′ whose starting
point is sufficiently close to the end point of C (see below).
If the sketch is not closed, we construct a special start node,

c⃝ 2010 The Author(s)
Journal compilation c⃝ 2010 The Eurographics Association and Blackwell Publishing Ltd.

659



Baran, Lehtinen, Popović / Sketching Clothoid Splines Using Shortest Paths

with edges to each primitive that starts on the first sample
and a special end node, with edges from each primitive that
ends on the last sample. Conceptually, both nodes and edges
in the graph have weights, but instead of keeping the weights
on the node, half of each node weight is added to all of the
incoming edges of the node and half to all of the outgoing
edges. The subsequent graph search therefore deals with an
edge-weighted graph.

To compute the weight of a node corresponding to a prim-
itive, we start with the user-specified cost of the curve type
(line, arc, or clothoid). In the default scenario, lines have the
lowest cost and clothoids have the highest, but the user may
wish to adjust them or disallow primitives of a particular
type altogether. We add an approximation penalty, computed
from the error τ in Equation (2): p(τ) = wE ⋅max(τ−1,0)2,
where wE is the user-set error weight. Using p(τ) ensures
that curves with residual under one pixel do not get penalized
at all and larger residuals get penalized progressively more
severely. Finally, because short clothoid segments harm fair-
ness, we add a penalty for curve primitives shorter than a
threshold: wS ⋅max(lmin − l,0)2, where wS is the user-set
penalty weight, lmin is the shortness threshold (we use 30
pixels), and l is the length of the primitive.

An edge encodes a G0, G1, or G2 transition between two
curves. A G2 transition is only possible when at least one of
the curves is a clothoid, and a G1 transition is only possi-
ble when at least one of the curves is an arc or a clothoid.
At corners only G0 transitions are possible. The main con-
sideration in constructing transitions is that they cannot be
geometrically enforced until the entire path has been cho-
sen: because primitives are fit independently, their endpoints
are unlikely to match up at all, much less with any sort of
higher order continuity. Therefore, when we set up a transi-
tion edge, it needs to be likely that that transition can actu-
ally be enforced and the weight of the transition edge should
reflect the difficulty of enforcing this transition. Because of
this, we only set up G2 transitions between curves that over-
lap by two sample intervals (i.e., the first curve ends at sam-
ple i and the second starts at sample i−2) and G1 transitions
between curves that overlap by one sample interval. We con-
struct G0 transition edges between curves without overlap.

The weight of an edge is the sum of two components: the
first is the base cost for the type of transition. In the de-
fault scenario, G1 and G0 transitions have very high base
cost, while G2 has zero base cost. The second component of
the edge weight is the estimate of how much extra penalty
for the deviation from the user samples would be intro-
duced by enforcing the transition constraints. Recall that
τ1 and τ2 are the original errors for the two curve prim-
itives computed from Equation (2), and let τ

′
1 and τ

′
2 de-

note the estimated errors after the continuity constraints have
been enforced (computed as described below). To penalize
the additional error caused by enforcing continuity, we add
p(τ′1)− p(τ1)+ p(τ′2)− p(τ2) to the edge cost.

Because of the large number of edges in the graph, we
estimate τ

′
1 and τ

′
2 using very cheap heuristics and will

refine the edge weight once a candidate shortest path is
found (as described in Section 3.5). Our cheap estimate
of the deviation is based on how far the curve primitives
are from satisfying the transition continuity constraints. For
each curve, we compute τ

′ as follows. Let d be the de-
gree of continuity and let pi for i = 1, . . . ,d + 1 be the one,
two, or three samples on which the two primitives over-
lap. Let s1

i and s2
i be the parameters of the closest point

to pi on the first and the second curve primitive, respec-
tively. We estimate c0, the deviation from satisfying G0

continuity by assuming the curves can be joined at any of
the overlapping samples and taking the minimum distance:
c0 = mini ∥C1(s

1
i )−C2(s

2
i )∥, where C1 and C2 are the curve

primitives. Similarly, the deviation from satisfying G1 con-
tinuity is the minimum difference in the curves’ direction
over the samples c1 = mini cos−1

(
C′1(s

1
i ) ⋅C′2(s2

i )
)

. How-
ever, if the differences are of different signs at two samples,
then somewhere in between, the two curves must have par-
allel tangent vectors and we therefore set c1 = 0. The de-
viation from satisfying G2 continuity is measured similarly:
c2 = mini

∣∣∣κ1(s
1
i )−κ2(s

2
i )
∣∣∣ (again, if the curvature differ-

ence changes sign, we set c2 = 0).

