CS-C3100 Computer Graphics

4.1 Tensor Product Spline Surfaces

Representing Surfaces

- Triangle meshes
 - Surface analogue of polylines, this is what GPUs draw
- Tensor Product Splines (this video)
 - Surface analogue of spline curves
- Subdivision surfaces (next video)
- Implicit surfaces
 - f(x,y,z) = 0
- Procedural
 - e.g. surfaces of revolution, generalized cylinder
- From volume data (medical images, etc.)

In This Video

- Tensor product spline patches
 - Bézier and B-spline
- Tangents and normals from partial derivatives
- Displacement mapping
- Extra: matrix & tensor notation for spline patches
 - Slides only

Triangle Meshes

- What you've used so far in Asst 1
- Triangle represented by 3 vertices
- Pro: simple, can be rendered directly
- **Cons**: not smooth, needs many triangles to approximate smooth surfaces (tessellation)

Smooth Surfaces?

•
$$\mathbf{P}(t) = (1-t)^3 \qquad \mathbf{P}_1$$
+ $3t(1-t)^2 \qquad \mathbf{P}_2$
+ $3t^2(1-t) \qquad \mathbf{P}_3$
+ $t^3 \qquad \mathbf{P}_4$

What's the dimensionality of a curve? 1D!

Why? Just one scalar parameter, t

What about a surface?

Smooth Surfaces?

•
$$\mathbf{P}(t) = (1-t)^3 \qquad \mathbf{P}_1$$
+ $3t(1-t)^2 \qquad \mathbf{P}_2$
+ $3t^2(1-t) \qquad \mathbf{P}_3$
+ $t^3 \qquad \mathbf{P}_4$

What's the dimensionality of a curve? 1D!

Why? Just one scalar parameter, t

What about a surface?

2D!

How to Build Them?

•
$$P(u) = (1-u)^3$$
 P_1 (Note! We + $3u(1-u)^2$ P_2 relabeled t to u) + $3u^2(1-u)$ P_3 + u^3 P_4

How to Build Them? Here's an Idea

•
$$\mathbf{P}(\mathbf{u}) = (1-\mathbf{u})^3 \quad \mathbf{P}_1$$

+ $3\mathbf{u}(1-\mathbf{u})^2 \quad \mathbf{P}_2$
+ $3\mathbf{u}^2(1-\mathbf{u}) \quad \mathbf{P}_3$
+ $\mathbf{u}^3 \quad \mathbf{P}_4$

(Note! We relabeled *t* to *u*)

•
$$P(u, v) = (1-u)^3$$
 $P_1(v)$
+ $3u(1-u)^2$ $P_2(v)$
+ $3u^2(1-u)$ $P_3(v)$
+ u^3 $P_4(v)$

•
$$P(u, v) = (1-u)^3$$
 $P_1(v)$
+ $3u(1-u)^2$ $P_2(v)$
+ $3u^2(1-u)$ $P_3(v)$
+ u^3 $P_4(v)$

•
$$P(u, v) = (1-u)^3$$
 $P_1(v)$
+ $3u(1-u)^2$ $P_2(v)$
+ $3u^2(1-u)$ $P_3(v)$
+ u^3 $P_4(v)$

•
$$P(u, v) = (1-u)^3$$
 $P_1(v)$
+ $3u(1-u)^2$ $P_2(v)$
+ $3u^2(1-u)$ $P_3(v)$
+ u^3 $P_4(v)$

•
$$\mathbf{P}(\mathbf{u}, \mathbf{v}) = (1-\mathbf{u})^3$$
 $\mathbf{P}_1(\mathbf{v})$
+ $3\mathbf{u}(1-\mathbf{u})^2$ $\mathbf{P}_2(\mathbf{v})$
+ $3\mathbf{u}^2(1-\mathbf{u})$ $\mathbf{P}_3(\mathbf{v})$ $\mathbf{P}_4(\mathbf{v})$ $\mathbf{P}_4(\mathbf{v})$ $\mathbf{P}_4(\mathbf{v})$

•
$$P(u, v) = (1-u)^3$$
 $P_1(v)$
+ $3u(1-u)^2$ $P_2(v)$ A 2D surface patch!
+ $3u^2(1-u)$ $P_3(v)$ $s=0$ $s=1/3$ $s=2/3$ $s=1$
+ u^3 $P_4(v)$

- In the previous, $P_i(v)$ were just some curves
- What if we make **them** Bézier curves too?

