
High-Quality Self-Supervised
Deep Image Denoising

Samuli Laine

NVIDIA

Jaakko Lehtinen

NVIDIA, Aalto University

Tero Karras

NVIDIA

Timo Aila

NVIDIA

NeurIPS | 2019

Goals and contributions

● Train a deep denoiser network

● Why is deep learning needed? So that denoiser adapts to underlying data!

● Remove the need for separate training data with self-supervision

● Contribution 1: Bayesian approach for high-quality denoising results

● Target is to match a denoiser trained with clean reference data

● Contribution 2: Improve training performance with an efficient

blind-spot network architecture

Background: Traditional training

Input: Noisy image Target: Clean image

Background: Noise2Noise training

Input: Noisy image Target: A different noisy image

[Lehtinen et al., 2018]

Background: Noise2Void training

Input: Noisy image Target: The same noisy image

[Krull et al., 2018]

Concepts and notation

𝒙 clean pixel value

𝒚 noisy pixel value

𝛀𝑦 noisy context, i.e.,

noisy image except

pixel 𝒚

Clean image Noisy image

Concepts and notation

𝒙 clean pixel value

𝒚 noisy pixel value

𝛀𝑦 noisy context, i.e.,

noisy image except

pixel 𝒚

Clean image Noisy image

Concepts and notation

𝒙 clean pixel value

𝒚 noisy pixel value

𝛀𝑦 noisy context, i.e.,

noisy image except

pixel 𝒚

Clean image Noisy image

Concepts and notation

𝒙 clean pixel value

𝒚 noisy pixel value

𝛀𝑦 noisy context, i.e.,

noisy image except

pixel 𝒚

Clean image Noisy image

What is supervised training?

● Lump noisy pixel 𝒚 and context 𝛀𝒚 together

● Learn to infer clean pixel 𝒙 as 𝔼𝒙 𝑝 𝒙 𝒚,𝛀𝑦

● I.e., train 𝑓𝜃: 𝒚, 𝛀𝑦 → 𝒙 by optimizing argmin
𝜃

𝔼𝒙,𝒚,𝛀𝑦 𝐿 𝑓𝜃 𝒚,𝛀𝑦 , 𝒙

● Simplifying assumptions made here: L2 loss, zero-mean noise

What is Noise2Void training?

● Only use context 𝛀𝑦 for inference [Krull et al., 2018]

● Thus, approximate clean pixel 𝒙 as 𝔼𝒙 𝑝 𝒙 𝛀𝑦

● Can replace 𝒙 with 𝒚 if noise is zero-mean [Lehtinen et al., 2018]

● Optimize argmin
𝜃

𝔼𝒚 𝐿 𝑓𝜃 𝛀𝑦 , 𝒚 — no clean 𝒙 is needed

● This is equivalent if corruption is independent between pixels!

● See [Batson and Royer, 2019] for further analysis

Limitations of Noise2Void

● Ignoring 𝒚 when denoising clearly leaves useful information unused

● While we can regress 𝑓𝜃: 𝛀𝑦 → 𝒚, we cannot regress 𝑓𝜃: 𝒚, 𝛀𝑦 → 𝒚

● Trivial solution is to pass pixel value through as-is → no denoising

● Hence, at training time we cannot use 𝒚 as an input

● Our solution is to bring in 𝒚 via Bayesian inference at test time

● Concurrent work by [Krull et al., 2019]

A more complete view

● Assume a known noise model 𝑝 𝒚 𝒙 that is independent of 𝛀𝑦

● Observed noisy data (training data) now relates to clean data as

𝑝 𝒚 𝛀𝑦 = න𝑝 𝒚 𝒙 𝑝 𝒙 𝛀𝑦 ⅆ𝒙

● This lets us learn to predict a parametric model for 𝑝 𝒙 𝛀𝑦 that

we represent as a multivariate Gaussian 𝒩 𝝁𝑥 , 𝚺𝑥 over color

components

Training data Noise
model

Unobserved

Test-time inference

● The (unnormalized) posterior probability of 𝒙, given observations
of 𝒚 and 𝛀𝑦, is given by Bayes’ rule as