For a G2 transition between two clothoids, the continuity
differences are divided equally between them and the new
transition error is:

τ
′ = τ+

1
2

(
c0 + c1l/2+ c2l2/4

)
,

where l is the primitive curve length. The weights are moti-
vated by considering how much the primitive will move on
average, given a change in position, angle, or curvature. For
G0 and G1 transitions, we omit the relevant terms in com-
puting τ

′. When the G2 transition is between a clothoid and
a line, we add the full c2l2/4 term to the clothoid’s τ

′, rather
than half to each. When the G2 transition is between an arc
and a clothoid, we assign twice the usual c2 to the arc (be-
cause a change in curvature affects the entire arc) and, if the
other end of the arc is not on a corner or endpoint, twice
the usual c2 to the clothoid (to penalize the reduction in de-
grees of freedom). To save time, we do not construct edges
for which both curves’ τ

′ is higher than ten pixels (twice the
original τ cutoff).

3.5. Shortest Path

We now need to find the shortest path (or shortest cycle, if
the curve is closed) in the graph, but there are two difficul-
ties. The first is that the edge weights we computed are just
estimates — we would like a more accurate verification that
the transition is feasible before we commit to it. The sec-
ond difficulty is that while the shortest path algorithm runs
in O(E) time (our graph is acyclic), the best shortest cycle

c⃝ 2010 The Author(s)
Journal compilation c⃝ 2010 The Eurographics Association and Blackwell Publishing Ltd.

660



Baran, Lehtinen, Popović / Sketching Clothoid Splines Using Shortest Paths

algorithm known takes Õ(V E) time [Dem09], which is pro-
hibitively expensive.

To deal with the first difficulty, after we find a shortest
path, we verify every edge of the path by enforcing the con-
tinuity constraints and optimizing the fit, effectively execut-
ing the final merge step (as described in Section 3.6) for just
the two curves. For each curve, we compute the adjusted er-
ror (2). To estimate the effect on the other transitions of the
two curves, we add how far the curve moves as a result of
enforcing the continuity constraints to the adjusted error for
that curve. If the new error is greater than predicted, we in-
crease the cost of the edge by the difference. We then rerun
the shortest path algorithm, until no adjustments need to be
made. The shortest path may also produce a configuration
that we need to avoid: a clothoid with G2 transitions to lines
on both sides, forcing the clothoid to also be a line. Although
we could avoid such paths by constructing two graph nodes
for each clothoid (one that allows G2 transitions from lines
and one that allows transitions to lines), it would hurt per-
formance. Instead, if the found shortest path contains such a
configuration, we simply delete the more costly of the two
transitions from the graph.

We can obtain a significant speedup by taking advantage
of the fact that the graph changes little and edge costs only
grow as a result of verifying the candidate paths as described
above. Initially, we don’t just compute the shortest path from
the source to the target, but rather the distance from every
node in the graph to the target (this takes the same amount
of time). When computing subsequent shortest paths, we use
the computed (but underestimated, as a result of edge weight
increases) distance to the target as an A∗ heuristic [HNR68].
The exact path length to the target is the best possible A∗

heuristic for a graph because it results in A∗ taking the short-
est path directly without exploring the rest of the graph. In
our case, the increasing edge costs make the heuristic subop-
timal, but it is nevertheless very good, admissible, and con-
sistent. Every few runs of A∗, we run the full shortest-path
to recompute the distances to the target node in order to im-
prove the heuristic.

Looking for the optimal cycle for closed curves is pro-
hibitively expensive, so we use a heuristic. We assume that
the best sequence of primitive curves approximating one part
of the closed curve is not too dependent on the sequence of
primitive curves approximating a far-away part. We there-
fore start with an arbitrary node and find the shortest path
from the node, back to itself, using the algorithm described
above. We then take the node closest to the middle of the
resulting path and find the shortest path from that node to
itself. We repeat this once more, as subsequent iterations did
not improve the result further in our experiments.

