High-Quality Self-Supervised Deep Image Denoising

Samuli Laine **NVIDIA**

Tero Karras NVIDIA

Jaakko Lehtinen Timo Aila NVIDIA, Aalto University

NVIDIA

Goals and contributions

- Train a deep denoiser network
 - Why is deep learning needed? So that denoiser adapts to underlying data!
- Remove the need for separate training data with self-supervision
- Contribution 1: Bayesian approach for high-quality denoising results
 - Target is to match a denoiser trained with clean reference data
- **Contribution 2:** Improve training performance with an efficient blind-spot network architecture

Background: Traditional training

Target: Clean image

Input: Noisy image

Background: Noise2Noise training

[Lehtinen et al., 2018]

Target: A different noisy image

Input: Noisy image

Background: Noise2Void training

[Krull et al., 2018]

Target: The same noisy image

Input: Noisy image

- *x* clean pixel value
- **y** noisy pixel value
- Ω_y noisy context, i.e., noisy image except pixel y

Clean image

Noisy image

- *x* clean pixel value
- **y** noisy pixel value
- Ω_y noisy context, i.e., noisy image except pixel y

Clean image

Noisy image

- *x* clean pixel value
- y noisy pixel value -
- Ω_y noisy context, i.e., noisy image except pixel y

Clean image

Noisy image

- *x* clean pixel value
- **y** noisy pixel value
- Ω_y noisy context, i.e.,noisy image except pixel y

Clean image

Noisy image

What is supervised training?

- Lump noisy pixel y and context Ω_y together
- Learn to infer clean pixel x as $\mathbb{E}_x[p(x|y, \Omega_y)]$
- I.e., train $f_{\theta}: \mathbf{y}, \mathbf{\Omega}_{\mathbf{y}} \to \mathbf{x}$ by optimizing $\underset{\theta}{\operatorname{argmin}} \mathbb{E}_{\mathbf{x}, \mathbf{y}, \mathbf{\Omega}_{\mathbf{y}}} [L(f_{\theta}(\mathbf{y}, \mathbf{\Omega}_{\mathbf{y}}), \mathbf{x})]$
 - Simplifying assumptions made here: L2 loss, zero-mean noise

What is Noise2Void training?

- Only use context Ω_{γ} for inference [Krull et al., 2018]
 - Thus, approximate clean pixel x as $\mathbb{E}_{x}[p(x|\Omega_{y})]$
- Can replace *x* with *y* if noise is zero-mean [Lehtinen et al., 2018]
 - Optimize $\underset{\theta}{\operatorname{argmin}} \mathbb{E}_{y}[L(f_{\theta}(\Omega_{y}), y)] \operatorname{no} \operatorname{clean} x$ is needed
- This is equivalent if corruption is independent between pixels!
 - See [Batson and Royer, 2019] for further analysis

Limitations of Noise2Void

- Ignoring **y** when denoising clearly leaves useful information unused
- While we can regress $f_{\theta}: \Omega_y \to y$, we cannot regress $f_{\theta}: y, \Omega_y \to y$
 - Trivial solution is to pass pixel value through as-is \rightarrow no denoising
 - Hence, at <u>training time</u> we cannot use **y** as an input
- Our solution is to bring in y via Bayesian inference at <u>test time</u>
 - Concurrent work by [Krull et al., 2019]

A more complete view

- Assume a known noise model $p(\mathbf{y}|\mathbf{x})$ that is independent of $\mathbf{\Omega}_{\mathbf{y}}$
- Observed noisy data (training data) now relates to clean data as

$$\underbrace{p(\mathbf{y}|\mathbf{\Omega}_{y})}_{\text{Training data}} = \int \underbrace{p(\mathbf{y}|\mathbf{x})}_{\text{Noise}} \underbrace{p(\mathbf{x}|\mathbf{\Omega}_{y})}_{\text{Unobserved}} d\mathbf{x}$$

• This lets us learn to predict a parametric model for $p(x|\Omega_y)$ that we represent as a multivariate Gaussian $\mathcal{N}(\mu_x, \Sigma_x)$ over color components

Test-time inference

• The (unnormalized) posterior probability of x, given observations of y and Ω_y , is given by Bayes' rule as

- We can make our best guess of \boldsymbol{x} based on the posterior distribution
- Concretely, we output the posterior mean $\mathbb{E}_x[p(x|y, \Omega_y)]$ because it minimizes MSE and therefore maximizes PSNR

