Surface Reflectance, BRDFs

Aalto CS-E5520 Spring 2023 Jaakko Lehtinen with some slides from Frédo Durand of M.I.T.

Today

- Reflectance Equation
-Recap of the BRDF
- plus details

Remember: "How Big Something Looks"

- Solid angle <=> projected area on unit sphere

Recap: Radiance

- Sensors are sensitive to radiance
- It's what you assign to pixels
-The fundamental quantity in image synthesis
- "Intensity does not attenuate with distance" <=> radiance stays constant along straight lines**
- All relevant quantities (irradiance, etc.) can be derived from radiance
**unless the medium is participating, e.g., smoke, fog

Constancy Along Straight Lines

$L(x \rightarrow y)=L(y \leftarrow x)$

Radiance is what
you think of as "intensity" when you look at a lamp, say.
$\mathrm{d} A_{2}$

Recap: Radiance

- Radiance $\mathrm{L}=$ flux per unit projected area per unit solid angle

$$
L=\frac{\mathrm{d} \Phi}{\mathrm{~d} A^{\perp} \mathrm{d} \omega}
$$

$$
[L]=\left[\frac{W}{m^{2} s r}\right]
$$

Recap: Radiance Notation

- $L(x \rightarrow \mathbf{v})$ denotes radiance leaving $\mathrm{d} A$ located at point x towards direction \mathbf{v}
-Alternative notation: $L_{\text {out }}(x, \mathbf{v})$
- $L(x \leftarrow \mathbf{l})$ denotes radiance impinging on $\mathrm{d} A$ located at point x from direction I
-Alternative notation: $L_{\text {in }}(x, \mathbf{l})$

$\mathrm{d} A$

Recap: Irradiance

- Integrate incident radiance times cosine over the hemisphere Ω
$L(\omega)$

$$
E=\int_{\Omega} L(\omega) \cos \theta \mathrm{d} \omega
$$

Recap: Differential Irradiance

- To measure irradiance, add up the radiance from all the differential beams from all directions

$$
\begin{gathered}
E=\frac{\mathrm{d} \Phi}{\mathrm{~d} A} \\
L=\frac{\mathrm{d} \Phi}{\mathrm{~d} A^{\perp} \mathrm{d} \omega}
\end{gathered}
$$

$$
\mathrm{d} \Phi
$$

Differential irradiance

CS-E5520 Spring 2023 - Lehtinen

CS-E5520 Spring 2023 - Lehtinen

- . .

CS-E5520 Spring 2023 - Lehtinen

Recap: Irradiance to Radiosity

- The reflectivity of a diffuse surface is determined by its albedo $\rho \in[0,1)$
-This is the "diffuse color k_{d} " from your ray tracer in 4310
- The flux emitted by a diffuse surface per unit area is called radiosity B
- Same units as irradiance, $[\mathrm{B}]=\left[\mathrm{W} / \mathrm{m}^{\wedge} 2\right]$
-Hence

$$
B=\frac{\rho E}{\pi}
$$

Recap: Lambertian Soft Shadows

differential

$$
L_{\text {out }}(x)=\frac{\rho(x)}{\pi} \int_{\Omega} L_{\text {in }}(x, \omega) \cos \theta \mathrm{d} \omega
$$

albedo/pi incident radiance cosine (diffuse => independent of direction v)
$\rho(x)$
is the albedo or reflectivity (between 0,1) of the surface at x

Sum (integrate) over every direction on the hemisphere, modulate incident illumination by cosine, albedo/pi

Last Time: Diffuse Reflectiance Only

None of these surfaces are diffuse!

Quantifying Reflection - BRDF

- Bidirectional Reflectance Distribution Function
- "Ratio of light coming from one direction that gets reflected in another direction"
-Pure reflection, assumes no light scatters into the material
- Focuses on angular aspects, not spatial variation of the material
- How many dimensions?

