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Rasterization cont’d 
15.4 Depth sorting by Z-buffering, clipping 

Jaakko Lehtinen 
Lots of slides from Fredo Durand

Call of Duty: Ghost / Activision



In These Slides
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• To read on your own 
– Z-buffer: How to make sure we get the closest surface in 

each pixel when rasterizing 
• Hierarchical z-buffering 

– Interpolating attributes (like z) from vertices to pixels 
– Avoiding projection problems by clipping



Figuring out what’s visible: Z-Buffer
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• In ray casting, use intersection with closest t 
• Now we have swapped the loops (pixel, object) 
• How do we do?



Z-buffer
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• In addition to frame buffer (R, G, B), 
store z coordinate of rasterized points 

• Pixel is updated only if new z is closer  
than z-buffer value



Z-buffer pseudo code
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For every triangle 
Compute Projection, color at vertices 
Setup line equations 
Compute bbox, clip bbox to screen limits 
For all pixels in bbox 

Increment line equations 
Compute curentZ 
Increment currentColor 

If all line equations>0 //pixel [x,y] in triangle  

If currentZ<zBuffer[x,y] //pixel is visible 
  Framebuffer[x,y]=currentColor 

zBuffer[x,y]=currentZ



Z-buffer Main Benefit
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• Works for hard cases!



Z-buffer Main Problem
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• Works really only for opaque geometry, 
no general transparency 
– Why? The ordering of the surfaces is important to get 

transparency right 
– The Z-buffer just keeps the closest intersection 

• The ray tracer finds the closest one first, then fires another ray 

• Funny enough, this is still an ~unsolved problem in 
real-time graphics even today! 
– “Order independent transparency”  
– However, great progress has been made in the last few 

years (Links 1 2)

http://en.wikipedia.org/wiki/Order-independent_transparency
http://dx.doi.org/10.1145/2018323.2018342
http://www.anandtech.com/show/6863/intels-pixelsync-instantaccess-two-new-directx-extensions-for-haswell


Z-buffer efficiency
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• Looping over all triangles is not smart if most of 
them are occluded. 

• What can we do?



Is That the Best We Can Do?

9

• Can we do better than just test each pixel individually 
after rasterization?

For each triangle

for each pixel (x,y)
    if passes all edge equations
      compute z
      if z<zbuffer[x,y]

        zbuffer[x,y]=z
        framebuffer[x,y]=shade()



Hierarchical Z-Buffer
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Otherwise, check the 
pixels like before. When 
updating the individual 
z values in the Z-buffer, 
also update the Zmin and 
Zmax values of the 
corresponding tile.

• Keep a Zmin and Zmax value for each tile 
• Check all tiles within triangle bounding box: If all 

tiles’ Zmax is closer than the minimum Z of the 
vertices, the triangle cannot be visible!



Occlusion Culling

11

• We can do even better! 
• We can test an object’s conservative (3D) bounding 

volume (usually box) against the hierarchical Z-
buffer before drawing any of the triangles 
– If bounding box is not visible, don’t submit the triangles 

• Sorting objects front-to-back makes this efficient



Occlusion Culling
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• We can do even better! 
• We can test an object’s conservative (3D) bounding 

volume (usually box) against the hierarchical Z-
buffer before drawing any of the triangles 
– If bounding box is not visible, don’t submit the triangles 

• Sorting objects front-to-back makes this efficient 
• OpenGL/DirectX “occlusion queries” and 

“predicated rendering” can be used to do this. 
• There are neat algorithms that allow output-sensitive 

rendering of really large scenes 
– Cf. Umbra Software’s engine middleware

http://www.umbrasoftware.com/
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For each triangle
  transform into eye space
  project from 3D to 2D
  set up 3 edge equations
  for each pixel x,y
    if passes all edge equations
      compute z
      if z<zbuffer[x,y]
        zbuffer[x,y]=z
        framebuffer[x,y]=shade()

Why quotes? We are 
leaving out programmable 
stages and parallelism

Recap: The Graphics Pipeline



• How do we get that Z value for each pixel? 
– We only know z at the vertices... 
– Must interpolate from vertices into triangle interior

Interpolation in Screen Space
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For each triangle
for each pixel (x,y)

    if passes all edge equations
      compute z
      if z<zbuffer[x,y]
        zbuffer[x,y]=z
        framebuffer[x,y]=shade()



Interpolation in Screen Space
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• Also need interpolate color, normals, texture coordinates, 
etc. between vertices 
– We did this with barycentrics in ray casting 

• Linear interpolation in object space 

– Is it the same as linear interpolation on the screen?