3.6. Merging

We now have a sequence of curve primitives and continuity
constraints between them, but the primitives do not satisfy

Figure 8: Left to right: an oversketch stroke is drawn; the
stroke is integrated into a portion of the curve; our method
fits a clothoid spline to the integrated stroke, subject to the
continuity constraints at the endpoints.

the constraints. To obtain the final curve, we solve for the
parameters of all primitives simultaneously, by minimizing
the sum of squared distances from all samples to their curve
primitive(s) subject to the continuity constraints. We use the
SNOPT [GMS02] nonlinear optimization package. To con-
struct the initial guess, the separate primitive curves are a
good starting point, but they overlap with each other at G1

and G2 transitions. We therefore trim them by projecting the
middle user sample onto the curves for G2 transitions, or
the midpoint between two user samples for G1 transitions.
This brings the initial guess closer to satisfying the G0 con-
straints.

The precise objective function is defined as follows: let
p1, . . . ,pn be the user samples. As before, let wi = ∥pi−1−
pi∥+ ∥pi+1−pi∥. For each point pi that belongs to the in-
terior of a curve C, we add widC(pi)

2 to the objective func-
tion. For endpoints and G0 transitions, we add wi times the
squared distance to the actual point. The final curve mini-
mizes this objective and exactly satisfies continuity and cur-
vature sign constraints.

3.7. Oversketching

While there are existing techniques for editing the resulting
curve by dragging [Lev09], a common alternative method
for editing freehand curves is oversketching. Supporting
oversketching is relatively simple in our framework. We start
by projecting the start and end points of the oversketch to the
curve to identify the region of the curve that the user intends
to replace (Figure 8). When this is ambiguous, we assume
that the user is replacing the shorter of two possibilities. If
only one endpoint is close to the curve and the original curve
is not closed, we infer that the user wants to replace the orig-
inal curve up to an endpoint.

c⃝ 2010 The Author(s)
Journal compilation c⃝ 2010 The Eurographics Association and Blackwell Publishing Ltd.

661



Baran, Lehtinen, Popović / Sketching Clothoid Splines Using Shortest Paths

To avoid discontinuities at the start and end of the overs-
ketch, we move the endpoints of the new sketch onto the
original curve and linearly attenuate this translation over a
small region on the new sketch. To maintain continuity, we
expand the region on the original curve that will eventually
be replaced by at least 20 pixels on each side, and up to
a primitive transition (or curve endpoint). We then densely
sample the expanded regions on the original curve, combine
these with the new sketch samples, and feed this to our algo-
rithm as a new stroke (Fig. 8, middle).

The main algorithm is modified slightly for oversketch-
ing. The most important difference is that the start and/or
end curves are the existing curve(s) adjacent to the region
we are replacing. We use them as the sole source/sink nodes
in the graph, and keep them fixed for transition validation
and the merging step. We also adjust resampling to sample
more densely in the transition region, to ensure that a smooth
transition between the oversketch and the rest of the curve is
possible. Finally, we assume that the user is more precise
in oversketching than in the original sketch and increase the
error cost accordingly.

3.8. Inflections

One criterion of curve fairness is that unnecessary inflection
points should be avoided. To incorporate a user-set penalty
for inflections, we keep track of inflections from the primi-
tive fitting stage on, and account for inflections in the short-
est path stage in a way that correctly predicts the inflections
that the output curve will have. Simply computing the sign
of curvature at the endpoints of the primitives is insufficient
because the curvature may be zero. In particular, if the path
contains a G2 clothoid-line-clothoid sequence, it needs to be
penalized for an inflection precisely if the clothoids have dif-
ferent signs of curvature.

We resolve this problem by disambiguating zero curva-
ture. We store a “logical” sign of curvature, i.e., + or −,
at each endpoint. For arcs and clothoids, this is simply the
sign of curvature of the primitive at the endpoint. For each
line primitive, we generate two graph nodes, one with both
ends marked with positive logical curvature, and one with
both ends marked with negative logical curvature. When
constructing the graph, we use the stored logical sign of cur-
vature to determine costs. If the curvature signs on the end-
points of a clothoid are different, the inflection penalty is
added to the cost of the clothoid. If the curvature signs are
different between two curve endpoints joined by a G2 transi-
tion, we add the inflection penalty to the corresponding edge.
This correctly handles the case when the geometric curva-
ture of the primitive is zero. In particular, a clothoid-line-
clothoid sequence where the curvature remains nonnegative
(resp. non-positive) is not counted as an inflection.

