
Eurographics Symposium on Rendering 2013
Nicolas Holzschuch and Szymon Rusinkiewicz
(Guest Editors)

Volume 32 (2013), Number 4

A Topological Approach to Voxelization

Samuli Laine

NVIDIA

Abstract
We present a novel approach to voxelization, based on intersecting the input primitives against intersection tar-
gets in the voxel grid. Instead of relying on geometric proximity measures, our approach is topological in nature,
i.e., it builds on the connectivity and separability properties of the input and the intersection targets. We discuss
voxelization of curves and surfaces in both 2D and 3D, and derive intersection targets that produce voxeliza-
tions with various connectivity, separability and thinness properties. The simplicity of our method allows for easy
proofs of these properties. Our approach is directly applicable to curved primitives, and it is independent of input
tessellation.

1. Introduction

Voxelization is the process of producing a discrete 3D rep-
resentation of an object, similar to rasterization that operates
in 2D. The resulting data structure is useful across a range
of applications, including global illumination, collision de-
tection, visualization, and simulation. See, e.g., [DCB∗04,
ED06, Pan11] for pointers to numerous applications.

There are several possible definitions of a “proper” vox-
elization that depend on the dimensionality of the input ge-
ometry (points, lines, triangles, etc.), and the properties re-
quired by the subsequent application (connectivity, separa-
bility, thinness, etc.). However, no general framework exists
for describing these different schemes in common terms.

In this paper, we introduce a general formulation of vox-
elization that allows both solid reasoning about the topolog-
ical properties of the results and efficient implementation.
Our key idea is that of a geometric intersection target associ-
ated with each voxel: a voxel is included in the output if the
input primitives intersect its target. We show, with proofs,
that choosing the intersection targets appropriately results in
different voxelizations with desired connectivity and separa-
bility properties. Our formulation subsumes many previous
voxelization algorithms as special cases.

Our method can be applied to objects of varying effective
dimension (to be defined later) and works in both 3D and 2D.
Notably, it is independent of input tessellation, and supports
curved primitives with no extra considerations. Techniques
for efficiently enumerating the voxels for which the intersec-
tion tests are to be performed can be derived based on pre-

vious literature, where considerable effort has been put to
finding computationally efficient solutions on various kinds
of hardware [FC00, ED06, ZCEP07, SS10, Pan11].

In addition to 3D voxelization, we shall examine 2D ras-
terization in this paper for two reasons. First, many key con-
cepts are easiest to introduce in 2D and can then be extended
to 3D. Second, our 2D analysis has direct applications in the
rasterization of lines and curves with specific connectivity
and separability requirements.

1.1. Basic definitions

Our notation mostly follows Cohen-Or and Kaufman
[COK95]. Let Z3 be the set of 3D points with integer coor-
dinates. We associate voxel V = (x,y,z) ∈ Z3 with the set
of points p= (x,y,z) ∈ R3 where Vx ≤ px ≤ Vx + 1, and
similarly for y and z. Let us consider a continuous, simple,
and closed 2D-manifold surface S embedded in R3 so that
R3−S has exactly two connected components, I andO. Let
Id and Od be the nonempty sets of voxels that are entirely
contained in I and O, respectively.

A voxelization of surface S is a discrete set of voxels
Sd that has no common elements with Id or Od. Sd is
said to be k-separating if there is no k-connected path of
voxels Πk = (V0, . . . ,Vn) where Vi+1 ∈ Nk(Vi) so that
V0 ∈ Id, Vn ∈ Od, and Πk ∩Sd = ∅. In other words, Sd is
a k-separating voxelization of S if every Πk between Id and
Od contains a voxel in Sd. Nk(V) is the set of k-neighbors
of voxel V , and in Z3 the neighbor sets of interest to us are

N6(x,y,z) = (x±1,y,z)∪ (x,y±1,z)∪ (x,y,z±1)

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

Laine / A Topological Approach to Voxelization

(a) (b)

Figure 1: Extending the notion of k-separability to non-
closed surfaces. (a) Consider a non-closed surface S for
which there exists a subset z⊂ Z3 such that S still sepa-
rates the corresponding volume in R3 into two connected
components I and O, and the corresponding Id and Od are
nonempty. (b) Sd can be said to be a k-separating voxeliza-
tion of S if every Πk between Id and Od, restricted to vox-
els in z, contains a voxel in Sd, and this holds for any valid
choice of subset z. In this 2D example, Sd is 4-separating
but not 8-separating.

N26(x,y,z) = {x−1,x,x+ 1}×{y−1,y,y+ 1}×
{z−1,z,z+ 1}− (x,y,z)

where × denotes a cartesian product. As such, N6(V) has
six elements and N26(V) has 26 elements for any V . A
6-connected path Π6 is thus one where it is only allowed
to walk into a neighboring voxel through voxel faces, and in
a 26-connected path Π26 diagonal walks are allowed as well.
Due to space constraints, we shall not consider 18-separating
or 18-connected voxelizations or paths in this paper.

In 2D voxelization the situation is analogous, and in this
case we use S ⊂ R2, Sd ⊂ Z2, V , I ,O, and Πk in their cor-
responding meanings. The dimension will be apparent from
context. The neighborship relations in 2D are

N4(x,y) = (x±1,y)∪ (x,y±1)

N8(x,y) = {x−1,x,x+ 1}×{y−1,y,y+ 1}− (x,y)

where N4 is analogous to N6 in 3D, and N8 is analogous
to N26. Illustrations of the neighbor sets can be found in,
e.g., [HYFK98].

We can extend the notion of separability to non-closed
surfaces by considering a subset of voxel space Z3 such that
the surface still separates the corresponding volume in R3

into two connected components, see Figure 1. Note that with
both closed and non-closed surfaces, we restrict ourselves to
cases where the corresponding Id and Od are nonempty. If
this is not the case, it makes no sense to speak of separability
because there is nothing to separate in Z3.