BRDF f_{r}

- Bidirectional Reflectance Distribution Function
-4D: 2 angles for each direction
$-\mathrm{BRDF}=\mathrm{fr}_{\mathrm{r}}\left(\theta_{\mathrm{i}}, \phi_{\mathrm{i}} ; \theta_{\mathrm{o}}, \phi_{\mathrm{o}}\right)$
-Or just two unit vectors: BRDF $=\mathrm{f}_{\mathrm{r}}(\mathbf{l}, \mathbf{v})$
$\cdot \mathbf{l}=$ light direction
-v = view direction

2D Slice at Constant Incidence

- For a fixed incoming direction \mathbf{I}, view dependence is a 2 D spherical function
-Here a moderate glossy component towards mirror direction R

BRDF f_{r}

- Bidirectional Reflectance Distribution Function
-4D: 2 angles for each direction
$-\mathrm{BRDF}=\mathrm{f}_{\mathrm{r}}\left(\theta_{\mathrm{i}}, \phi_{\mathrm{i}} ; \theta_{\mathrm{o}}, \phi_{\mathrm{o}}\right)$

Mirror BRDF:
Infinitely thin and tall spike ("Dirac delta")
in mirror direction
-Or just two unit vectors: BRDF $=\mathrm{f}_{\mathrm{r}}(\mathbf{l}, \mathbf{v})$
$\cdot \mathbf{l}=$ light direction
-v = view direction
-The BRDF is aligned with the surface; the vectors \mathbf{I} and \mathbf{v} must be in a local coordinate system

BRDF Definition, For Real This Time

- Relates incident differential irradiance from every direction to outgoing radiance

$\operatorname{BRDF}(\mathbf{l}, \mathbf{v})=\frac{\text { radiance to direction } \mathbf{l}}{\text { differential irradiance from direction } \mathbf{v}}$

BRDF Definition, For Real This Time

- Relates incident differential irradiance from every direction to outgoing radiance
radiance to direction \mathbf{v}
$\operatorname{BRDF}(\mathbf{l}, \mathbf{v})=\frac{\text { radiance to direction } \mathbf{v}}{\text { differential irradiance from direction } \mathbf{l}}$

How are we going to use this in order to compute reflected radiance that accounts for light coming in from every direction?

Reflectance Equation

$$
L(x \rightarrow \mathbf{v})=\zeta \text { outgoing radiance }
$$

Reflectance Equation

$$
L(x \rightarrow \mathbf{v})=\sim \text { outgoing radiance }
$$

hemisphere

incoming cosine of radiance incident angle

$$
\operatorname{BRDF}(\mathbf{l}, \mathbf{v})=\frac{\text { radiance to direction } \mathbf{v}}{\text { differential irradiance from direction } \boldsymbol{l}}
$$

Compare to Diffuse Case

$$
L(x \rightarrow \mathbf{v})=
$$

Diffuse BRDF

$$
L_{\mathrm{out}}(x)=\frac{\rho(x)}{\pi} \int_{\Omega} L_{\mathrm{in}}(x, \omega) \cos \theta \mathrm{d} \omega
$$

- Diffuse reflectance independent of outgoing angle
- Hence, the diffuse BRDF is

$$
f_{r}(x)=\frac{\rho}{\pi}
$$

- (ρ is the albedo, remember)
- Note: no cosine, it's included in the reflectance eq.!

BRDF Properties

- Reciprocity: $f_{r}(\mathbf{l} \rightarrow \mathbf{v})=f_{r}(\mathbf{v} \rightarrow \mathbf{l})$
- Energy conservation: $\int f_{r}(\mathbf{l} \rightarrow \mathbf{v}) \cos \theta_{v} \mathrm{~d} \mathbf{v} \leq 1$
-Intuitive: the BRDF tells you how a single beam of incident illumination from direction \mathbf{I} is spread into all reflected directions \mathbf{v}; you can't have more energy coming out than going in.
-Note: This does not imply $f_{r}(\mathbf{l} \rightarrow \mathbf{v}) \leq 1$!!
-It's an "unnormalised density"

BRDF Properties

- Reciprocity: $f_{r}(\mathbf{l} \rightarrow \mathbf{v})=f_{r}(\mathbf{v} \rightarrow \mathbf{l})$
- Energy conservation: $\int f_{r}(\mathbf{l} \rightarrow \mathbf{v}) \cos \theta_{v} \mathrm{~d} \mathbf{v} \leq 1$
-Intuitive: the BRDF tells you how a single beam of incident illumination from direction \mathbf{I} is spread into all reflected directions \mathbf{v}; you can't have more energy coming out than going in.
-But also, due to reciprocity, the same must hold if you swap the incident and outgoing directions.
- Non-negativity: $f_{r}(\mathbf{l} \rightarrow \mathbf{v}) \geq 0$

Isotropic vs. Anisotropic

- When keeping \mathbf{l} and \mathbf{v} fixed, if rotation of surface around the normal doesn't change the reflection, the material is called isotropic
- Surfaces with strongly oriented microgeometry elements are anisotropic
- Examples:
- brushed metals,
-hair, fur, cloth, velvet

Westin et.al 92

Hmmh

- The BRDF is a 4D function for a single surface point - When you make it vary over surfaces, you add two more dimensions
-The Spatially Varying BRDF (SVBRDF) is 6D!

