FEATURE-BASED METRICS FOR EXPLORING THE LATENT SPACE OF GENERATIVE MODELS

Samuli Laine NVIDIA

INTRODUCTION

- Given a generative model, how is motion in latent space \mathcal{Z} related to changes in output space \mathcal{X} ?
 - How to interpolate generated images in a perceptually meaningful way?
- Naïve solution: Linearly interpolate in latent space Z.
- Previous work: Find path in \mathcal{Z} such that path length in \mathcal{X} is minimized.
 - I.e., find shortest path in \mathcal{X} that is on generator's output manifold.
 - **Problem:** Euclidean L_2 metric in pixel space \mathcal{X} is a bad measure of perceptual differences.
 - With L_2 , the "best" solution would be a cross-fade between images.

Pixel space \mathcal{X}

Space induced by metric m_{VGG}

CONTRIBUTIONS

- We replace L_2 metric in \mathcal{X} by a VGG-19 -based feature-space metric.
 - This yields paths in \mathcal{Z} that minimize perceptual changes in output images.
- To prevent a failure mode where image gets darker at the middle of the path, we equalize brightness and contrast prior to evaluating the metric.
 - Denoted as $\widetilde{\mathcal{X}}$ MSE and \widetilde{m}_{VGG} in the images on the right.
- Progressive path subdivision allows finding minimal paths efficiently.
- Experiments using a state-of-the-art GAN show that the proposed method results in more consistent interpolations.

RESULTS

REFERENCES

- Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. Latent space oddity: on the curvature of deep generative models. *ICLR*, 2018.
- Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang, Justin Bayer, and Patrick van der Smagt Metrics for deep generative models. *CoRR*, abs/1711.01204, 2017.
- Qifeng Chen and Vladlen Koltun. Photographic image synthesis with cascaded refinement networks. *ICCV*, 2017.
- Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image style transfer using convolutional neural networks. In *CVPR*, 2016.
- Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks. In *NIPS*, 2014.
- Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for improved quality, stability, and variation. *ICLR*, 2018.
- Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *ICLR*, 2015. Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In *ICLR*, 2014.
- Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet large scale visual recognition challenge. *IJCV*, 2015.
- Hang Shao, Abhishek Kumar, and P. Thomas Fletcher. The Riemannian geometry of deep generative models. *CoRR*, abs/1711.08014, 2017.
- Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. *CoRR*, abs/1409.1556, 2014.
- Paul Upchurch, Jacob Gardner, Geoff Pleiss, Robert Pless, Noah Snavely, Kavita Bala, and Kilian Weinberger. Deep feature interpolation for image content changes. *CVPR*, 2017.
- Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. *CoRR*, abs/1801.03924, 2018.