2. Previous work

Kaufman and Shimony [KS87] present algorithms for vox-
elizing various types of primitives, including line segments,
polygons, and curved surfaces. They explicitly list a num-
ber of natural fidelity and connectivity requirements that we
shall also follow in this paper. In particular, connectivity is

(a) (b)

Figure 2: Huang et al.’s method [HYFK98] for voxeliz-
ing triangle meshes (cf. polylines in 2D as illustrated
here) is not minimal and it is sensitive to tessellation.
(a) As noted in [SS10], in their 26-separating voxelization
(cf. 8-separating in 2D), the use of edge cylinders and vertex
spheres with Rc = (

√
3/2)L may cause extraneous voxels

to be tagged near the edges/vertices of a flat surface. (b)
In addition, in 6-separating voxelization (cf. 4-separating
in 2D), Rc = L/2 is the minimal radius that guarantees
separation as shown on the left (adapted from Fig. 13
in [HYFK98]), but it may also produce extraneous voxels
on flat surfaces, as shown on the right.

the defining requirement for the fidelity of a voxelized 1D
object, whereas 2D objects must meet a “lack of tunnels”
requirement that is closely related to separability. Cohen-Or
and Kaufman [COK97] further elaborate on fulfilling spe-
cific connectivity requirements for voxelizing 3D lines.

Cohen-Or and Kaufman [COK95] lay the ground for pre-
cise treatment of surface voxelization in 3D. They show that
the so-called supercover of S, consisting of all voxels that
meet S, is k-separating for any k ∈ {6,18,26}. The nature
of the proof is similar to the ones used in this paper for
voxelizations other than the supercover. They also discuss
at length the proper handling of degenerate cases where S
meets only the boundary face, edge, or vertex of a voxel. We
present a simpler and more general solution to such degen-
eracies in this paper.

The above paper also introduces the concept of tunnel-free
voxelization. This is a geometric property guaranteeing that
certain connected paths in R3 outside Sd do not intersect the
input surface S. Our 4-separating and 6-separating voxeliza-
tions in 2D and 3D are tunnel-free, and although we focus
mainly on separability, we could easily obtain other tunnel-
free voxelizations. This will be discussed in Section 5.2.2.

Wang and Kaufman [WK93] consider volume sampled
voxelization, where a voxel’s state is decided by intersect-
ing a weighted spherical volume against input primitives,
essentially prefiltering the input in 3D. This is done to com-
bat aliasing artifacts that make, e.g., determining precise sur-
face location in voxelized data difficult. The result of volume
sampling can be interpreted as a distance field that allows a
higher-fidelity reconstruction of the surface. Volume sam-
pling has a connection to our intersection targets, although
our goal is not to prefilter the input.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Laine / A Topological Approach to Voxelization

(a) (b)

Figure 3: The 6-separating surface voxelization method of
Schwarz and Seidel [SS10] is equivalent to a rather pecu-
liar series of geometric tests in 3D. (a) They first perform
a plane test, which corresponds to intersecting the trian-
gle’s plane against an octahedron contained in the voxel.
If a voxel passes this test, each axis-aligned 2D projection of
the triangle is tested against a 2D diamond spanned between
midpoints of pixel edges. (b) The intersection of the extruded
2D diamonds in 3D is a rhombic dodecahedron that com-
pletely encloses the octahedron used in the plane test. Pic-
tured is a case where the mesh passes between these polyhe-
dra so that the triangle planes intersect the octahedron but
the triangles only intersect the rhombic dodecahedron. The
final result can therefore be seen as an approximate inter-
section against the octahedron.

Huang et al. [HYFK98] discuss the accuracy of voxeliz-
ing polygon meshes with the goal of producing minimal
6-separating and 26-separating voxelizations. They prove
the minimality for 2D lines and 3D planes, and extend
these results to 3D meshes composed of triangles. How-
ever, the edges and vertices of the triangles are handled in
a conservative fashion, making the method sensitive to the
tessellation of the input mesh and breaking the minimal-
ity. This was noted by Schwarz and Seidel [SS10] for the
26-separating case, and as illustrated in Figure 2, the spe-
cial handling of edges and vertices also breaks minimality
for the 6-separating case. Widjaya et al. [WME03] present
an extension to general 2D and 3D lattices with separability
and minimality proofs for infinite lines and planes.

Schwarz and Seidel [SS10] consider efficient GPU vox-
elization of triangle meshes based on axis-aligned 2D
projections of the input triangles. They consider both
6-separating and 26-separating voxelizations, the latter be-
ing a cover of the input surface, i.e., a set of voxels so
that every point in S is covered by a voxel in Sd. Their
6-separating voxelization is interesting because of its non-
trivial geometric equivalent due to the 2D tests, and it can
be seen as an conservative approximation of applying our
voxelization scheme with an octahedral intersection target.
See Figure 3 for further details. We show the separability
and non-minimality of this method in Section 5.2.2. Pantale-
oni [Pan11] presents a particularly efficient multi-stage GPU
algorithm for both 6-separating and 26-separating voxeliza-
tion of triangle meshes, also producing a cover as a solution
to the latter case. Varadhan et al. [VKK∗03] produce a cover

by calculating the max-norm distance between voxel center
and input geometry, and using this for determining whether
an intersection occurs or not.

3. Voxelizing with intersection targets

In our method, we choose whether a voxel V is included in
the voxelization Sd by testing if the input geometry inter-
sects an intersection target contained within V . In all cases,
it is enough to consider the voxels that belong to the super-
cover [COK95] of S, as the intersection targets in other vox-
els obviously cannot intersect the input geometry.