𝑝 𝒙 𝒚,𝛀𝑦 ∝ 𝑝 𝒚 𝒙 𝑝 𝒙 𝛀𝑦

● We can make our best guess of 𝒙 based on the posterior distribution

● Concretely, we output the posterior mean 𝔼𝒙 𝑝 𝒙 𝒚,𝛀𝑦 because it

minimizes MSE and therefore maximizes PSNR

Posterior Noise
model

Prior Predicted by
the network

Known

Test-time inference — a sketch

● Simplified view of a 1D (monochromatic) case

𝑝

𝒙

𝑝 𝒙 𝛀𝑦 predicted

by network based
on context (always
Gaussian) 𝑝 𝒚 𝒙 from observed 𝒚

and noise model (not
necessarily Gaussian)

Posterior mean 𝔼𝒙 𝑝 𝒙 𝒚,𝛀𝑦

“most likely clean value based on all evidence”

“what the
network
predicts”

“what the
observed noisy
pixel suggests”

Summary of our approach

● In training phase, train neural network 𝑓𝜃 to map context 𝛀𝑦 to

mean 𝝁𝑥 and variance 𝚺𝑥 to approximate prior 𝑝 𝒙 𝛀𝑦

● Known noise model maps 𝒩 𝝁𝑥, 𝚺𝑥 → 𝒩 𝝁𝑦, 𝚺𝑦 so training can be

done using standard Gaussian process regression (see e.g., [Nix and

Weigend, 1994])

● At test time, evaluate 𝑓𝜃 𝛀𝑦 and compute posterior mean

𝔼𝒙 𝑝 𝒙 𝒚,𝛀𝑦 by closed-form integration

Implementing blind-spot network efficiently

● Our solution: Combine information from four branches, each

having its receptive field restricted to one direction only

● Restricting the receptive field to one half-space is easier than

removing just one pixel

Optimizing a bit

● Roll the four branches into one, rotate image data instead

● Implicitly shares weights between branches

● Implementation details in the paper

Unknown noise parameters

● What if the noise model has an unknown parameter? What if the

parameter varies for every image?

● E.g., standard deviation 𝜎 in Gaussian noise 𝒩 𝟎, 𝜎2𝐼

● We show that these can be estimated from the data as well, so that

each image in training and test data can have a different, unknown

amount of noise

● Requires regularization in certain cases to break ambiguity (is the

image actually noisy vs. is the clean signal hard to predict) — see

paper for details

Results: Gaussian noise (𝝈 = 𝟐𝟓)

Noisy input
Supervised training,
clean training data

Our method,
noisy data only

Supervised
training with
clean targets

Our result when

𝜎 is known vs.
estimated from data

Noise2Void: Ignore
𝒚 and predict based
on context only

Supervised
training with
clean targets

Our result when

𝜎 is known vs.
estimated from data

Noise2Void: Ignore
𝒚 and predict based
on context only

Our results are within 0.04 dB from supervised training

Supervised
training with
clean targets

Our result when

𝜎 is known vs.
estimated from data

Noise2Void: Ignore
𝒚 and predict based
on context only

Our results are within 0.04 dB from supervised training

Close to baseline
with variable noise
(𝜎 ∈ 5,50) as well

Results: Poisson noise (𝛌 = 𝟑𝟎)

Noisy input
Supervised training,
clean training data

Our method,
noisy data only

Results: Impulse noise (𝜶 = 𝟎. 𝟓)

Noisy input
Supervised training,
clean training data

Our method,
noisy data only

Evaluation of network architecture

Standard network architecture with
masking-based training [Krull et al., 2018]

Our blind-spot network
architecture converges quickly

Conclusions

● Training high-quality denoisers is possible with noisy data only,

when we have just one noisy realization of each training image

● Can train a denoiser from a corpus of noisy data — no separate

training set is required

● Result quality is comparable to traditionally trained networks

● Future work: Extend to more general corruptions?

● Can we relax the assumption that noise is independent between

pixels?

Thank you

Paper: https://arxiv.org/abs/1901.10277

Code: https://github.com/NVlabs/selfsupervised-denoising

Feel free to contact with any questions:

References

NeurIPS | 2019

https://arxiv.org/abs/1901.10277
https://github.com/NVlabs/selfsupervised-denoising