Interpolation in Screen Space
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Two regions of same 
size in world space 



Interpolation in Screen Space
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The farther region 
shrinks to a smaller 
area of the screen

Two regions of same 
size in world space 



Nope, Not the Same
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• Linear variation in world space does not yield linear 
variation in screen space due to projection 
– Think of looking at a checkerboard at a steep angle; all 

squares are the same size on the plane, but not on screen

“Gouraud 
interpolation”

Perspective-correct 
Interpolation

Head-on view
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Solution: Barycentrics, Again
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• Barycentric coordinates for a triangle (a, b, c) 

– Remember, 

P (�,⇥, ⇤) = �a + ⇥b + ⇤c

� + ⇥ + ⇤ = 1, �, ⇥, ⇤ � 0



Solution: Barycentrics, Again
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• Barycentric coordinates for a triangle (a, b, c) 

– Remember,  

• Let’s project point P by projection matrix C

P (�,⇥, ⇤) = �a + ⇥b + ⇤c

CP = C(�a + ⇥b + ⇤c)
= �Ca + ⇥Cb + ⇤Cc

= �a� + ⇥b� + ⇤c�

a’, b’, c’ are the 
projected 
homogeneous 
vertices before 
division by w

� + ⇥ + ⇤ = 1, �, ⇥, ⇤ � 0



Solution: Barycentrics, Again
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• The (x, y) screen coordinates of P are 

a’, b’, c’ are the 
projected 
homogeneous 
vertices

CP = �a� + ⇥b� + ⇤c�
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Solution: Barycentrics, Again
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• The (x, y) screen coordinates of P are 

a’, b’, c’ are the 
projected 
homogeneous 
vertices

CP = �a� + ⇥b� + ⇤c�

�
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This looks familiar...



Solution: Barycentrics, Again
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• It’s a projective mapping from 
the barycentrics onto screen coordinates! 
– Represented by a 3x3 matrix 

• The inverse of a projection is a projection... 
– We’ll just take the inverse mapping to get from (x, y, 1) to 

the barycentrics!

�

⇤
Px/Pw

Py/Pw

1

⇥

⌅ �

�

⇤
Px

Py

Pw

⇥

⌅ =

�

⇤
a�

x b�
x c�

x

a�
y b�

y c�
y

a�
w b�

w c�
w

⇥

⌅

�

⇤
�
⇥
⇤

⇥

⌅

projective 
equivalence



From Screen to Barycentrics
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• Recipe 
– Compute projected homogeneous coordinates a’, b’, c’ 
– Put them in the columns of a matrix, invert it 
– Multiply screen coordinates (x, y, 1) by inverse matrix 
– Then divide by the sum of the resulting coordinates 

• This ensures the result is sums to one like barycentrics should 
– Then interpolate value (e.g. Z) from vertices using them
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Barycentric Interpolation Recap
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• Values v1, v2, v3 defined at a, b, c 
– Colors, normal, texture coordinates, etc. 

• P(α, β, γ) = αa + βb + γc is the point... 
• v(α, β, γ) = αv1 + βv2 + γv3 is the 

barycentric interpolation of 
v1-v3 at point P 
– Sanity check: v(1,0,0) = v1, etc. 

• I.e, once you know α, β, γ, 
you can interpolate values 
using the same weights. 
– Convenient!

v1

v2

v3

P



Clipping: What if the pz is > eyez?

(eyex, eyey, eyez)

image plane

z axis  →+
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Clipping: What if the pz is > eyez?

(eyex, eyey, eyez)

image plane

z axis  →+

26



What if the pz is < eyez?

(eyex, eyey, eyez)

image plane

z axis  →+
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What if the pz is < eyez?

(eyex, eyey, eyez)

image plane

z axis  →+
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What if the pz = eyez?

(eyex, eyey, eyez)

image plane

z axis  →+
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When w’ = 0, point projects to infinity 
(homogenization is division by w’)



What if the pz = eyez?