In the remainder of this section, we discuss how the effec-
tive dimension of the input should affect voxelization strat-
egy, and how to handle degenerate intersections in a general
way. In Section 4 we derive intersection targets for curves in
2D, and in Section 5 we discuss the voxelization of curves
and surfaces in 3D. Finally, in Section 6 we examine variants
where intersection targets may be different in each voxel.

3.1. Effective dimension of input

The intersection targets may be composed of primitives of
various dimensions, see Figure 4 for examples. The appro-
priate choice of intersection target dimension depends on the
effective dimension of the input, which may be different from
the dimension of the input primitives. For example, consider
a thin strand of hair that is geometrically represented as a
solid tube. Even though the object is a volumetric solid, it is
probably not a good idea to voxelize it using, e.g., the simple
point-in-volume test, which in our terminology would cor-
respond to the intersection target being a zero-dimensional
point at the center of the voxel. Because the input is effec-
tively one-dimensional, and the intersection target is zero-
dimensional, an intersection happens only with arbitrarily
small probability depending on the thickness of the hair. This
results in voxelization that is not representative of the input,
failing to preserve, e.g., its connectivity.

In this example situation, if we want to establish, e.g, 6-
or 26-connectivity for Sd, we must use an intersection target
that is at least two-dimensional, because then the intersec-
tion between the input and the intersection targets does not
rely on chance. On the other hand, a three-dimensional inter-
section target (e.g., the entire voxel) would be unnecessarily

0D 1D 2D 3D

Figure 4: Examples of intersection targets composed of
primitives of various dimensions, suitable for different kinds
of input.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Laine / A Topological Approach to Voxelization

blunt and could result in redundant voxels being included
in Sd. The same argument applies regardless of whether the
hair is composed of a 3D solid, a 2D surface, or a 1D poly-
line or curve—the effective dimension is more relevant than
the dimension of the input primitives.

In 2D voxelization, a similar situation occurs when a se-
quence of 2D primitives forms an object that is effectively
one-dimensional. One such example would be a curve com-
posed of segments with nonzero but small thickness, a situa-
tion common in path rendering. Rasterizing the path with the
usual zero-dimensional intersection target (center of pixel)
cannot guarantee connectivity of the result, but by placing
a suitable 1D intersection target within each pixel, we can
easily guarantee either 4- or 8-connectivity. Again, a full 2D
intersection target would be excessive for these purposes.

The methods presented in previous literature are strictly
specialized for the dimensionality of the input primitives,
and as such cannot be applied to inputs where the primi-
tive dimension happens to be (unnecessarily) higher than the
effective dimension. For example, a line voxelization algo-
rithm cannot be used for a thin hair composed of a 2D sur-
face, even if we knew that the input were effectively one-
dimensional. Our intersection target method does not suffer
from this problem, and can handle inputs composed of prim-
itives of any dimension within the same framework.

3.2. Degenerate intersections

The boundaries of input primitives and intersection targets
must be handled correctly in order to avoid generating spu-
rious holes in the voxelization, and to avoid unnecessarily
“thick” results. Always including the boundaries (surfaces of
volumes, edges of surface elements like triangles, endpoints
of line or curve segments) in the intersection will prevent
holes from forming, but when the input touches a bound-
ary of multiple intersection targets, all of the corresponding
voxels are included in Sd. Cohen-Or and Kaufman [COK95]
discuss these problems at length, and propose using intersec-
tion targets where carefully selected parts of the boundaries
of 2D pixels or 3D voxels are excluded.

Such a method is difficult to extend to more complex in-
tersection targets, and we therefore suggest a more general
and simpler solution to the problem of degenerate intersec-
tions. We first observe that any such degeneracy can be re-
solved by perturbing either the input geometry—or equiva-
lently, the intersection target—slightly to an appropriate di-
rection. This results in either no intersection, or a proper in-
tersection of the input and the intersection target, where it
does not matter whether boundaries are included or not.

It turns out that we can choose a priori an infinitesimal
perturbation vector that removes any degeneracies between
the input primitives and intersection targets. Applying this
perturbation to the entire input—or equivalently, all intersec-
tion targets—produces a voxelization that is correct assum-

ing that infinitesimal modifications to the input are allowed.
An example of such a perturbation vector is (ε,ε2, ε3). In
practice, a degenerate intersection is resolved by testing if it
becomes non-degenerate by shifting the input (or the inter-
section target) infinitesimally, first in +x, then in +y, etc.,
until a non-degenerate result is obtained.

In voxel-vs-triangle and pixel-vs-edge tests, this approach
is equivalent to the “reduced-voxels” of Cohen-Or and Kauf-
man [COK95], but does not require separately choosing
which faces, edges, and vertices of the voxel boundary to
include and which to exclude. In the point-vs-triangle test
used in standard 2D rasterization, it is equivalent to the ras-
terization rules used in common graphics APIs, which guar-
antee that a fan of triangles with consistent facing covers
each pixel center exactly once, even if it lies on an edge or a
vertex. In practice, we expect that the infinitesimal perturba-
tion vector approach usually boils down to carefully placed
equalities in the inequality tests done during intersection cal-
culations. For certain tests, e.g., polygon-vs-polygon in 3D,
the implementation may be non-trivial.

It should be noted that in most cases it is not disastrous
to include a few extra voxels in the resulting voxelization in
the rare case that a degenerate intersection occurs. A con-
servative intersection test that reports an intersection even
when the input primitive and the intersection target merely
touch each other can only add to the voxelization, and hence
never break its connectivity or separability properties. Thin-
ness may be compromised, and it depends on the application
whether this is a concern or not. The principal value of the
perturbation method is that it simplifies our analysis by re-
moving the need to consider potential degeneracies.