We further avoid inflections as follows. When a clothoid
primitive has different curvature signs at the ends, some-
times a clothoid without an inflection can be almost as good a

Figure 9: Two curves produced by our algorithm. The right
column shows the individual primitives and, by overlaying
on the user sketch, shows the fidelity of the results.

fit. Therefore, whenever a clothoid fit results in an inflection,
we fit two additional clothoids to the same set of samples,
one with both ends constrained to nonpositive curvature, and
with both ends constrained to nonnegative curvature.

Because the final merge step can flip the sign of curva-
ture, we must enforce that the output curve has no inflec-
tions except those that are accounted for by the shortest path.
This can be done by constraining all curvatures to have their
original signs, but that is too restrictive: for example, if the
shortest path has allowed an inflection at the G2 transition
between two clothoids, there is no reason not to allow the
inflection point to be in the interior of one of the clothoids
instead. We lift the curvature sign constraint for arcs, for
clothoids that already have an inflection, and for clothoid
endpoints that are on a G2 transition to a curve endpoint with
the opposite logical curvature sign. Because the number of
inflections in a G2 chain of curve primitives is at most the
number of clothoids in the chain, lifting the above restric-
tions cannot increase the number of inflections in the final
result. We enforce the curvature sign restrictions both in the
transition verification and the final merge.

c⃝ 2010 The Author(s)
Journal compilation c⃝ 2010 The Eurographics Association and Blackwell Publishing Ltd.

662



Baran, Lehtinen, Popović / Sketching Clothoid Splines Using Shortest Paths

Curve Name Preprocess Fit Make Graph Find Path Merge Total Samples Nodes Edges
Squiggle 0.09 0.19 0.30 0.33 0.11 1.02 95 5,148 87,816

Squiggle G1 0.08 0.02 0.11 0.14 0.06 0.41 95 3,026 36,192
Highheel 0.22 0.45 0.72 0.47 0.17 2.03 135 11,226 288,998

Closed Squiggle 0.14 0.33 0.34 0.42 0.36 1.59 128 6,624 105,544
Closed Squiggle G1 0.14 0.02 0.09 0.28 0.13 0.66 128 3,574 36,374

Butterfly 0.33 0.58 0.81 1.56 1.53 4.81 268 16,186 304,753
Hello 0.09 0.42 0.53 0.52 0.76 2.32 189 10,674 181,021

Table 1: Timing results (seconds), number of samples, and graph size for the curves in Figures 10, 9, and 4. The G1 rows report
the results for computing arc, rather than clothoid splines. Preprocessing comprises corner detection and resampling.

4. Results

We evaluate the quality of the output spline by how smooth it
appears (fairness) and how closely it approximates the user
sketch (fidelity). These two goals are in conflict: a spline with
nearly perfect fidelity will have all of the noise in the user in-
put and will not be fair. The sketch tools with which we ex-
perimented, including our own, have controls for balancing
fidelity against fairness. For each curve, we manually tuned
the controls of the tools to try to match the point on the trade-
off curve. For our method, the parameter we tuned was the
error cost.

We compared our method to McCrae and Singh’s
method [MS08] using their publicly available code. No other
method we know of generates a clothoid spline from a
freehand sketch. We also compared the results to the out-
put of the pencil tool of Adobe IllustratorTM 14.0 and the
freely available Inkscape software. Finally, we ran a non-
linear optimization of the sum of Moreton’s MVC func-
tional [Mor92] with the squared distance to the user sketch
(the relative weights of the two terms providing the fidelity-
fairness tradeoff). A few comparisons are given in Figure 10,
and Figure 9 shows two more curves sketched in our system.
The supplemental pages provide a more complete compar-
ison for the various methods and also demonstrate the arc
splines our method produces.

