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ABSTRACT

Several recent papers have treated the latent space of deep generative models, e.g.,
GANs or VAEs, as Riemannian manifolds. The argument is that operations such
as interpolation are better done along geodesics that minimize path length not in
the latent space but in the output space of the generator. However, this implicitly
assumes that some simple metric such as L2 is meaningful in the output space,
even though it is well known that for, e.g., semantic comparison of images it is
woefully inadequate. In this work, we consider imposing an arbitrary metric on
the generator’s output space and show both theoretically and experimentally that
a feature-based metric can produce much more sensible interpolations than the
usual L2 metric. This observation leads to the conclusion that analysis of latent
space geometry would benefit from using a suitable, explicitly defined metric.

1 INTRODUCTION

Let us assume a deterministic generator function g : Z → X , for example the generator of a trained
GAN (Goodfellow et al., 2014). The latent space Z = Rd may be constrained, e.g., by requiring
z to have a constant norm (Karras et al., 2018), or to be drawn from a specific probability distribu-
tion (Kingma & Welling, 2014). The output space X ⊆ RD typically has much higher dimension
than the latent space. Suppose we are given two latent vectors z0 and z1 and wish to construct an
interpolation function γ(t), 0 ≤ t ≤ 1, such that γ(0) = z0, γ(1) = z1, and g(γ(t)) is somehow
smooth. A trivial choice is to set γ(t) = z0 + t(z1 − z0), but this is completely oblivious to the
operation of g. With typical generators, we cannot say much more about g than that it is continuous,
so the interpolation result may be visually disappointing.

The trivial interpolator above minimizes the path energy
∫
||∂γ(t)/∂t||2 dt in Z . Shao et al.

(2017) suggest that a more principled quantity to minimize is the energy of the path in X , i.e.,∫
||∂g(γ(t))/∂t||2 dt. Alternatively, dropping the square in the formula, we obtain the path length

that can be similarly minimized (Chen et al., 2017; Arvanitidis et al., 2018). However, the path
length has a trivial minimum if we attempt to approximate the path with a discrete curve with n
vertices and approximate ∂g(·)/∂t by differences — it is always optimal to bunch all intermediate
path vertices at the endpoints, thereby reducing the curve to a line segment in X that ignores the
manifold spanned by g. Placing a vertex anywhere else, forming a series of two line segments, can
only increase the path length due to triangle inequality. As such, we prefer to work with path energy
instead of path length.

It is worth asking what minimizing the above norm || · ||2 over the curve achieves for a generator
that outputs images. The “optimal” interpolation between two images, in terms of path energy in
X , would be a linear cross-fade between them. Hence, the result of the minimization is an image
sequence that is as close to a cross-fade that the generator can produce! If we were to optimize path
length instead, the optimum would be similar except that the progression of the fade would not need
to be linear. The cross-fade tendency is visible in, e.g., Figure 7 (bottom) of Arvanitidis et al. (2018).

Clearly, any simple norm over differences (or time derivatives) of images is inadequate for defining
a “meaningful” interpolation. Therefore, we propose that instead of minimizing the path energy
in either Z or X , we minimize the energy of an explicit metric that can be chosen to suit the task
at hand. In the continuous case, we would thus minimize

∫
m(g(γ(t)), ∂g(γ(t))/∂t)2 dt where m

assigns a non-negative cost to the gradient of the generator at a given point. For the discrete case, we
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can similarly minimize
∑n−1

i=1 m(g(zi), g(zi+1))
2, where z1...n are the vertices of a discrete path in

Z , and m : X ,X → R≥0 takes two images and measures their difference. As long as m and g are
differentiable, we can minimize this expression end-to-end by treating all but the first and last zi as
optimizable parameters.

2 EXPERIMENTS

In all of our tests, our g(·) is a pre-trained generator of the progressive GAN of Karras et al. (2018)
trained using the CelebA-HQ dataset. The output of the generator is a 1024×1024-pixel RGB image.
Our feature-based metric is based on the activations of a VGG-19 network (Simonyan & Zisserman,
2014) pre-trained on ILSVRC-2014 (Russakovsky et al., 2015). The same network has been used
for similar purposes in, e.g., texture synthesis (Gatys et al., 2016), image manipulation (Upchurch
et al., 2017), image synthesis from semantic segmentation (Chen & Koltun, 2017), and estimation
of perceptual similarity of images (Zhang et al., 2018).