4. Intersection targets in 2D

Let us first consider voxelization in 2D, i.e., rasterization.
To follow the common nomenclature, we call our voxels
pixels, and our input geometry may be zero-, one-, or two-
dimensional in both primitive and effective dimensions. We
assume that the effective dimension of the input is known
in order to choose the appropriate voxelization strategy. We
rely heavily on Jordan curve theorem that states that any con-
tinuous path that crosses from the inside to the outside of a
simple closed curve must intersect this curve in at least one
point. Also note that due to the handling of degenerate cases
as described above, we do not need to separately consider
cases where a path crosses through a point where multiple
curves intersect or meet, as any such situation is resolved by
the infinitesimal perturbation of the crossing path.

4.1. One-dimensional input

Input that is effectively one-dimensional may consist of ei-
ther truly one-dimensional line segments or curves, or slim
two-dimensional primitives. When voxelizing into a pixel
grid, we may require the result to be either 4-connected

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Laine / A Topological Approach to Voxelization

(a) (b) (c) (d)

Figure 5: Intersection target for 4-connected, 8-separating
voxelization of one-dimensional input in 2D. (a) The general
shape where adjacent pixel corners are connected by contin-
uous curves. (b) Input geometry that intersects the target in
center voxel cannot exit the region shaded in gray except
through its bounding curve, which consists of parts of the
intersection targets of the center pixel’s 4-neighbors. (c) By
stretching the corner-connecting curves to meet at center,
we obtain a practical cross-diagonal intersection target. (d)
Another option is to push the curves to the boundary of the
pixel.

Figure 6: An example voxelization of one-dimensional in-
put with the cross-diagonal intersection target. Dots indicate
intersections between the input curve and the intersection
targets. 4-connectivity and 8-separability is achieved with a
subset of a cover.

or 8-connected, which are equivalent to 8-separability and
4-separability, respectively [COK95]. A trivial way to en-
force 4-separability and hence 8-connectivity is to produce
a cover of the input, but as our input is one-dimensional, we
should expect a one-dimensional intersection target to suf-
fice, and to produce fewer voxels.

4.1.1. 4-connected, 8-separating voxelization

Let us consider the intersection target shown in Figure 5a
placed in every pixel. The important feature of this struc-
ture is that continuous curves connect every pair of ad-
jacent corners of a pixel. Continuous input geometry that
intersects the target in a pixel can extend to other pixels
only by first passing through the intersection targets of this
pixel’s 4-neighbors, because parts of these form a simple
closed curve around the pixel in question (Figure 5b). There-
fore, the resulting voxelization of a continuous input path is
4-connected and as such 8-separating. An alternative way
is to prove the 8-separability directly as done later in Sec-
tion 5.2.1, from which the 4-connectivity follows.

Figure 6 shows an example of 4-connected voxelization

(a) (b) (c) (d)

Figure 7: Intersection target for 8-connected, 4-separating
voxelization of one-dimensional input in 2D. (a) The general
shape where adjacent edge centers are connected by contin-
uous curves. (b) Input geometry that intersects the target in
center voxel can can extend only to the pixel’s 8-neighbors
because the bounding curve of the gray region consists of
their intersection targets. (c) Connecting the curves at cen-
ter yields a practical crosshairs intersection target. (d) Con-
necting adjacent edge centers with straight line segments
yields the diamond pattern used in common graphics APIs
for line rendering.

Figure 8: An example 8-connected and 4-separating vox-
elization of one-dimensional input with the crosshairs inter-
section target.

of one-dimensional input using the cross-diagonal target of
Figure 5c, where the result contains fewer voxels than the
two-dimensional full-pixel target would produce. The square
target of Figure 5d is interesting only due to its ability to
ignore point-like input with effective dimension of zero, in-
cluding any input that falls in entirely inside a single pixel.
Otherwise it produces the same result as the full-pixel target.

4.1.2. 8-connected, 4-separating voxelization

By modifying the previous intersection target, we can eas-
ily produce 8-connected, 4-separating voxelization of one-
dimensional input. Figure 7a illustrates a general intersec-
tion target where midpoints of adjacent edges are connected
by continuous curves. As illustrated in Figure 7b, we again
obtain a simple closed curve around a pixel whose inter-
section target the input intersects. This curve consists of
parts of the intersection targets of the pixel’s 8-neighbors,
and therefore prevents continuous input geometry from es-
caping without intersecting at least one of these. Again, we
could show the 4-separability directly using the proof in Sec-
tion 5.2.1, from which 8-connectivity follows

A practical intersection target is obtained by connecting
the midpoints of pixel edges to the pixel center (Figure 7c).

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Laine / A Topological Approach to Voxelization

This is a very simple target to intersect against, even for
curved input primitives. OpenGL and DirectX graphics APIs
employ a “diamond exit” rule for line rendering, which cor-
responds to the intersection target in Figure 7d, obtained as
a special case of the general shape. The diamond target is
more eager to include a pixel in the result than the crosshairs
target—consider the input protruding into the pixel from the
corner while remaining in one quadrant. This may yield a
more aesthetically pleasing result at the cost of producing
pixels that are unnecessary for 8-connectivity.

Thinness. In 8-connected voxelization, we may addition-
ally be concerned about the so-called thinness of the re-
sult, loosely defined as producing a layer only one voxel
thick in the direction of the major axis of the normal vec-
tor of surface or curve. Let us consider a parameterized
continuous and differentiable one-dimensional input curve
c = (fx(t),fy(t)), t ∈ [0,1] where |dfy/dfx| ≥ 1 for all t.
Because c is always oriented closer to y axis than x axis, we
would like to produce at most one voxel for every horizontal
layer in Sd.