The examples demonstrate that our method is able to han-
dle very complex curves. Compared to other methods, our
method typically produces more accurate and fairer curves.
The shortest path optimization results in an economical use
of primitives — this is especially obvious in the arc-and-line
splines, which do not have to enforce G2 transitions.

The various algorithms tend to make several different
kinds of errors. The main difficulty all of the algorithms
have (including ours, to a lesser degree) is that the fairness-
fidelity tradeoff is resolved differently in different parts of
the curve. In other words, some part of the curve retains
the noise of the user’s stroke, while another part smooths
out intentional sketch features as noise. The MVC fitting
method is the worst in this regard: high-curvature regions
(like the top of the shank and the toe on the high-heel shoe)
get smoothed out, leading to poor fidelity and spurious in-

Figure 10: Left to right: our result, Adobe Illustrator result,
McCrae and Singh result [MS08]. For these examples, our
method produces a curve that is both a better fit and more
fair.

flections nearby, while low curvature regions don’t get faired
sufficiently. Also, corner detection is not completely robust
in any of the algorithms, leading to both false positives and
false negatives. In our method, inflection avoidance some-
times fails to prevent inflections and sometimes smooths out
meaningful features. No other method explicitly avoids in-
flections.

Performance Constructing and searching a large graph
and doing nonlinear optimization makes our algorithm sig-
nificantly slower than most existing curve sketching meth-
ods. However, on a modern computer, it is still fast enough
for a comfortable interactive experience. In addition, our im-
plementation is single-threaded, as is SNOPT, which leaves
many opportunities for optimization, since most of the time-
consuming operations are parallelizable. In Table 1, we re-
port the timings on a 2.66GHz Intel Core i7-920.

c⃝ 2010 The Author(s)
Journal compilation c⃝ 2010 The Eurographics Association and Blackwell Publishing Ltd.

663



Baran, Lehtinen, Popović / Sketching Clothoid Splines Using Shortest Paths

5. Conclusions

Limitations The proposed method produces higher qual-
ity curves from hand-drawn sketches than previously pos-
sible, but it does so at the expense of both complexity and
speed. While our method is slower than existing ones, we
do not believe that the performance is prohibitive, and there
is room for additional optimizations. The complexity is sig-
nificant: although the underlying idea of casting curve fit-
ting as a shortest path problem is clean and simple, making
it work requires substantial engineering (our prototype im-
plementation is about 4,000 lines of C++, not including lin-
ear algebra and GUI libraries) and introduces a reliance on
nonlinear optimization. Additionally, there are many “magic
constants” that affect the algorithm’s performance. However,
because they usually have intuitive geometric meanings, we
did not find it difficult to tune them. A proper model of the
noise in user input may provide a principled way of obtain-
ing some of these values. The nonlinear optimization works
reliably the vast majority of the time because we start with a
very good initial guess, but we have observed a few failures.
Oversketching provides a simple way to work around them
when they happen.

Conclusions Clothoid splines are gaining popularity as
a stroke representation due to their inherent fairness. While
they are mathematically and algorithmically more complex
than polynomial splines, we strongly believe their inher-
ent high quality outweighs the costs. This paper addresses
key questions in fitting clothoid splines to user input, en-
abling faithful and fair representation of hand-drawn strokes.
Specifically, we cast the segmentation of the input stroke
into primitives as a graph problem, and fit clothoid seg-
ments to the input directly without resorting to curvature
profile space and integration. Combined with oversketching,
our method allows the specification and editing of fair but
complex curves. Our results demonstrate clear advantages in
comparison to both previous academic work and commercial
tools, both in terms of fidelity and fairness.

6. Acknowledgments

We thank Tony DeRose and Mark Meyer for early discus-
sions. Thanks to Saku Lehtinen and Daniel Vlasic for help-
ful feedback. Thanks to Emily Whiting for drawing some of
our examples.