- In the previous, $P_i(v)$ were just some curves
- What if we make **them** Bézier curves too?

• Each *u*=const. **and** *v*=const. curve is a Bézier curve!

 Note that the boundary control points (except corners) are NOT interpolated!

A bicubic Bézier surface

• Note that only the 4 corners are interpolated!

The "Control Mesh" 16 control points

•
$$P(u,v) = B_1(u) * P_1(v)$$

+ $B_2(u) * P_2(v)$
+ $B_3(u) * P_3(v)$
+ $B_4(u) * P_4(v)$
• $P_i(v) = B_1(v) * P_{i,1}$
+ $B_2(v) * P_{i,2}$

•
$$P(u,v) = B_1(u) * P_1(v)$$

+ $B_2(u) * P_2(v)$
+ $B_3(u) * P_3(v)$
+ $B_4(u) * P_4(v)$

•
$$P_{i}(v) = B_{1}(v) * P_{i,1}$$

+ $B_{2}(v) * P_{i,2}$
+ $B_{3}(v) * P_{i,3}$
+ $B_{4}(v) * P_{i,4}$

$$P(u, v) =$$

$$\sum_{i=1}^{4} B_i(u) \left[\sum_{j=1}^{4} P_{i,j} B_j(v) \right]$$

$$= \sum_{i=1}^{4} \sum_{j=1}^{4} P_{i,j} B_{i,j}(u,v)$$
 with

$$B_{i,j}(u,v) = B_i(u)B_j(v)$$

•
$$P(u,v) = B_1(u) * P_1(v)$$

+ $B_2(u) * P_2(v)$
+ $B_3(u) * P_3(v)$
+ $B_4(u) * P_4(v)$
• $P_i(v) = B_1(v) * P_{i,1}$
+ $B_2(v) * P_{i,2}$
+ $B_3(v) * P_{i,3}$
+ $B_4(v) * P_{i,4}$

$$P(u,v) = \int_{i=1}^{i \text{th control point}} P(u,v) = \int_{i=1}^{i \text{th control point}} P(u,v) = \sum_{i=1}^{4} B_i(u) \left[\sum_{j=1}^{4} P_{i,j} \, B_j(v) \right] + \sum_{i=1}^{4} \sum_{j=1}^{4} P_{i,j} \, B_{i,j}(u,v) = \sum_{i=1}^{4} \sum_{j=1}^{4} P_{i,j} \, B_{i,j}(u,v) + \sum_{i=1}^{4} \sum_{j=1}^{4} P_{i,j} \, B_{i,j}(u,v) = \sum_{i=1}^{4} P_{i,i} \, B_{i,i}(u,v) = \sum_{i=1}^{4} P_{i,i} \, B_{i,i}(u,v) = \sum_{i=1}^{4} P_{i,i}(u,v) = \sum_{i=1}^$$

•
$$P(u,v) = B_1(u) * P_1(v)$$

+ $B_2(u) * P_2(v)$
+ $B_3(u) * P_3(v)$
+ $B_4(u) * P_4(v)$
• $P_i(v) = B_1(v) * P_{i,1}$
+ $B_2(v) * P_{i,2}$

+ $B_3(v) * P_{i,3}$

+ $B_4(v) * P_{i,4}$

$$P(u,v) = \frac{4}{4}$$

16 control points P_{i,j} 16 2D basis functions B_{i,j}

$$= \sum_{i=1}^{4} \sum_{j=1}^{4} P_{i,j} B_{i,j}(u,v)$$

$$B_{i,j}(u,v) = B_i(u)B_j(v)$$

Recap: Tensor Bézier Patches

- Parametric surface P(u,v) is a cubic polynomial of two variables u & v
- Defined by 4x4=16 control points $P_{1,1}$, $P_{1,2}$ $P_{4,4}$
- Interpolates 4 corners, approximates others

- Defined by 4x4=16 control points $P_{1,1}$, $P_{1,2}$ $P_{4,4}$
- Basis functions = products of two 1D Bernsteins: $B_1(u)B_1(v)$; $B_1(u)B_2(v)$;... $B_4(u)B_4(v)$