It is easy to see that the crosshairs target of Figure 7c ful-
fills this goal. Consider c intersecting the horizontal line seg-
ment at voxel V at point (x0,y0), where y0 = Y + 1

2 , and
Y ∈ Z. Within this horizontal pixel layer, y ∈ [y0− 1

2 ,y0 +
1
2], and we have the bound x ∈ [x0− 1

2 ,x0 + 1
2] due to the

limit on the ratio of absolute derivatives. Therefore, the only
vertical line segment of an intersection target that c may po-
tentially intersect must belong to the same crosshairs tar-
get whose horizontal line segment c intersects, as the x,y
bounds contain no other such segment. Obviously, no other
horizontal line segment on the layer can be intersected ei-
ther. As such, no other voxels on the same layer will be in
Sd. Using similar reasoning, the diamond target of Figure 7d
can be seen to produce a thin voxelization.

Figure 8 shows an example of 8-connected voxelization
of one-dimensional input using the crosshairs target of Fig-
ure 7c. The voxelization is 4-tunnel-free [COK95], as shown
later in Section 5.2.2.

5. Intersection targets in 3D

In 3D, the relationship between connectivity and separa-
bility is less obvious than in 2D. Furthermore, with one-
dimensional input, no sensible notion of separability can be
given, but even then we may be interested in establishing
various connectivity properties for the resulting voxeliza-
tion.

The kind of reasoning used in Section 4 still applies for
establishing connectivity properties for one-dimensional in-
put, but the separability for two-dimensional input needs
to be shown using a different strategy. We will again em-
ploy the Jordan curve theorem—or, more appropriately, the
Jordan-Brouwer separation theorem which is the 3D analog.

(a) (b) (c)

Figure 9: Intersection target for 6-connected voxelization of
one-dimensional input in 3D. (a) In the general shape, each
face is closed by a surface within the voxel. Only the piece
for the bottom face is shown here for clarity. (b) One possi-
ble realization is closing each face with pyramids that meet
at the center. This corresponds to octahedral tessellation of
space, where the centers of the octahedra are located at cen-
ters of voxel faces. (c) Another option is to push the surfaces
to the boundaries of the voxels. Note that the intersection
target is still two-dimensional, consisting of only the surface
of the cube. Obviously, this corresponds to a cubical tessel-
lation of space.

This time, the simple, closed region is formed by the two-
dimensional input geometry, and the paths between inside
and outside regions are formed by piecing together parts of
the intersection targets.

5.1. One-dimensional input

Effectively one-dimensional input in 3D may consist of one-,
two-, or three-dimensional primitives. Even though such in-
put cannot produce separation in 3D space, we may re-
quire the voxelization of the input to be 6-connected or
26-connected to allow, for example, flow simulation or a fill
to proceed within the voxelized curve(s), or simply to guar-
antee that the appearance of a visualized voxelization is not
missing pieces. We shall derive intersection targets for both
connectivities below.

5.1.1. 6-connected voxelization

Following the 2D analogue from Section 4.1.1, let us con-
sider the 3D intersection target illustrated in Figure 9a. For
each face of the voxel, we construct a continuous surface
that prevents curves from outside the voxel to enter the voxel
and exit through some other face without intersecting this
surface. Following the exact same reasoning as in the 2D
case, we can see that a continuous one-dimensional input
object cannot extend between two voxels without forming a
6-connected path of voxels in between.

Two practical realizations of this general shape are illus-
trated in Figure 9b, c, corresponding to octahedral and cu-
bical tessellation of space, respectively. The practical rele-
vance of these is dubious, as we may expect the voxelization
to contain almost as many voxels as a cover produced by
intersecting the input against the entire 3D voxel. In some

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Laine / A Topological Approach to Voxelization

(a) (b)

Figure 10: Intersection target for 26-connected voxeliza-
tion of one-dimensional input in 3D. (a) The target consists
of three quadrilaterals that bisect the voxel along all three
axes. This subdivides the space into cubes centered at voxel
corners. (b) Input geometry that intersects the target in the
center voxel cannot escape without intersecting the target of
a 26-neighbor, because parts of those form a closed cube
around the voxel with twice the side length.

situations it may be easier to intersect the input against an
intersection target composed of 2D sheets than the 3D voxel,
but in general these intersection targets are probably useful
only when it is needed to keep the number of resulting voxels
as small as possible.

5.1.2. 26-connected voxelization

The case of 26-connected voxelization of effectively one-
dimensional input is more interesting. Producing a cover for
this much more relaxed connectivity requirement would be
clearly overkill, including many unnecessary voxels. The ex-
isting algorithms are restricted to input that is formed out of
one-dimensional primitives, e.g., line segments or parame-
terized curves. In contrast, our method is able to construct
a 26-connected voxelization out of input that is only ef-
fectively one-dimensional but composed of two- or three-
dimensional primitives.

Figure 10a shows an intersection target suitable for this
purpose. Connectivity follows from a similar argument that
was used in Section 4.1.2 for 8-connected voxelization in
2D. Let us assume that the input intersects the target in voxel
V . Parts of the intersection targets of the 26-neighbors of V
form a box with side twice as long as a single voxel (Fig-
ure 10b). This is a simple, closed surface, and if the input
geometry contains a continuous path from V to voxels out-
side the immediate neighbors, it must intersect this enclosing
box and therefore intersect the target in N26(V).

It should be noted that the result is not thin in the same
sense as in the 2D case with the crosshairs target. Therefore,
an algorithm that steps along a curve in the dominant direc-
tion and outputs exactly one voxel per layer may produce a
26-connected voxelization with fewer voxels. The main ben-
efit of our method is that it works for input other than one-
dimensional primitives.