Test-time inference — a sketch

• Simplified view of a 1D (monochromatic) case

Summary of our approach

- In training phase, train neural network f_{θ} to map context Ω_y to mean μ_x and variance Σ_x to approximate prior $p(\mathbf{x}|\Omega_y)$
 - Known noise model maps $\mathcal{N}(\mu_x, \Sigma_x) \to \mathcal{N}(\mu_y, \Sigma_y)$ so training can be done using standard Gaussian process regression (see e.g., [Nix and Weigend, 1994])
- At test time, evaluate $f_{\theta}(\Omega_y)$ and compute posterior mean $\mathbb{E}_x[p(x|y, \Omega_y)]$ by closed-form integration

Implementing blind-spot network efficiently

• Our solution: Combine information from four branches, each having its receptive field restricted to one direction only

 Restricting the receptive field to one half-space is easier than removing just one pixel

Optimizing a bit

• Roll the four branches into one, rotate image data instead

- Implicitly shares weights between branches
- Implementation details in the paper

Unknown noise parameters

- What if the noise model has an unknown parameter? What if the parameter varies for every image?
 - E.g., standard deviation σ in Gaussian noise $\mathcal{N}(\mathbf{0}, \sigma^2 I)$
- We show that these can be estimated from the data as well, so that each image in training and test data can have a different, unknown amount of noise
 - Requires regularization in certain cases to break ambiguity (is the image actually noisy vs. is the clean signal hard to predict) — see paper for details

Results: Gaussian noise ($\sigma = 25$)

 Supervised training, clean training data
 Our method, noisy data only

 Image: Constraining data
 Image: Constraining data
 Image: Constraining data

 Image: Constraining data
 Image: Constraining data
 Image: Constraining data
 Image: Constraining data

 Image: Constraining data
 Image: Constraining data
 Image: Constraining data
 Image: Constraining data
 Image: Constraining data

 Image: Constraining data
 Image: Constraining data
 Image: Constraining data
 Image: Constraining data
 Image: Constraining data

 Image: Constraining data
 Image: Constraining data
 Image: Constraining data
 Image: Constraining data
 Image: Constraining data

 Image: Constraining data
 Image: Constraining data
 Image: Constraining data
 Image: Constraining data
 Image: Constraining data

 Image: Constraining data
 Image: Constraining data
 Image: Constraining data
 Image: Constraining data
 Image: Constraining data

 Image: Constraining data
 Image: Constraining data
 Image: Constraining data
 Image: Constraining data
 Image: Constraining data

 Image: Constraining data
 Image: Constraining data
 Image: Constraining data
 Image: Constraining data
 Image: Constraining data

 Image: Constraining data
 Image:

KODAK-6

Kodak-14

30.88 dB

Table 1. Image quality results for Gaussian hoise. Values of 6 are shown in 6-bit units.						Supervised	
Noise type	Method	σ known?	KODAK	BSD300	Set14	Average	training with
	Baseline, N2C	no	32.46	31.08	31.26	31.60	cicali targets
Gaussian	Baseline, N2N	no	32.45	31.07	31.23	31.58	Our result when
	Our	yes	32.45	31.03	31.25	31.57	 σ is known vs. estimated from data Noise2Void: Ignore y and predict based on context only
	Our	no	32.44	31.02	31.22	31.56	
$\sigma = 25$	Our ablated, diag. Σ	yes	31.60	29.91	30.58	30.70	
0 = 20	Our ablated, diag. Σ	no	31.55	29.87	30.53	30.65	
	Our ablated, μ only	no	30.64	28.65	29.57	29.62	
	CBM3D	yes	31.82	30.40	30.68	30.96	
	CBM3D	no	31.81	30.40	30.66	30.96	
	Baseline, N2C	no	32.57	31.29	31.27	31.71	
	Baseline, N2N	no	32.57	31.29	31.26	31.70	
	Our	yes	32.47	31.19	31.21	31.62	
Gaussian	Our	no	32.46	31.18	31.13	31.59	
$\sigma \in [5, 50]$	Our ablated, diag. Σ	yes	31.59	30.06	30.54	30.73	
	Our ablated, diag. Σ	no	31.58	30.05	30.45	30.69	
	Our ablated, μ only	no	30.54	28.56	29.41	29.50	
	CBM3D	yes	31.99	30.67	30.78	31.15	
	CBM3D	no	31.99	30.67	30.72	31.13	

Table 1: Image quality results for Gaussian noise. Values of σ are shown in 8-bit units.