Tangents and Normals for Patches

- P(u,v) is a 3D point specified by u, v
- The partial derivatives $\partial P/\partial u$ and $\partial P/\partial v$ are 3D vectors
 - Both are tangent to surface at P

Tangents and Normals for Patches

- P(u,v) is a 3D point specified by u, v
- The partial derivatives $\partial P/\partial u$ and $\partial P/\partial v$ are 3D vectors
 - Both are tangent to surface at P
 - Normal is perpendicular to both, i.e.,

$$n = (\partial P/\partial u) \times (\partial P/\partial v)$$

n is usually not unit, so must normalize!

Tensor Product B-Spline Patches

- Bézier and B-Spline curves are both cubics
 - => Can change between representations using matrices
- Consequently, you can build tensor product surface patches out of B-Splines just as well
 - Still 4x4 control points for each patch
 - 2D basis functions are pairwise products of B-Spline basis functions
 - Sliding window of 4x4 points
 - Yes, simple!

Tensor Product Spline Patches

Pros

- Smooth
- Defined by reasonably small set of points

Cons

- Harder to render (usually converted to triangles)
- Tricky to ensure continuity at patch boundaries

Extensions

- Rational splines: Splines in homogeneous coordinates
- NURBS: Non-Uniform Rational B-Splines
 - Like curves: ratio of polynomials, non-uniform location of control points, etc.

Utah Teapot: Tensor Bézier Splines

Designed by Martin Newell

Cool: Displacement Mapping

• Not all surfaces are smooth...

Cool: Displacement Mapping

- Not all surfaces are smooth...
- "Paint" displacements on a smooth surface
 - For example, in the direction of normal
- Tessellate smooth patch into fine grid, then add displacement D(u,v) to vertices
- Heavily used in movies, more and more in games

Displacement Mapping Example

zbrushcentral 31

Displacement Mapping Video

• Here, input triangles are also dynamically tessellated by the GPU

• http://www.youtube.com/watch?v=XDlC6tAqc20

Extra: Tensor Notation

• See the slides!

Recap: Matrix Notation for Curves

Cubic Bézier in matrix notation

 (2×4)

(Bernstein)

34

Hardcore: Matrix Notation for Patches

Not required, but convenient!

x coordinate of surface at (u,v)

$$P^x(u,v) =$$

$$(B_1(u),\ldots,B_4(u))$$

Row vector of basis functions (*u*)

$$P(u, v) = \sum_{i=1}^{4} B_i(u) \left[\sum_{j=1}^{4} P_{i,j} B_j(v) \right]$$

Column vector of basis functions (v)

$$\begin{pmatrix} P_{1,1}^x & \dots & P_{1,4}^x \\ \vdots & & \vdots \\ P_{4,1}^x & \dots & P_{4,4}^x \end{pmatrix} \begin{pmatrix} B_1(v) \\ \vdots \\ B_4(v) \end{pmatrix}$$

4x4 matrix of *x* coordinates of the control points

Hardcore: Matrix Notation for Patches

• Curves:

$$P(t) = \boldsymbol{G} \boldsymbol{B} \boldsymbol{T}(t)$$

• Surfaces:

$$P^{x}(u,v) = \mathbf{T}(u)^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{G}^{x} \mathbf{B} \mathbf{T}(v)$$

A separate 4x4 geometry matrix for x, y, z

• T = power basis

 $\mathbf{B} = \text{spline matrix}$

G = geometry matrix

Super Hardcore: Tensor Notation

- You can stack the G^x , G^y , G^z matrices into a geometry **tensor** of control points
 - I.e., $G^{k_{i,j}}$ = the k:th coordinate of control point $P_{i,j}$
 - A cube of numbers!

$$P^{k}(u,v) = \mathbf{T}^{l}(u) \mathbf{B}_{l}^{i} \mathbf{G}_{ij}^{k} \mathbf{B}_{m}^{j} \mathbf{T}^{m}(v)$$

- "<u>Einstein summation convention</u>": Repeated indices are summed over (here *l, m, i, j*)
- Definitely not required, but nice! :)
 - See http://en.wikipedia.org/wiki/Multilinear_algebra