(a) (b) (c)

Figure 11: Intersection target for 26-separating voxeliza-
tion of two-dimensional input in 3D. (a) In the most general
case, it is enough for the intersection target to connect ev-
ery corner of the voxel to each other in one way or another.
Here they connect to a common point inside the voxel, but
that is not necessary. (b) In practice, straight line segments
on space diagonals produces a simple, symmetrical target.
(c) In some situations it may be more convenient to use a
target that connects the corners along the edges of the voxel,
as the individual line segment vs. surface intersection tests
may be shared among neighboring voxels.

5.2. Two-dimensional input

Arguably the most relevant use for 3D voxelization is the
discretization of two-dimensional input. In this case, the
separability of the resulting voxelization is of main inter-
est. Considering, e.g., casting a ray against the voxelized
surface, we may opt to have our rays form 26-connected
paths in order to test as few voxels as possible, in which
case the voxelization of the surfaces has to be 26-separating
to guarantee that the discretized ray does not penetrate an
originally separating surface. Alternatively, if a ray march
tests a 6-connected path of voxels, a sparser 6-separating
voxelization of the input is sufficient. Cohen-Or and Kauf-
man [COK97] provide an in-depth analysis.

5.2.1. 26-separating voxelization

A cover, i.e., using the entire 3D voxel as the intersec-
tion target, is 26-separating as shown by Cohen-Or and
Kaufman [COK95]. However, because our input is effec-
tively two-dimensional, intersection targets composed of
one-dimensional pieces should be sufficient to guarantee
finding the relevant voxels.

Let us consider the intersection target in Figure 11a.
We claim that the only property necessary to guarantee
26-separation is that the intersection target connects the cor-
ners of the voxel to each other. This is not trivial to see, so we
will formulate an indirect proof using the Jordan curve the-
orem. It is important to keep in mind that degeneracies are
handled by the infinitesimal perturbation method described
in Section 3.2, and we therefore need not worry about cases
where the surface, e.g., passes diagonally through the voxel
corner. In other words, the perturbation guarantees that even
in this case, intersection between an intersection target and
the surface happens inside one of the voxels, and never ex-
actly at the corner, edge, or face. If the input is composed of

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Laine / A Topological Approach to Voxelization

three-dimensional, volumetric primitives, but still forms an
effectively two-dimensional surface (e.g., a spherical shell
with nonzero thickness), we shall consider a suitable surface
contained within this volume.

Restating our assumptions, let us have a simple, closed
two-dimensional input surface S embedded in R3, separat-
ing it into two nonempty sets I and O. Assume that Sd is a
voxelization of S produced using the above general intersec-
tion target, and additionally that there are nonempty sets Id

andOd consisting of voxels whose entire 3D volume belong
in I and O, respectively.

To show that Sd is 26-separating, we must show that
there exists no path Π = (V0, . . . ,Vn) with Vi+1 ∈N26(Vi),
V0 ∈ Id, Vn ∈Od, and Π∩Sd = ∅. According to the Jor-
dan curve theorem, every continuous path between a point in
I and a point in O must intersect S. If the continuous path
is entirely contained within the voxels in Π, the intersection
happens in one of the voxels Vi. It is thus sufficient to con-
struct one such continuous path and show that Vi must be
included in Sd.

To construct such continuous path C(Π), we connect
pieces of intersection targets in each Vi. Because the inter-
section targets connect the corners of every voxel, we can
indeed contain C(Π) to lie within voxels present in Π, as
moving to any of the N26 is possible along the intersection
targets. We can start C(Π) at any point in the intersection
target of V0, as V0 ∈ Id and hence any point within V0 is in
I . Similarly, the endpoint of C(Π) lying in Vn is trivially in
O.

As C(Π) is a simple, continuous curve between a point in
I and a point in O, it must intersect S at some point p ∈ R3.
Because C(Π) is entirely contained within the volume cor-
responding to voxels in Π, the intersection point p must also
lie in one of those voxels Vi which is part of Π. This now
contradicts our definition of Π, because p is both on surface
S and on the intersection target of Vi. Therefore, Vi ∈ Sd,
and a 26-connected path Π as defined above cannot exist,
implying that Sd is 26-separating.

The above reasoning holds for any intersection target that
allows constructing a continuous path C(Π) that is con-
tained within the volume covered by voxels in 26-connected
Π. This gives a lot of flexibility in formulating practical in-
tersection targets. Figure 11b, c shows two options, but many
others exist, especially if we do not care about symmetry.

5.2.2. 6-separating voxelization

A 6-separating voxelization may have many fewer voxels
than a 26-separating one, and it is therefore generally prefer-
able in applications where 26-separability is not required.
The intersection target illustrated in Figure 12a connects the
centers of voxel faces to each other, and can be seen to pro-
duce a 6-separating voxelization. The argument is exactly

(a) (b) (c)

Figure 12: Intersection target for 6-separating voxelization
of two-dimensional input in 3D. (a) The general intersection
target connects centers of faces to each other. (b) Straight
line segments yield a particularly simple crosshairs shape.
(c) 3D generalizations of the diamond rule (e.g., [SS10])
produce a 6-separating result because they correspond to a
superset of the crosshairs target.

the same as in the previous case, except that now the hypo-
thetical separability-violating voxel path Π is 6-connected.
Therefore, a continuous C(Π) can be formed as long as
it is possible to move between neighboring voxels in a
6-neighbor sense, i.e., through the faces, which the pro-
posed intersection target clearly allows. The most practical
symmetrical realization of the general shape is probably the
crosshairs target in Figure 12b.