Spatially Varying Reflectance

- Very, very, VERY important for realistic surface appearance
- VIDEO

Spatially Varying Reflectance

- You can find these SVBRDF material models online and use them in your assignments!

Aittala, Weyrich, Lehtinen 2015

Parametric BRDF Models

- BRDFs can be measured from real data
-But storage and computation using arbitrary 4D or 6D functions is unwieldy, must do something smarter

Parametric BRDF Models

- BRDFs can be measured from real data
-But storage and computation using arbitrary 4D or 6D functions is unwieldy, must do something smarter
- Solution: parametric models
- What this means: use a small set of (hopefully intuitive) parameters that determine reflectance at each point
- We've seen one model already: diffuse reflectance determined by one parameter, the albedo
- Well, 3 actually (RGB)

Parametric BRDF Models

- Parametric BRDF models represent the relationship between incident and outgoing light by some mathematical formula with tunable parameters
-The appearance can then be tuned by setting parameters - "Color", "Shininess", "anisotropy", etc.
-Many ways of coming up with these
-Can models with measured data (examples later)
- Popular models: Diffuse, Blinn-Phong, Cook-Torrance, Lafortune, Ward, Oren-Nayar, etc.

Parametric SVBRDF Example

Diffuse albedo (color)

Specular albedo (color)

Glossiness

Surface normal

How do we obtain BRDFs?

- One possibility: Gonioreflectometer
-4 degrees of freedom

How do we obtain BRDFs?

Image-Based Acquisition

- See W. Matusik et al. for how
- A Data-Driven Reflectance Model, SIGGRAPH 2003
-The data is available from MERL

We've Pushed State of The Art

Aittala, Weyrich, Lehtinen, Practical SVBRDF
Capture in the Frequency Domain, SIGGRAPH 2013

Even less effort...

- SIGGRAPH 2015, http://tinyurl.com/TwoShotSVBRDF

Two-Shot SVBRDF Capture for Stationary Materials

Miika Aittala
Aalto University

Tim Weyrich
University College London

Jaakko Lehtinen
Aalto University, NVIDIA

Capture

Flash image

No-flash image

SVBRDF Decomposition

Figure 1: Given an flash-no-flash image pair of a "textured" material sample, our system produces a set of spatially varying BRDF parameters (an SVBRDF, right) that can be used for relighting the surface. The capture (left) happens in-situ using a mobile phone.

Questions?

Microfacet Theory

- Example
-Think of water surface as lots of tiny mirrors (microfacets)
-"Bright" pixels are
- Microfacets aligned with the vector between sun and eye
- But not the ones in shadow
- And not the ones that are occluded

Microfacet Theory

- Model surface by tiny mirrors [Torrance \& Sparrow 1967]

Microfacet Theory

- Value of BRDF at (L, V) is a product of
- number of mirrors oriented halfway between L and V

$\stackrel{>}{ } \mathrm{V}$

Microfacet Theory

- Value of BRDF at (L, V) is a product of
- number of mirrors oriented halfway between L and V

$\Longrightarrow \mathrm{V}$

Microfacet Theory

- Value of BRDF at (L, V) is a product of
- number of mirrors oriented halfway between L and V

$\Longrightarrow \mathrm{V}$

Microfacet Theory

- Value of BRDF at (L, V) is a product of
- number of mirrors oriented halfway between L and V
- ratio of the un(shadowed/masked) mirrors

Microfacet Theory

- Value of BRDF at (L, V) is a product of
- number of mirrors oriented halfway between L and V
- ratio of the un(shadowed/masked) mirrors
-Fresnel coefficient

Microfacet Theory-based Models

- Develop BRDF models by imposing simplifications [Torrance-Sparrow 67], [Blinn 77], [Cook-Torrance 81], [Ashikhmin et al. 2000]
- Model the distribution $\mathrm{D}(\mathbf{h})$ of microfacet normals
- Also, statistical models
for shadows and masking
- As always, $\mathbf{h}=\frac{\mathbf{l}+\mathbf{v}}{\|\mathbf{l}+\mathbf{v}\|}$

spherical plot of a Gaussian-like $p(H)$

General Microfacet BRDF (Cook-Torrance)