References

[BBS08] BAE S., BALAKRISHNAN R., SINGH K.: ILoveSketch:
as-natural-as-possible sketching system for creating 3D curve
models. In Proc. UIST (2008), pp. 151–160. 1

[Dem09] DEMAINE E. D.:. personal communication, 2009. 7

[DRS08] DRYSDALE R. S., ROTE G., STURM A.: Approxima-
tion of an open polygonal curve with a minimum number of cir-
cular arcs and biarcs. Computational Geometry 41, 1-2 (2008),
31 – 47. 2

[FRSW87] FARIN G., REIN G., SAPIDIS N., WORSEY A. J.:
Fairing cubic b-spline curves. Computer Aided Geometric De-
sign 4, 1-2 (1987), 91 – 103. Topics in CAGD. 2

[GMS02] GILL P., MURRAY W., SAUNDERS M.: SNOPT: An
SQP algorithm for large-scale constrained optimization. SIAM
Journal on Optimization 12, 4 (2002), 979–1006. 7

[HE05] HELD M., EIBL J.: Biarc approximation of polygons
within asymmetric tolerance bands. Computer-Aided Design 37,
4 (2005), 357 – 371. 2

[HNR68] HART P., NILSSON N., RAPHAEL B.: A formal basis
for the heuristic determination of minimum cost paths. IEEE
Trans. Syst. Sci. Cybern. 4, 2 (July 1968), 100–107. 7

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.: Teddy: a
sketching interface for 3D freeform design. In Proc. ACM SIG-
GRAPH 99 (1999), pp. 409–416. 1

[Lev09] LEVIEN R. L.: From Spiral to Spline: Optimal Tech-
niques in Interactive Curve Design. PhD thesis, University of
California, Berkeley, 2009. 1, 2, 7

[Mor92] MORETON H. P.: Minimum curvature variation curves,
networks, and surfaces for fair free-form shape design. PhD the-
sis, University of California at Berkeley, Berkeley, CA, USA,
1992. 2, 9

[MS08] MCCRAE J., SINGH K.: Sketching piecewise clothoid
curves. In Sketch-Based Interfaces and Modeling (2008). 2, 5, 9

[MS09] MCCRAE J., SINGH K.: Sketch-based path design. In
Proc. Graphics Interface (2009), pp. 95–102. 2

[MT91] MEEK D. S., THOMAS R. S. D.: A guided clothoid
spline. Computer Aided Geometric Design 8, 2 (1991), 163 –
174. 1, 2

[MW89] MEEK D. S., WALTON D. J.: The use of cornu spirals in
drawing planar curves of controlled curvature. J Comput. Appl.
Math. 25, 1 (1989), 69 – 78. 2

[MW92] MEEK D. S., WALTON D. J.: Approximation of discrete
data by G1 arc splines. Computer-Aided Design 24, 6 (1992), 301
– 306. 2

[NMK72] NUTBOURNE A., MCLELLAN P., KENSIT R.: Cur-
vature profiles for plane curves. Computer-Aided Design 4, 4
(1972), 176 – 184. 2

[PN77] PAL T., NUTBOURNE A.: Two-dimensional curve syn-
thesis using linear curvature elements. Computer-Aided Design
9, 2 (1977), 121 – 134. 2

[Pra87] PRATT V.: Direct least-squares fitting of algebraic sur-
faces. In Computer Graphics (Proceedings of SIGGRAPH 87)
(July 1987), pp. 145–152. 5

[Sch78] SCHECHTER A.: Synthesis of 2d curves by blending
piecewise linear curvature profiles. Computer-Aided Design 10,
1 (1978), 8 – 18. 2

[Sez01] SEZGIN T.: Feature point detection and curve approxi-
mation for early processing of free-hand sketches. Master’s the-
sis, Massachusetts Institute of Technology, 2001. 4

[SF90] SAPIDIS N., FARIN G.: Automatic fairing algorithm for
b-spline curves. Computer-Aided Design 22, 2 (1990), 121 – 129.
2

[SK00] SCHNEIDER R., KOBBELT L.: Discrete fairing of curves
and surfaces based on linear curvature distribution. In In
Curve and Surface Design: Saint-Malo (2000), University Press,
pp. 371–380. 2

[SSFS06] SCHREINER J., SCHEIDEGGER C., FLEISHMAN S.,
SILVA C.: Direct (re) meshing for efficient surface processing.
Computer Graphics Forum 25, 3 (2006), 527–536. 4

c⃝ 2010 The Author(s)
Journal compilation c⃝ 2010 The Eurographics Association and Blackwell Publishing Ltd.

664