It immediately follows that any sensible 3D extension of
the diamond rule used in 2D produces a 6-separating vox-
elization due to inclusion of the crosshairs target. For exam-
ple, the method of Schwarz and Seidel [SS10] always in-
cludes any voxel where an input triangle intersects the oc-
tahedron spanned between voxel’s face centers (Figure 12c)
and is therefore 6-separating. However, using an unneces-
sarily large target will include voxels that are not required
for 6-separation, indicating that their method cannot be min-
imal.

A simple analysis also reveals that the GPU-based vox-
elization method used by Forest et al. [FBP09] and Crassin
et al. [CNS∗11] is 6-separating. They do three passes over
the input, and in each pass rasterize the primitives along
three axis-aligned projections. For each resulting pixel, the
depth of the primitive is evaluated at the center, and the voxel
whose center is closest in depth is included in Sd. It is easy
to see that this is equivalent to using the crosshairs inter-
section target of Figure 12b, where each rasterization pass
corresponds to intersecting the input against the crosshair
segments oriented along the projection axis. By extension,
this rasterization-based method would produce 6-separating
result even for curved primitives, while requiring only point
evaluations of depth. This property might be quite difficult
to ascertain without the techniques used above.

Thinness. The voxelization produced by the crosshairs in-
tersection target is also thin in the following sense. Consider
a possibly curved, continuous and everywhere differentiable
surface primitive where, at every point, the z component of

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Laine / A Topological Approach to Voxelization

the normal vector has the largest absolute value. For thin-
ness, we require that no more than one voxel is produced
in each z-oriented column of voxels. Let the surface inter-
sect the z-oriented crosshair segment of voxel V at point
(x0,y0,z0), where x0 =X+ 1

2 ,y0 = Y + 1
2 , andX,Y ∈ Z.

In this (z-oriented) voxel column, x ∈ [x0− 1
2 ,x0 + 1

2], and
similarly for y. Consider slicing the surface with an xz plane
at y = y0. Because of the normal vector leaning towards z at
all points, we have |dz/dx| ≤ 1. Hence, z also has bounds
z ∈ [z0− 1

2 ,z0 + 1
2] in this x range when keeping y = y0,

and the surface thus cannot reach the x-oriented crosshair
segment in voxels other than V in this column. The same
holds for the y-oriented crosshair segments. Note that in gen-
eral the surface z may reach the middle of another voxel in
the column, but this cannot happen on the xz and yz planes
where the crosshair segments lie. Furthermore, the surface
obviously cannot intersect any other z-oriented crosshair
segments in the same column. Hence, no other voxels of this
column besides V can be included in the result, from which
thinness follows.

Voxelization with a single 2D projection. An interesting
corollary follows from the thinness property and the equiv-
alence of the 3-axis rasterization [FBP09,CNS∗11] with the
crosshairs target. When a planar triangle is projected along
the dominant axis of its geometric normal vector, every pixel
whose center lies in the projected triangle produces a unique
voxel in the corresponding voxel column. The other pro-
jection directions cannot produce any more voxels in these
columns, as the voxelization with the crosshairs target is
thin. For all such pixels, it is therefore enough to consider
projection along the dominant axis alone, and only the edges
need further consideration. This suggests the following algo-
rithm.

Rasterize the triangle projected into 2D along the dom-
inant axis of normal. For pixels where the projected trian-
gle contains the pixel center, output the voxel whose center
depth is closest to the depth of the triangle evaluated at pixel
center, as in previous methods [FBP09, CNS∗11]. For pix-
els that contain an edge of the triangle but where the trian-
gle does not overlap the center, find the extents of the tri-
angle on a horizontal line bisecting the pixel, clamp these
to the horizontal pixel extents, and evaluate depth of trian-
gle at these two points. If the values are on different sides
of a voxel’s center depth, output the corresponding voxel. If
not, repeat the test for the vertical direction. The first test
(triangle vs. pixel center) corresponds to intersecting the tri-
angle against the crosshair segment parallel to the projection
axis, and the latter tests correspond to testing the triangle
against the two crosshair segments perpendicular to the pro-
jection axis. This way, the 6-separating voxelization can be
produced based on just one 2D projection.

Tunnel-freeness. Following the definition of Cohen-Or
and Kaufman [COK95], a 6-tunnel-free voxelization is such
that any line segment that connects the centers of two

(a) (b)

Figure 13: Modifications to the crosshairs target for one-
dimensional input in 2D. (a) Randomizing the connection
points within pixels and on pixel edges produces an irregu-
lar pattern that is still 4-separating and hence 8-connected.
(b) Pushing the edge connection points all the way to pixel
corners yields a pattern where the intersection target in each
pixel consists of a single diagonal line segment.

6-neighboring voxels outside Sd does not intersect S. It is
easy to see that using the crosshairs target in Figure 12b ful-
fills this requirement, as any such segment that intersects S
will produce at least one of the neighboring voxels in Sd.
The same holds for 2D voxelization using the crosshairs tar-
get in Figure 7c. We could similarly obtain 8-tunnel-free
voxelization in 2D by using an intersection target that con-
nects the pixel center to its corners and edge midpoints, 18-
tunnel-free voxelization in 3D with a target that connects
voxel center to face centers and edge midpoints, and 26-
tunnel-free voxelization with a target where voxel center is
connected to face centers, edge midpoints, and corners.

6. Extensions

So far we have considered only the situations where the in-
tersection target is the same in every pixel or voxel. This is
not strictly required, as none of our connectivity and separa-
bility arguments relies directly on this property.

While any of the proposed intersection targets can be
altered in various ways, we shall here consider only the
4-separating crosshairs target for one-dimensional input in
2D (Figure 7c), and the 6-separating crosshairs target for
two-dimensional input in 3D (Figure 12b), as they are the
easiest to manipulate.