Because the VGG-19 we use was originally trained for 224 × 224 images, we downsample the
generated images to 256 × 256 resolution before presenting them to the network. The generator’s
output range [−1, 1] is also mapped to the input range of the VGG-19 network. Following Chen &
Koltun (2017), we extract the activations of layers ‘conv1 2’, ‘conv2 2’, ‘conv3 2’, ‘conv4 2’, and
‘conv5 2’ in the VGG-19 network. Denoting the output tensor of layer convj 2 for input image x
as Vj(x), we compute the difference between two images as:

mVGG(x1,x2) =

5∑
j=1

1

Nj
||Vj(x1)− Vj(x2)||2,

where Nj denotes the number of scalars in the layer output. As comparison methods we use pixel-
space MSE and linear interpolation in Z . The pixel-space MSE is also computed in 256 × 256
resolution so that it cannot pick up microstructure that is invisible to the feature-based metric. Be-
cause our generator is trained on normalized z, we restrict our path vertices on the appropriate
hypersphere during optimization. The same holds for the linear interpolation comparison. All paths
we optimize have 32 segments, i.e., 33 vertices. For optimization we use Adam (Kingma & Ba,
2015) with learning rate λ = 0.01 and otherwise default parameters.

Progressive path subdivision. To accelerate the process, we subdivide the path progressively
during optimization. We start with two segments, i.e., one free vertex placed at the midpoint in Z ,
and optimize it for 50 iterations. Then we subdivide both segments similarly and optimize the three
free vertices for 50 epochs, etc. To reach 32 segments, we thus run the optimization for a total of 250
iterations. Constructing a path this way takes approximately 3 minutes on a single GPU.

Brightness and contrast equalization. If a generator is versatile enough, it is likely able to pro-
duce variations of the same image under different lighting conditions that lead to varying levels of
brightness and contrast. This is true for our generator as well, which reveals some interesting failure
modes for the metrics. Figure 1 shows that minimizing MSE in X (row 2) can indeed exhibit the
predicted cross-fade phenomenon, leading to low image contrast at the middle of path. However,
mVGG (row 3) is similarly suspect to darkening the image towards the middle rather than keeping
the features consistent, as this apparently minimizes the differences in VGG-19 network activations.

To remedy this, we can equalize the brightness and contrast of the images — specifically, offset
and scale the image to zero mean and unit variance — before evaluating the metrics. See Figure 1,
rows 4–5, for results (metrics with image equalization are denoted with a tilde). We observe that
the contrast-flattening tendency of X MSE is somewhat lessened, and that our feature-based metric
does not “cheat” anymore by passing through dark images. Note that the images in the figure have
not been equalized but are shown exactly as they were output by g; the equalization only affects the
inputs to the metrics, and thus the energy landscape of the path optimization process.

Conclusion. Figure 2 shows further interpolation results. We can see that the m̃VGG metric
achieves the most natural-looking interpolations in these cases, whereas both comparison meth-
ods are prone to hallucinating features that are not present at either endpoint. It seems clear, both
theoretically and experimentally, that we cannot rely on a simple norm in the generator output space
to impose a meaningful structure to the latent space. Therefore, our view is that further analysis of
the geometry of the latent space would benefit from using a suitable, explicitly defined metric.
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Figure 1: Comparison of five different interpolation schemes. Row 1 shows the baseline naı̈ve
interpolation in Z , and row 2 corresponds to previous work. Rows 3–5 correspond to methods
proposed in this paper, see text for details.
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Figure 2: Further interpolation results. Both naı̈ve Z interpolation and X̃ MSE based energy mini-
mization are prone to passing through features that are not present at either endpoint, while m̃VGG

tends to avoid this phenomenon.

3



Workshop track - ICLR 2018

REFERENCES

Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. Latent space oddity: on the curvature
of deep generative models. ICLR, 2018.

Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang, Justin Bayer, and Patrick van der Smagt.
Metrics for deep generative models. CoRR, abs/1711.01204, 2017.

Qifeng Chen and Vladlen Koltun. Photographic image synthesis with cascaded refinement networks.
ICCV, 2017.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image style transfer using convolutional
neural networks. In CVPR, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks. In NIPS, 2014.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for
improved quality, stability, and variation. ICLR, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet large scale visual recognition challenge. IJCV, 2015.

Hang Shao, Abhishek Kumar, and P. Thomas Fletcher. The Riemannian geometry of deep generative
models. CoRR, abs/1711.08014, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014.

Paul Upchurch, Jacob Gardner, Geoff Pleiss, Robert Pless, Noah Snavely, Kavita Bala, and Kilian
Weinberger. Deep feature interpolation for image content changes. CVPR, 2017.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. CoRR, abs/1801.03924, 2018.

4


