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INTRODUCTION

e Given a generative model, how 1s motion 1n latent space Z related to changes in
output space X'?

— How to interpolate generated images in a perceptually meaningful way?

e Naive solution: Linearly interpolate in latent space Z.
e Previous work: Find path in Z such that path length in A" 1s minimized.
— l.e., find shortest path in A that 1s on generator’s output manifold.

— Problem: Euclidean L5 metric in pixel space X 1s a bad measure of perceptual
differences.

— With Lo, the “best” solution would be a cross-fade between 1mages.
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CONTRIBUTIONS

e We replace Lo metric in A by a VGG-19 -based feature-space metric.

— This yields paths 1n Z that minimize perceptual changes in output images.

e To prevent a failure mode where image gets darker at the middle of the path, we
equalize brightness and contrast prior to evaluating the metric.

— Denoted as X MSE and vae 1n the images on the right.

e Progressive path subdivision allows finding minimal paths efficiently.

e Experiments using a state-of-the-art GAN show that the proposed method results 1n

more consistent interpolations.
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