Figure 13a illustrates a variant of the former intersec-
tion target where the connections are made between random
points on pixel edges to a random point within the pixel, and
the resulting voxelization. This “foam” retains the connec-
tivity and separability properties of the voxelization, but has
a much less regular structure. This may improve, e.g., the
spectral properties of the resulting voxelization, if that is of
interest in a given application.

An even more drastic modification to the intersection tar-
get is to push the connecting segments to meet at pixel
corners, as illustrated in Figure 13b. It is easy to see that

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Laine / A Topological Approach to Voxelization

Figure 14: Modification of the crosshairs target for 3D vox-
elization of two-dimensional input, obtained by moving the
face connection points to voxel corners. This merges the six
“arms” of the crosshairs into two collinear segments, yield-
ing a pattern where the intersection target in each voxel con-
sists of a single space diagonal. Despite the sparsity, this set
of intersection targets produces a 6-separating voxelization.

4-separability holds when shown using a 2D analog of the
separability proof in Section 5.2.1. Albeit diverging con-
siderably from the simple crosshairs target, this alternat-
ing diagonal target still allows a continuous 4-connected
C(Π) to be formed using only the voxels in Π, from which
4-separability and 8-connectivity follows. The resulting vox-
elization is somewhat clunky, but it is still a subset of a cover
of the input, and hence never arbitrarily far from the input
geometry.

Similar modifications can be carried out to the crosshairs
target for voxelizing two-dimensional input in 3D (Fig-
ure 12b). Randomization of the lattice works as in the 2D
case, and by pushing the connection vertices to voxel cor-
ners, we obtain a strikingly simple intersection target con-
sisting of a single space diagonal in each voxel, as illustrated
in Figure 14. The four possible space diagonals must be al-
ternated as shown to maintain connectivity between voxels,
and the pattern repeats with a period of 23 voxels. The re-
sulting voxelization exhibits similar clunkiness as in the 2D
case, but it is nonetheless a 6-separating subset of a cover
and hence reasonably faithful to the input geometry.

In applications where the simplicity of the intersection tar-
get and the small number of resulting voxels are of higher
importance than aeshetic aspects—e.g., if the voxelization is
not to be visualized directly—using the alternating single-
diagonal targets may be the most efficient strategy.

7. Conclusions

We have presented a general voxelization scheme based on
intersection targets, along with a number of targets that are
suitable for 2D and 3D voxelization of input geometry with
various effective dimensions. By choosing appropriate in-
tersection targets, the resulting voxelization can be easily

shown to have various topological connectivity and separa-
bility properties. Unlike most previous methods, our scheme
is applicable to curved input primitives in addition to flat
ones, and trivially independent of input tessellation.

References
[CNS∗11] CRASSIN C., NEYRET F., SAINZ M., GREEN S.,

EISEMANN E.: Interactive indirect illumination using voxel
cone tracing. Computer Graphics Forum (Proceedings of Pacific
Graphics 2011) 30, 7 (2011).

[COK95] COHEN-OR D., KAUFMAN A.: Fundamentals of sur-
face voxelization. Graph. Models Image Process. 57, 6 (1995),
453–461.

[COK97] COHEN-OR D., KAUFMAN A.: 3D line voxelization
and connectivity control. Computer Graphics and Applications,
IEEE 17, 6 (1997), 80–87.

[DCB∗04] DONG Z., CHEN W., BAO H., ZHANG H., PENG Q.:
Real-time voxelization for complex polygonal models. In Pro-
ceedings of the Computer Graphics and Applications, 12th Pa-
cific Conference (2004), pp. 43–50.

[ED06] EISEMANN E., DÉCORET X.: Fast scene voxelization
and applications. In ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games (2006), pp. 71–78.

[FBP09] FOREST V., BARTHE L., PAULIN M.: Real-time hierar-
chical binary-scene voxelization. Journal of Graphics Tools 14,
3 (2009), 21–34.

[FC00] FANG S., CHEN H.: Hardware accelerated voxelization.
Computers and Graphics 24, 3 (2000), 433–442.

[HYFK98] HUANG J., YAGEL R., FILIPPOV V., KURZION Y.:
An accurate method for voxelizing polygon meshes. In Pro-
ceedings of the 1998 IEEE symposium on Volume visualization
(1998), pp. 119–126.

[KS87] KAUFMAN A., SHIMONY E.: 3D scan-conversion al-
gorithms for voxel-based graphics. In Proceedings of the 1986
workshop on Interactive 3D graphics (1987), pp. 45–75.

[Pan11] PANTALEONI J.: VoxelPipe: a programmable pipeline
for 3D voxelization. In Proceedings of the ACM SIGGRAPH
Symposium on High Performance Graphics (2011), pp. 99–106.

[SS10] SCHWARZ M., SEIDEL H.-P.: Fast parallel surface and
solid voxelization on GPUs. ACM Trans. Graph. 29, 6 (2010),
179:1–179:10.

[VKK∗03] VARADHAN G., KRISHNAN S., KIM Y. J., DIGGAVI
S., MANOCHA D.: Efficient max-norm distance computation
and reliable voxelization. In Proceedings of the 2003 Euro-
graphics/ACM SIGGRAPH symposium on Geometry processing
(2003), SGP ’03, pp. 116–126.

[WK93] WANG S. W., KAUFMAN A. E.: Volume sampled vox-
elization of geometric primitives. In Proceedings of the 4th con-
ference on Visualization ’93 (1993), pp. 78–84.

[WME03] WIDJAYA H., MÖLLER T., ENTEZARI A.: Voxeliza-
tion in common sampling lattices. In Proceedings of Pacific
Graphics 2003 (2003), pp. 497–501.

[ZCEP07] ZHANG L., CHEN W., EBERT D. S., PENG Q.: Con-
servative voxelization. Vis. Comput. 23, 9 (2007), 783–792.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

