
1

Rasterization cont’d
15.4 Depth sorting by Z-buffering, clipping

Jaakko Lehtinen
Lots of slides from Fredo Durand

Call of Duty: Ghost / Activision

In These Slides

2

• To read on your own
– Z-buffer: How to make sure we get the closest surface in

each pixel when rasterizing
• Hierarchical z-buffering

– Interpolating attributes (like z) from vertices to pixels
– Avoiding projection problems by clipping

Figuring out what’s visible: Z-Buffer

3

• In ray casting, use intersection with closest t
• Now we have swapped the loops (pixel, object)
• How do we do?

Z-buffer

4

• In addition to frame buffer (R, G, B),
store z coordinate of rasterized points

• Pixel is updated only if new z is closer
than z-buffer value

Z-buffer pseudo code

5

For every triangle
Compute Projection, color at vertices
Setup line equations
Compute bbox, clip bbox to screen limits
For all pixels in bbox

Increment line equations
Compute curentZ
Increment currentColor

If all line equations>0 //pixel [x,y] in triangle

If currentZ<zBuffer[x,y] //pixel is visible
 Framebuffer[x,y]=currentColor

zBuffer[x,y]=currentZ

Z-buffer Main Benefit

6

• Works for hard cases!

Z-buffer Main Problem

7

• Works really only for opaque geometry,
no general transparency
– Why? The ordering of the surfaces is important to get

transparency right
– The Z-buffer just keeps the closest intersection

• The ray tracer finds the closest one first, then fires another ray

• Funny enough, this is still an ~unsolved problem in
real-time graphics even today!
– “Order independent transparency”
– However, great progress has been made in the last few

years (Links 1 2)

http://en.wikipedia.org/wiki/Order-independent_transparency
http://dx.doi.org/10.1145/2018323.2018342
http://www.anandtech.com/show/6863/intels-pixelsync-instantaccess-two-new-directx-extensions-for-haswell

Z-buffer efficiency

8

• Looping over all triangles is not smart if most of
them are occluded.

• What can we do?

Is That the Best We Can Do?

9

• Can we do better than just test each pixel individually
after rasterization?

For each triangle

for each pixel (x,y)
 if passes all edge equations
 compute z
 if z<zbuffer[x,y]

 zbuffer[x,y]=z
 framebuffer[x,y]=shade()

Hierarchical Z-Buffer

10

Otherwise, check the
pixels like before. When
updating the individual
z values in the Z-buffer,
also update the Zmin and
Zmax values of the
corresponding tile.

• Keep a Zmin and Zmax value for each tile
• Check all tiles within triangle bounding box: If all

tiles’ Zmax is closer than the minimum Z of the
vertices, the triangle cannot be visible!

Occlusion Culling

11

• We can do even better!
• We can test an object’s conservative (3D) bounding

volume (usually box) against the hierarchical Z-
buffer before drawing any of the triangles
– If bounding box is not visible, don’t submit the triangles

• Sorting objects front-to-back makes this efficient

Occlusion Culling

12

• We can do even better!
• We can test an object’s conservative (3D) bounding

volume (usually box) against the hierarchical Z-
buffer before drawing any of the triangles
– If bounding box is not visible, don’t submit the triangles

• Sorting objects front-to-back makes this efficient
• OpenGL/DirectX “occlusion queries” and

“predicated rendering” can be used to do this.
• There are neat algorithms that allow output-sensitive

rendering of really large scenes
– Cf. Umbra Software’s engine middleware

http://www.umbrasoftware.com/

13

For each triangle
 transform into eye space
 project from 3D to 2D
 set up 3 edge equations
 for each pixel x,y
 if passes all edge equations
 compute z
 if z<zbuffer[x,y]
 zbuffer[x,y]=z
 framebuffer[x,y]=shade()

Why quotes? We are
leaving out programmable
stages and parallelism

Recap: The Graphics Pipeline

• How do we get that Z value for each pixel?
– We only know z at the vertices...
– Must interpolate from vertices into triangle interior

Interpolation in Screen Space

14

For each triangle
for each pixel (x,y)

 if passes all edge equations
 compute z
 if z<zbuffer[x,y]
 zbuffer[x,y]=z
 framebuffer[x,y]=shade()

Interpolation in Screen Space

15

• Also need interpolate color, normals, texture coordinates,
etc. between vertices
– We did this with barycentrics in ray casting

• Linear interpolation in object space

– Is it the same as linear interpolation on the screen?

