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In This Video

* What are geometric transformations?
» Useful types of transformations

» Transformations as algebraic groups
— And why 1t 1s useful to look at them that way



Two Views on Transformations

 First, the geometric one: a warp of space
— Focus on how a point x gets transported into x’

2

points in original configuration

points in warped configuration
after transformation



Two Views on Transformations

 First, the geometric one: a warp of space
— Focus on how a point x gets transported into x’

points in warped configuration

points in original configuration after transformation

From Sederberg and Parry, Siggraph 1986 |ink


https://dl.acm.org/doi/10.1145/15886.15903

Two Views on Transformations

e Second, the coordinate view

— Given the coordinates (X, y) of a point in System 1,
what are its coordinates (x’, y’) in System 27

y’ axis

Coordinate system 2

Coordinate system 1



View 2 is Directly Useful Here

Transformations
take us between these coordinates.

Object World
coordinates coordinates coordinates
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The two views are not
contradictory



Simple Transformations
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Some Simple Transformations
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Identity Translation Rotation (Unitorm)
Scaling

 Can be combined

* Are these operations invertible?
Yes, except scale = ()



Rigid-Body / Euclidean Transforms

* What properties are
preserved?

Rigid / Euclidean

Identity
Translation
Rotation
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Rigid-Body / Euclidean Transforms

 Preserves distances
* Preserves angles

Rigid / Euclidean

Identity
Translation
Rotation
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Similitudes / Similarity Transforms

* Preserves angles

» “The shapes are the same™, just
at different scale, orientation

and location
Similitudes

Rigid / Euclidean

Identity

Translation Isotropic Scaling

Rotation
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Linear Transformations

| B

Scaling Retlection Shear

Similitudes

Linear

Rigid / Euclidean

Scaling

Identity

Translation Isotropic Scaling Reflection

Rotation
Shear
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Linear Transformations

* Lip +q) = L)+ L(g
- L) a1 ’

Similitudes

Linear

Rigid / Euclidean

Identity
Rotation

Scaling

Translation Isotropic Scaling Reflection

Shear
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Linear Transformations

* L(p T q) = L(p) + L(q)
- L) —a Lty :.

Similitudes

Linear

Rigid / Euclidean

Scaling

Isotropic Scaling Reflection

Shear
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Translation is not linear:
f(p) = ptt

f(ap) = ap+t # a(p+t) = a f(p)
f(p+q) = ptq+t # (ptt)+(q+t) = f(p) + {(q)




Affine Transformations

* What 1s preserved..?

Affine

Similitudes

Rigid / Euclidean

Scaling

Identity

Translation Isotropic Scaling Reflection

Rotation

Shear




Affine Transformations

* Preserves
parallel lines

Similitudes

Rigid / Euclidean

Scaling

Identity

Translation Isotropic Scaling Reflection

Rotation

Shear




[

Projective Transformations

 Preserves lines: lines remain lines

(planes remain planes 1n 3D)
(Planar) Projective ——

Similitudes

Rigid / Euclidean

Scaling

Identity

Translation Isotropic Scaling Reflection

Rotation

Shear

Perspective
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What's so nice about these?

 What’s with the hierarchy? Why have we grouped
types of transformations with and within each
other?




What's so nice about these?

* They are closed under concatenation

— Means e.g. that an affine transformation followed by
another affine transformation is still an affine
transformation

— Same for every subgroup,
e.g. rotations, translations..

* Very convenient!
* Projections are the
most general

— Others are its
special cases
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Name-dropping

* Fancy name: Group Theory

 Remember algebra?

— A group 1s a set § with an operation f that takes two
elements of S and produces a third:

s, t €S, f(s,t)=u = ues

(and some other axioms)

* These transformations are group(s) and subgroups

— The transformations are the set S,
concatenation of transformations 1s f
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Transforms are Groups

* Why 1s this useful? Disclaimer:
— You can represent any number of Not ANY_
successive transformations by a transformation,
single compound transformation _ but.the types
just introduced
« Example
— The object-to transformation, ~ OPJect
- - coordinates
the -view transformation, World
anFl the pgrspective projection coordinates
(view-to-1mage) can all be folded View
into a single projective object-to- coordinates

image transformation
— (OpenGL: Modelview, projection)
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More Complex Transformations..

e ...can be built
out of these, e.g.

« “Skinning”

— Blending of affine
transformations

— We’ll do this later..
and you will code
it up! :)

llya Baran




More Complex Transformations

 Harmonic coordinates (link to paper)

— Object enclosed 1n simple “cage™, each object point
knows the influence each cage vertex has on 1t

— Deform the cage, and the object moves!
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http://dl.acm.org/citation.cfm?id=1276466
http://dl.acm.org/citation.cfm?id=1276466
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Key Concepts

* Geometric transformations change the positions/
coordinates of points 1n space

* Translation, scaling, rotation, shearing, reflection,
and planar perspective transformations are the
building blocks of graphics

— And, as you will see 1n the next two videos, they can
all be represented using matrices

* More complex ones can be built out of them
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