Our results are within 0.04 dB from supervised training

Table 1: Image quality results for Gaussian noise. Values of σ are shown in 8-bit units.							Supervised
Noise type	Method	σ known?	Kodak	BSD300	Set14	Average	training with
Gaussian $\sigma = 25$	Baseline, N2C	no	32.46	31.08	31.26	31.60	clean targets
	Baseline, N2N	no	32.45	31.07	31.23	31.58	Our result when
	Our	yes	32.45	31.03	31.25	31.57	σ is known vs.
	Our oblated diag Σ	NOS	32.44	20.01	31.22	30.70	estimated from data
	Our ablated, diag. Σ	no	31.55	29.91	30.58	30.65	Naise 2) /aidulanara
	Our ablated, μ only	no	30.64	28.65	29.57	29.62	<i>y</i> and predict based on context only
	CBM3D	yes	31.82	30.40	30.68	30.96	
	CBM3D	no	31.81	30.40	30.66	30.96	
Gaussian $\sigma \in [5, 50]$	Baseline, N2C	no	32.57	31.29	31.27	31.71	
	Baseline, N2N	no	32.57	31.29	31.26	31.70	
	Our	yes	32.47	31.19	31.21	31.62	
	Our	no	32.46	31.18	31.13	31.59	
	Our ablated, diag. Σ	yes	31.59	30.06	30.54	30.73	
	Our ablated, diag. Σ	no	31.58	30.05	30.45	30.69	
	Our ablated, μ only	no	30.54	28.56	29.41	29.50	
	CBM3D	yes	31.99	30.67	30.78	31.15	
	CBM3D	no	31.99	30.67	30.72	31.13	

Our results are within 0.04 dB from supervised training

Table 1: Ima	Supervised						
Noise type	Method	σ known?	Kodak	BSD300	Set14	Average	training with
Gaussian $\sigma = 25$	Baseline, N2C	no	32.46	31.08	31.26	31.60	σ is known vs
	Baseline, N2N	no	32.45	31.07	31.23	31.58	
	Our	yes	32.45	31.03	31.25	31.57	
	Our	no	32.44	31.02	31.22	31.56	estimated from data
	Our ablated, diag. Σ	yes	31.60	29.91	30.58	30.70	estimated nom data
	Our ablated, diag. Σ	no	31.55	29.87	30.53	30.65	Noise2Void: Ignore y and predict based
	Our ablated, μ only	no	30.64	28.65	29.57	29.62	
	CBM3D	yes	31.82	30.40	30.68	30.96	
	CBM3D	no	31.81	30.40	30.66	30.96	on context only
Gaussian $\sigma \in [5, 50]$	Baseline, N2C	no	32.57	31.29	31.27	31.71	
	Baseline, N2N	no	32.57	31.29	31.26	31.70	
	Our	yes	32.47	31.19	31.21	31.62 🛰	
	Our	no	32.46	31.18	31.13	31.59	Close to baseline
	Our ablated, diag. Σ	yes	31.59	30.06	30.54	30.73	with variable noise
	Our ablated, diag. Σ	no	31.58	30.05	30.45	30.69	$(\sigma \in [5,50])$ as well
	Our ablated, μ only	no	30.54	28.56	29.41	29.50	
	CBM3D	yes	31.99	30.67	30.78	31.15	
	CBM3D	no	31.99	30.67	30.72	31.13	

Results: Poisson noise ($\lambda = 30$)

Noisy input

Supervised training, clean training data

Our method, noisy data only

KODAK-23

19.13 dB

34.83 dB

34.63 dB

KODAK-8

18.63 dB

29.12 dB

29.11 dB

Results: Impulse noise ($\alpha = 0.5$)

Noisy input

Supervised training, clean training data

Our method, noisy data only

KODAK-19

Evaluation of network architecture

Conclusions

- Training high-quality denoisers is possible with noisy data only, when we have just one noisy realization of each training image
 - Can train a denoiser from a corpus of noisy data no separate training set is required
- Result quality is comparable to traditionally trained networks
- Future work: Extend to more general corruptions?
 - Can we relax the assumption that noise is independent between pixels?

Thank you

Paper: https://arxiv.org/abs/1901.10277

Code: https://github.com/NVlabs/selfsupervised-denoising

Feel free to contact with any questions: slaine@nvidia.com

References

J. Batson and L. Royer. Noise2Self: Blind denoising by self-supervision. In *Proc. International Conference on Machine Learning (ICML)*, pages 524–533, 2019. A. Krull, T.-O. Buchholz, and F. Jug. Noise2Void – Learning denoising from single noisy images. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 2129–2137, 2019.

A. Krull, T. Vicar, and F. Jug. Probabilistic Noise2Void: Unsupervised content-aware denoising. CoRR, abs/1906.00651, 2019.

J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, and T. Aila. Noise2Noise: Learning image restoration without clean data. In *Proc. International Conference on Machine Learning (ICML)*, 2018.

D. A. Nix and A. S. Weigend. Estimating the mean and variance of the target probability distribution. *Proc. IEEE International Conference on Neural Networks* (*ICNN*), pages 55–60, 1994.

