CS-C3100 Computer Graphics

Bézier Curves and Splines

3.4 Differential properties of curves & cubic B-Splines
In These Slides

• Velocity, tangent, and curvature of smooth curves
• Orders of continuity
 – How smoothly curve segments join together
• Cubic B-Splines
 – C^2 (curvature continuous=very smooth) cubic splines
Differential properties of curves

- Motivation
 - Compute normal for surfaces
 - Compute velocity for animation
 - Analyze smoothness
Velocity

- First derivative w.r.t. t
- Can you compute this for Bezier curves?

 $P(t) = (1-t)^3 P_1 + 3t(1-t)^2 P_2 + 3t^2(1-t) P_3 + t^3 P_4$

- You know how to differentiate polynomials...
Velocity

- First derivative w.r.t. t

- Can you compute this for Bezier curves?

$$ P(t) = (1-t)^3 P_1 + 3t(1-t)^2 P_2 + 3t^2(1-t) P_3 + t^3 P_4 $$

- $P'(t) = -3(1-t)^2 P_1 + [3(1-t)^2 - 6t(1-t)] P_2 + [6t(1-t) - 3t^2] P_3 + 3t^2 P_4$

Sanity check: $t=0; t=1$

Can also write this using a matrix B' — try it out!
The tangent to the curve $P(t)$ can be defined as $T(t) = \frac{P'(t)}{||P'(t)||}$
- normalized velocity, $||T(t)|| = 1$

This provides us with one orientation for swept surfaces in a little while.
Curvature

• Derivative of **unit** tangent (*not* just the 1st deriv. !)
 - \(K(t) = T'(t) \)
 - Magnitude \(||K(t)|| \) is constant for a circle
 - Zero for a straight line

• Always orthogonal to tangent, ie. \(K \cdot T = 0 \)
 - Can you prove this? (Hints: \(||T(t)|| = 1 \), \((x(t)y(t))' = ? \))
Geometric Interpretation

- K is zero for a line, constant for circle
 - What constant? 1/r
- \(1/||K(t)||\) is the radius of the circle that touches P(t) at \(t\) and has the same curvature as the curve
Curve Normal

- Normalized curvature: $\frac{T'(t)}{||T'(t)||}$
Orders of Continuity

- $C^0 = \text{continuous}$
 - The seam can be a sharp kink
- $G^1 = \text{geometric continuity}$
 - Tangents \textbf{point to the same direction} at the seam
- $C^1 = \text{parametric continuity}$
 - Tangents \textbf{are the same} at the seam, implies G^1
- $C^2 = \text{curvature continuity}$
 - Tangents and their derivatives are the same
(Even nicer: Clothoid Splines)

- Curves with piecewise linear curvature
- See our paper from 2010 – this is now the basis of Illustrator’s freehand drawing tool!

We obtain high-quality piecewise-clothoid curves from hand-drawn sketches.
Connecting Cubic Bézier Curves

- How can we guarantee C^0 continuity?
- How can we guarantee G^1 continuity?
- How can we guarantee C^1 continuity?
- C^2 and above gets difficult
Connecting Cubic Bézier Curves

• Where is this curve
 – \(C^0 \) continuous?
 – \(G^1 \) continuous?
 – \(C^1 \) continuous?

• What’s the relationship between:
 – the # of control points,
 and the # of cubic Bézier subcurves?
Cubic B-Splines

- ≥ 4 control points
- Locally cubic
 - Cubics chained together, again.
Cubic B-Splines

- ≥ 4 control points
- Locally cubic
 - Cubics chained together, again..
 - BUT with a sliding window of 4 control points!
Cubic B-Splines

- ≥ 4 control points
- Locally cubic
 - Cubics chained together, again.
 - BUT with a sliding window of 4 control points!
Cubic B-Splines

- ≥ 4 control points
- Locally cubic
 - Cubics chained together, again.
 - BUT with a sliding window of 4 control points!
Cubic B-Splines

• \(\geq 4 \) control points
• Locally cubic
 – Cubics chained together, again.
• Curve is not constrained to pass through any control points

A BSpline curve is also bounded by the convex hull of its control points.
Cubic B-Splines: Basis

\[
B_1(t) = \frac{1}{6} (1 - t)^3 \\
B_3(t) = \frac{1}{6} (-3t^3 + 3t^2 + 3t + 1) \\
B_2(t) = \frac{1}{6} (3t^3 - 6t^2 + 4) \\
B_4(t) = \frac{1}{6} t^3
\]

These sum to 1, too!
Cubic B-Splines: Basis

\[Q(t) = \frac{(1-t)^3}{6} P_{i-3} + \frac{3t^3 - 6t^2 + 4}{6} P_{i-2} + \frac{-3t^3 + 3t^2 + 3t + 1}{6} P_{i-1} + \frac{t^3}{6} P_i \]

\[Q(t) = \text{GBT}(t) \]

\[B_{B-Spline} = \frac{1}{6} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 4 & 0 & -6 & 3 \\ 1 & 3 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]
Cubic B-Splines

- Local control (windowing)
- Automatically C^2, and no need to match tangents!
B-Spline Curve Control Points

Default BSpline

BSpline with derivative discontinuity

BSpline which passes through end points

Repeat interior control point

Repeat end points
Bézier ≠ B-Spline

But both are cubics, so one can be converted into the other!
Converting between Bézier & BSpline

• Simple with the basis matrices!
 – Note that this only works for a single segment of 4 control points

\[P(t) = G \mathbf{B}_1 \mathbf{T}(t) = \]

\[G \mathbf{B}_1 (\mathbf{B}_2^{-1}\mathbf{B}_2) \mathbf{T}(t) = \]

\[(G \mathbf{B}_1 \mathbf{B}_2^{-1}) \mathbf{B}_2 \mathbf{T}(t) \]

\[B_{\text{B-BSpline}} = \frac{1}{6} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 4 & 0 & -6 & 3 \\ 1 & 3 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

• \(G \mathbf{B}_1 \mathbf{B}_2^{-1} \) are the control points for the segment in new basis.

\[Q(t) = G \mathbf{B} \mathbf{T}(t) = \text{Geometry } G \cdot \text{Spline Basis } \mathbf{B} \cdot \text{Power Basis } \mathbf{T}(t) \]
Converting between Bézier & BSpline

original control points as Bézier

original control points as BSpline
Converting between Bézier & BSpline

original control points as Bézier

new BSpline control points to match Bézier

original control points as BSpline
Converting between Bézier & BSpline

original control points as Bézier

new BSpline control points to match Bézier

new Bézier control points to match BSpline

original control points as BSpline
Why Bother with B-Splines?

- Automatic C^2 is nice!
- Also, B-Splines can be split into segments of non-uniform length without affecting the global parametrization.
 - “Non-uniform B-Splines”
 - We’ll not do this, but just so you know.
NURBS (Generalized B-Splines)

- Rational cubics
 - Use homogeneous coordinates, just add w
 - Provides a “tension” parameter to control points

- NURBS: Non-Uniform Rational B-Spline
 - non-uniform = different spacing between the blending functions, a.k.a. “knots”
 - rational = ratio of cubic polynomials (instead of just cubic)
 - implemented by adding the homogeneous coordinate w into the control points.