Interpolation in Screen Space

16

Two regions of same
size in world space

Interpolation in Screen Space

17

The farther region
shrinks to a smaller
area of the screen

Two regions of same
size in world space

Nope, Not the Same

18

• Linear variation in world space does not yield linear
variation in screen space due to projection
– Think of looking at a checkerboard at a steep angle; all

squares are the same size on the plane, but not on screen

“Gouraud
interpolation”

Perspective-correct
Interpolation

Head-on view

Im
ag

e:
 W

ik
ip

ed
ia

Solution: Barycentrics, Again

19

• Barycentric coordinates for a triangle (a, b, c)

– Remember,

P (�,⇥, ⇤) = �a + ⇥b + ⇤c

� + ⇥ + ⇤ = 1, �, ⇥, ⇤ � 0

Solution: Barycentrics, Again

20

• Barycentric coordinates for a triangle (a, b, c)

– Remember,

• Let’s project point P by projection matrix C

P (�,⇥, ⇤) = �a + ⇥b + ⇤c

CP = C(�a + ⇥b + ⇤c)
= �Ca + ⇥Cb + ⇤Cc

= �a� + ⇥b� + ⇤c�

a’, b’, c’ are the
projected
homogeneous
vertices before
division by w

� + ⇥ + ⇤ = 1, �, ⇥, ⇤ � 0

Solution: Barycentrics, Again

21

• The (x, y) screen coordinates of P are

a’, b’, c’ are the
projected
homogeneous
vertices

CP = �a� + ⇥b� + ⇤c�

�
�a�

x + ⇥b�
x + ⇤c�

x

�a�
w + ⇥b�

w + ⇤c�
w

,
�a�

y + ⇥b�
y + ⇤c�

y

�a�
w + ⇥b�

w + ⇤c�
w

⇥
(Px/Pw, Py/Pw) =

Solution: Barycentrics, Again

22

• The (x, y) screen coordinates of P are

a’, b’, c’ are the
projected
homogeneous
vertices

CP = �a� + ⇥b� + ⇤c�

�
�a�

x + ⇥b�
x + ⇤c�

x

�a�
w + ⇥b�

w + ⇤c�
w

,
�a�

y + ⇥b�
y + ⇤c�

y

�a�
w + ⇥b�

w + ⇤c�
w

⇥
(Px/Pw, Py/Pw) =

This looks familiar...

Solution: Barycentrics, Again

23

• It’s a projective mapping from
the barycentrics onto screen coordinates!
– Represented by a 3x3 matrix

• The inverse of a projection is a projection...
– We’ll just take the inverse mapping to get from (x, y, 1) to

the barycentrics!

�

⇤
Px/Pw

Py/Pw

1

⇥

⌅ �

�

⇤
Px

Py

Pw

⇥

⌅ =

�

⇤
a�

x b�
x c�

x

a�
y b�

y c�
y

a�
w b�

w c�
w

⇥

⌅

�

⇤
�
⇥
⇤

⇥

⌅

projective
equivalence

From Screen to Barycentrics

24

• Recipe
– Compute projected homogeneous coordinates a’, b’, c’
– Put them in the columns of a matrix, invert it
– Multiply screen coordinates (x, y, 1) by inverse matrix
– Then divide by the sum of the resulting coordinates

• This ensures the result is sums to one like barycentrics should
– Then interpolate value (e.g. Z) from vertices using them

projective
equivalence�

⇤
�
⇥
⇤

⇥

⌅ �

�

⇤
a⇥x b⇥x c⇥x
a⇥y b⇥y c⇥y
a⇥w b⇥w c⇥w

⇥

⌅
�1 �

⇤
x
y
1

⇥

⌅

Barycentric Interpolation Recap

25

• Values v1, v2, v3 defined at a, b, c
– Colors, normal, texture coordinates, etc.

• P(α, β, γ) = αa + βb + γc is the point...
• v(α, β, γ) = αv1 + βv2 + γv3 is the

barycentric interpolation of
v1-v3 at point P
– Sanity check: v(1,0,0) = v1, etc.

• I.e, once you know α, β, γ,
you can interpolate values
using the same weights.
– Convenient!

v1

v2

v3

P

Clipping: What if the pz is > eyez?

(eyex, eyey, eyez)

image plane

z axis →+

26

Clipping: What if the pz is > eyez?

(eyex, eyey, eyez)

image plane

z axis →+

26

What if the pz is < eyez?

(eyex, eyey, eyez)

image plane

z axis →+

27

What if the pz is < eyez?

(eyex, eyey, eyez)

image plane

z axis →+

27

What if the pz = eyez?

(eyex, eyey, eyez)

image plane

z axis →+

28

When w’ = 0, point projects to infinity
(homogenization is division by w’)

What if the pz = eyez?