- Sum of Diffuse and Specular terms:

$$
f_{r}=\frac{\rho_{d}}{\pi}+\frac{\rho_{s}}{\pi} \frac{F(\mathbf{l} \cdot \mathbf{h}) D(\mathbf{h}) G(\mathbf{l}, \mathbf{v})}{(\mathbf{n} \cdot \mathbf{l})(\mathbf{n} \cdot \mathbf{v})}
$$

- F is the Fresnel term that accounts for increasing reflection towards grazing angle
- D is the microfacet distribution (common models include Gaussian, Blinn-Phong, Beckmann
- Shifted Gamma is the new king of the hill
- G is the geometric (shadowing, masking) term
- See linked papers for demernails $_{23-\text { Leninen }}$

Blinn-Torrance Variation of Phong

- Uses the "halfway vector" \mathbf{h} between \mathbf{l} and \mathbf{v}.

$$
D(\mathbf{h})=N_{q}(\mathbf{n} \cdot \mathbf{h})^{q} \quad \boldsymbol{h}=\frac{\boldsymbol{l}+\boldsymbol{v}}{\|\boldsymbol{l}+\boldsymbol{v}\|}
$$

$$
N_{q}=\frac{n+1}{2 \pi}
$$

is a normalization factor

Geometric (Shadowing, Masking) Term

- Can be computed from microfacet distribution by integration
- Cook and Torrance used a heuristic formula

$$
G=\min \left\{1, \frac{2(\mathbf{N} \cdot \mathbf{H})(\mathbf{N} \cdot \mathbf{V})}{(\mathbf{V} \cdot \mathbf{H})}, \frac{2(\mathbf{N} \cdot \mathbf{H})(\mathbf{N} \cdot \mathbf{L})}{(\mathbf{V} \cdot \mathbf{H})}\right\}
$$

- Current models are more well-founded than this, see e.g. this paper

BRDF Examples: see Ngan et al.

Material - Dark blue paint

Questions?

- "Designer BRDFs" by Ashikhmin et al.

Reflectance

- Careful optimization + milling allows one to create a surface that reflects light in such funky ways
- Weyrich, Peers, Matusik, Rusinkiewicz SIGGRAPH 2009, Fabricating Microgeometry for Custom Surface Reflectance

Fabricating Microgeometry for Custom Surface Reflectance

Tim Weyrich
University College London

Pieter Peers
University of Southern California, Institute for Creative Technologies

Wojciech Matusik
Adobe Systems, Inc.

Szymon Rusinkiewicz
Princeton University, Adobe Systems, Inc.

Figure 1: From left: a user-designed highlight is converted to an optimized microfacet height field. A computer-controlled milling machine is used to manufacture the surface (30×30 facets, each approximately $1 \mathrm{~mm} \times 1 \mathrm{~mm}$), which exhibits the desired reflectance.

Pure Reflection (BRDF)

BRDF: Light reflects off exactly the same point

Subsurface Scattering (BSSRDF)

Some light enters material, exits at another point BSSRDF = Bidirectional Surface Scattering Distribution Function (See Henrik's paper linked to the title)

Subsurface State of the Art: Weta Digital

BRDF vs. BSSRDF

Figure 1: Scattering of light in (a) a BRDF, and (b) a BSSRDF.

BSSRDF Definition

- Relates differential irradiance at all points and all directions to outgoing radiance at every other point and all outgoing directions
-8D! Ouch!

$$
L(x \rightarrow \mathbf{v})=\int_{A} \int_{\Omega} L(y \leftarrow \mathbf{l}) f_{r}(x, y, \mathbf{l}, \mathbf{v}) \cos \theta \mathrm{d} \mathbf{l} \mathrm{~d} A_{y}
$$

- To get outgoing light at point x, integrate over all other points y and all incident directions at those points
-Crazy complicated! Must do something smarter, i.e., cache incident illumination, assume diffuse scattering, etc. (See Henrik)

Questions?

Markus Otto/Winzenrender, Rendered using Maxwell

The Way To Global Illumination

$$
L(x \rightarrow \mathbf{v})=\int_{\Omega} L(x \leftarrow \mathbf{l}) f_{r}(x, \mathbf{l} \rightarrow \mathbf{v}) \cos \theta \mathrm{d} \mathbf{l}
$$

reflectance
equation

- Where does incident L come from?
- Next lecture...

