Aalto CS-C3100 Computer Graphics

 Jaakko Lehtinen

In This Video

- What are geometric transformations?
- Useful types of transformations
- Transformations as algebraic groups
- And why it is useful to look at them that way

Two Views on Transformations

- First, the geometric one: a warp of space
- Focus on how a point x gets transported into x,

points in original configuration

points in warped configuration after transformation

Two Views on Transformations

- First, the geometric one: a warp of space - Focus on how a point x gets transported into x,

points in original configuration

points in warped configuration after transformation

Two Views on Transformations

- Second, the coordinate view
- Given the coordinates (x, y) of a point in System 1, what are its coordinates ($\mathrm{x}^{\prime}, \mathrm{y}^{\prime}$) in System 2?

Coordinate system 1

View 2 is Directly Useful Here

Transformations take us between these coordinates.

Object coordinates

View coordinates

Image coordinates

The two views are not contradictory

Simple Transformations

Some Simple Transformations

Identity

Translation

Rotation

Isotropic
(Uniform) Scaling

- Can be combined
- Are these operations invertible?

Yes, except scale $=0$

Rigid-Body / Euclidean Transforms

- What properties are preserved?

Rigid / Euclidean

Translation

Rigid-Body / Euclidean Transforms

- Preserves distances
- Preserves angles

Rigid / Euclidean

Translation

Similitudes / Similarity Transforms

- Preserves angles
- "The shapes are the same", just at different scale, orientation and location

Linear Transformations

Similitudes

Linear Transformations

- $L(\boldsymbol{p}+\boldsymbol{q})=L(\boldsymbol{p})+L(\boldsymbol{q})$
- $L(a \boldsymbol{p})=a L(\boldsymbol{p})$

Similitudes
Linear

Linear Transformations

- $L(p+q)=L(p)+L(q)$
- $L(a p)=a L(p)$

Similitudes
Linear

Linear Transformations

$$
\begin{aligned}
& \text { - } L(p+q)=L(p)+L(q) \\
& \text { - } L(a p)=a L(p)
\end{aligned}
$$

Translation is not linear:

$$
\begin{gathered}
\mathrm{f}(\mathbf{p})=\mathbf{p}+\mathbf{t} \\
\mathrm{f}(\mathrm{ap})=\mathrm{a} \mathbf{p}+\mathbf{t} \neq \mathrm{a}(\mathbf{p}+\mathbf{t})=\mathrm{a} \mathrm{f}(\mathbf{p}) \\
\mathrm{f}(\mathbf{p}+\mathbf{q})=\mathbf{p}+\mathbf{q}+\mathbf{t} \neq(\mathbf{p}+\mathbf{t})+(\mathbf{q}+\mathbf{t})=\mathrm{f}(\mathbf{p})+\mathrm{f}(\mathbf{q})
\end{gathered}
$$

Affine Transformations

- What is preserved..?

Affine Transformations

- Preserves parallel lines

Similitudes

Projective Transformations

- Preserves lines: lines remain lines (planes remain planes in 3D)
(Planar) Projective

What's so nice about these?

- What's with the hierarchy? Why have we grouped types of transformations with and within each other?

What's so nice about these?

- They are closed under concatenation
- Means e.g. that an affine transformation followed by another affine transformation is still an affine transformation
- Same for every subgroup, e.g. rotations, translations.
- Very convenient!
- Projections are the most general
- Others are its special cases

Name-dropping

- Fancy name: Group Theory
- Remember algebra?
- A group is a set S with an operation f that takes two elements of S and produces a third:

$$
s, t \in S, f(s, t)=u \Rightarrow u \in S
$$

(and some other axioms)

- These transformations are group(s) and subgroups
- The transformations are the set S, concatenation of transformations is f

Transforms are Groups

- Why is this useful?
- You can represent any number of successive transformations by a single compound transformation
- Example
- The object-to-world transformation, the world-to-view transformation, and the perspective projection (view-to-image) can all be folded into a single projective object-toimage transformation
- (OpenGL: Modelview, projection)

Disclaimer:

Not ANY
transformation,
but the types
just introduced
Object
coordinates
World
coordinates
View
coordinates
Image
coordinates

More Complex Transformations..

- ...can be built out of these, e.g.
- "Skinning"
- Blending of affine transformations
- We'll do this later.. and you will code it up! :)

More Complex Transformations

- Harmonic coordinates (link to paper)
- Object enclosed in simple "cage", each object point knows the influence each cage vertex has on it
- Deform the cage, and the object moves!

Key Concepts

- Geometric transformations change the positions/ coordinates of points in space
- Translation, scaling, rotation, shearing, reflection, and planar perspective transformations are the building blocks of graphics
- And, as you will see in the next two videos, they can all be represented using matrices
- More complex ones can be built out of them