(eyex, eyey, eyez)

image plane

???

z axis  →+

28

When w’ = 0, point projects to infinity 
(homogenization is division by w’)



A Solution: Clipping

(eyex, eyey, eyez)

image plane

"clip" geometry to 
view frustum, discard 

outside parts

z axis  →+

29

z=near
z=far



Clipping
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• Eliminate portions of objects 
outside the viewing frustum 

• View Frustum  
– boundaries of the image  

plane projected in 3D 
– a near & far  

clipping plane 
• User may define  

additional clipping  
planes

bottom

top

right

left

near

far



Why Clip?
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• Avoid degeneracies  
– Don’t draw stuff  

behind the eye 
– Avoid division  

by 0 and overflow z=near

z=far



Related Idea
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• “View Frustum Culling” 
– Use bounding volumes/hierarchies to test whether any part 

of an object is within the view frustum 
• Need “frustum vs. bounding volume” intersection test 
• Crucial to do hierarchically when scene has lots of objects! 
• Early rejection (different from clipping)

See e.g. Optimized 
view frustum culling 
algorithms for 
bounding boxes, Ulf 
Assarsson and Tomas 
Möller, journal of 
graphics tools, 2000.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.1491&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.1491&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.1491&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.1491&rep=rep1&type=pdf


Clipping
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• Each side of the viewing frustum is a plane 
• We’ll clip the input triangles with these planes 
• How do we get the plane equations? 

– We’ll clip in homogeneous 
coordinates before division by w’

bottom

top

right

left

near

far



Clipping Planes
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• In normalized screen coordinates, the left boundary 
of the screen is defined by the line x >= -1 
– Screen x = x’/w’, so this can be written in homogeneous 

coordinates as 
 
x’/w’ >= -1   <=>   x’ >= -w’    <=>    x’ + w’ >= 0 

– Using plane equation notation: 

– (x’y’z’w’ are homogeneous coordinates after projection) 

(1 0 0 1) (x� y� z� w�)T � 0



Clipping Planes
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• In normalized screen coordinates, the left boundary 
of the screen is defined by the line x >= -1 
– Screen x = x’/w’, so this can be written in homogeneous 

coordinates as 
 
x’/w’ >= -1   <=>   x’ >= -w’    <=>    x’ + w’ >= 0 

– Using plane equation notation: 

– (x’y’z’w’ are homogeneous coordinates after projection) 

(1 0 0 1) (x� y� z� w�)T � 0 Similarly for all 
5 other planes! 

Homogeneous clipping plane 
for left screen boundary 



Sutherland-Hodgman Clipping

36

• 2D version; 3D is pretty much the same

Clipping 
line (plane)

inside

outside



Sutherland-Hodgman Clipping
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• Init: Output = empty 
• Test vertex 1 

– It’s inside, add to output
Clipping 

line (plane)

inside

outside

Current: In

vertex 1

vertex 2

vertex 3



Sutherland-Hodgman Clipping
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• Init: Output = empty 
• Test vertex 1 

– It’s inside, add to output 
• Test vertex 2 

– Inside, add to output
Clipping 

line (plane)

inside

outside

Current: In



Sutherland-Hodgman Clipping
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• Init: Output = empty 
• Test vertex 1 

– It’s inside, add to output 
• Test vertex 2 

– Inside, add to output 
• Test vertex 3 (outside) 

– Compute intersection, 
add it to output

Clipping 
line (plane)

inside

outside

Current: Out



Sutherland-Hodgman Clipping
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• Init: Output = empty 
• Test vertex 1 

– It’s inside, add to output 
• Test vertex 2 

– Inside, add to output 
• Test vertex 3 (outside) 

– Compute intersection, 
add it to output 

• Test vertex 4=1 (to close loop) 
– It’s inside, and last vertex (3) was outside => 

compute intersection, add to output DONE 

Clipping 
line (plane)

inside

outside

Current: In



Sutherland-Hodgman Clipping
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• Init: Output = empty 
• Test vertex 1 

– It’s inside, add to output 
• Test vertex 2 

– Inside, add to output 
• Test vertex 3 (outside) 

– Compute intersection, 
add it to output 

• Test vertex 4=1 (to close loop) 
– It’s inside, and last vertex (3) was outside => 

compute intersection, add to output DONE 

Clipping 
line (plane)

inside

outside

1
2

3 4



More Information
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• These links treat the “full” Sutherland-Hodgman 
algorithm that can also clip concave polygons 
– http://www.sunshine2k.de/stuff/Java/SutherlandHodgman/

SutherlandHodgman.html 
– http://en.wikipedia.org/wiki/Sutherland-

Hodgman_clipping_algorithm 

– Clipping triangles is an easier special case, don’t need to 
worry about concave inputs

http://www.sunshine2k.de/stuff/Java/SutherlandHodgman/SutherlandHodgman.html
http://www.sunshine2k.de/stuff/Java/SutherlandHodgman/SutherlandHodgman.html
http://en.wikipedia.org/wiki/Sutherland-Hodgman_clipping_algorithm
http://en.wikipedia.org/wiki/Sutherland-Hodgman_clipping_algorithm