(eyex, eyey, eyez)

image plane

???

z axis →+

28

When w’ = 0, point projects to infinity
(homogenization is division by w’)

A Solution: Clipping

(eyex, eyey, eyez)

image plane

"clip" geometry to
view frustum, discard

outside parts

z axis →+

29

z=near
z=far

Clipping

30

• Eliminate portions of objects
outside the viewing frustum

• View Frustum
– boundaries of the image

plane projected in 3D
– a near & far

clipping plane
• User may define

additional clipping
planes

bottom

top

right

left

near

far

Why Clip?

31

• Avoid degeneracies
– Don’t draw stuff

behind the eye
– Avoid division

by 0 and overflow z=near

z=far

Related Idea

32

• “View Frustum Culling”
– Use bounding volumes/hierarchies to test whether any part

of an object is within the view frustum
• Need “frustum vs. bounding volume” intersection test
• Crucial to do hierarchically when scene has lots of objects!
• Early rejection (different from clipping)

See e.g. Optimized
view frustum culling
algorithms for
bounding boxes, Ulf
Assarsson and Tomas
Möller, journal of
graphics tools, 2000.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.1491&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.1491&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.1491&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.1491&rep=rep1&type=pdf

Clipping

33

• Each side of the viewing frustum is a plane
• We’ll clip the input triangles with these planes
• How do we get the plane equations?

– We’ll clip in homogeneous
coordinates before division by w’

bottom

top

right

left

near

far

Clipping Planes

34

• In normalized screen coordinates, the left boundary
of the screen is defined by the line x >= -1
– Screen x = x’/w’, so this can be written in homogeneous

coordinates as

x’/w’ >= -1 <=> x’ >= -w’ <=> x’ + w’ >= 0

– Using plane equation notation:

– (x’y’z’w’ are homogeneous coordinates after projection)

(1 0 0 1) (x� y� z� w�)T � 0

Clipping Planes

35

• In normalized screen coordinates, the left boundary
of the screen is defined by the line x >= -1
– Screen x = x’/w’, so this can be written in homogeneous

coordinates as

x’/w’ >= -1 <=> x’ >= -w’ <=> x’ + w’ >= 0

– Using plane equation notation:

– (x’y’z’w’ are homogeneous coordinates after projection)

(1 0 0 1) (x� y� z� w�)T � 0 Similarly for all
5 other planes!

Homogeneous clipping plane
for left screen boundary

Sutherland-Hodgman Clipping

36

• 2D version; 3D is pretty much the same

Clipping
line (plane)

inside

outside

Sutherland-Hodgman Clipping

37

• Init: Output = empty
• Test vertex 1

– It’s inside, add to output
Clipping

line (plane)

inside

outside

Current: In

vertex 1

vertex 2

vertex 3

Sutherland-Hodgman Clipping

38

• Init: Output = empty
• Test vertex 1

– It’s inside, add to output
• Test vertex 2

– Inside, add to output
Clipping

line (plane)

inside

outside

Current: In

Sutherland-Hodgman Clipping

39

• Init: Output = empty
• Test vertex 1

– It’s inside, add to output
• Test vertex 2

– Inside, add to output
• Test vertex 3 (outside)

– Compute intersection,
add it to output

Clipping
line (plane)

inside

outside

Current: Out

Sutherland-Hodgman Clipping

40

• Init: Output = empty
• Test vertex 1

– It’s inside, add to output
• Test vertex 2

– Inside, add to output
• Test vertex 3 (outside)

– Compute intersection,
add it to output

• Test vertex 4=1 (to close loop)
– It’s inside, and last vertex (3) was outside =>

compute intersection, add to output DONE

Clipping
line (plane)

inside

outside

Current: In

Sutherland-Hodgman Clipping

41

• Init: Output = empty
• Test vertex 1

– It’s inside, add to output
• Test vertex 2

– Inside, add to output
• Test vertex 3 (outside)

– Compute intersection,
add it to output

• Test vertex 4=1 (to close loop)
– It’s inside, and last vertex (3) was outside =>

compute intersection, add to output DONE

Clipping
line (plane)

inside

outside

1
2

3 4

More Information

42

• These links treat the “full” Sutherland-Hodgman
algorithm that can also clip concave polygons
– http://www.sunshine2k.de/stuff/Java/SutherlandHodgman/

SutherlandHodgman.html
– http://en.wikipedia.org/wiki/Sutherland-

Hodgman_clipping_algorithm

– Clipping triangles is an easier special case, don’t need to
worry about concave inputs

http://www.sunshine2k.de/stuff/Java/SutherlandHodgman/SutherlandHodgman.html
http://www.sunshine2k.de/stuff/Java/SutherlandHodgman/SutherlandHodgman.html
http://en.wikipedia.org/wiki/Sutherland-Hodgman_clipping_algorithm
http://en.wikipedia.org/wiki/Sutherland-Hodgman_clipping_algorithm

