
Efficient Sparse Voxel Octrees – Analysis, Extensions, and Implementation

Samuli Laine Tero Karras
NVIDIA Research∗

Abstract

This technical report extends our previous paper on sparse voxel
octrees. We first discuss the benefits and drawbacks of voxel repre-
sentations and how the storage space requirements behave for dif-
ferent kinds of content. Then, we explain in detail our compact data
structure for storing voxels and an efficient ray cast algorithm that
utilizes this structure, including the contributions of the original pa-
per: additional voxel contour information, normal compression for-
mat for storing high-precision object-space normals, post-process
filtering technique for smoothing out blockiness of shading, and
beam optimization for accelerating ray casts.

Management of voxel data in memory and on disk is covered in
more detail, as well as the construction of voxel hierarchy. We ex-
tend the results section considerably, providing detailed statistics of
our test cases. Finally, we discuss the technological barriers and
problems that would need to be overcome before voxels could be
widely adopted as a generic content format.

Our voxel codebase is open sourced and available at
http://code.google.com/p/efficient-sparse-voxel-octrees/

1 Introduction

Voxels can be seen as a simpler alternative to the triangle pipeline
that has become relatively complicated in the current GPUs. Tra-
ditionally, voxels have been used for representing volumetric data
such as MRI scans, but in this paper we concentrate on using them
as a densely sampled representation of opaque surfaces. Contrary
to common belief, there is no fundamental requirement that voxel
data would need to be volumetric.

A compelling reason for using triangles has been their compactness
for representing planar surfaces. Only a handful of triangles are
required for representing flat-sided objects such as buildings, no
matter how large they are spatially. This advantage is less signifi-
cant today, because memory consumption is already dominated by
color textures and normal maps that are required for realistic look.
Displacement maps can be used to obtain true geometric detail, but
only the latest GPUs are able to rasterize them efficiently. Displaced
geometry is also more difficult to ray trace than flat triangles.

It is customary to use the same textures over and over to con-
serve GPU memory. Unfortunately, this results in repetitive look
for materials and makes it difficult to add variation in the scene,
although small details can be easily added using decal texture
patches. id Software pioneered the use of a single large texture
for terrain in its id Tech 4 engine, and the current id Tech 5 engine
extends the technique to all textures. Only a subset of this so-called
megatexture is kept in memory, and missing parts are streamed from
disk as they are needed.

∗e-mail: {slaine,tkarras}@nvidia.com

This technical report is revised and extended from ”Efficient Sparse Voxel
Octrees” published in the proceedings of I3D 2010 [Laine and Karras 2010].

NVIDIA Technical Report NVR-2010-001, February 2010.
c⃝ NVIDIA Corporation. All rights reserved.

Assuming that such megatexturing will become commonplace in
the future, we need to store a color value per resolution sample
for all surfaces. If megatextured displacement mapping is used to
achieve higher geometric complexity, we effectively need to also
store some amount of geometry data per sample. At this point, we
may quite reasonably ask why a separation between coarse geom-
etry (base mesh) and fine detail (color and displacement maps) is
necessary in the first place. If we have to store color and geometry
data per resolution sample anyway, why not use a simpler represen-
tation that utilizes the same data structure for both purposes?

Data resolutions. The goal of streaming data is to achieve a con-
stant texel-per-pixel ratio so that enough resolution will always be
available for image synthesis. To facilitate discussion, we will call
this the target resolution of the data. It may be different from the
resolution available on the storage medium (storage resolution),
and it may vary across the data. For example, target resolution of
terrain is smaller in the distance than near the camera. If the stor-
age resolution is less than target resolution, the synthesized image
will be coarser than desired. In this case, measures must be taken
to avoid the blockiness of voxels from becoming visible.

No deformation. Deformation is probably the most important ben-
efit of separating the base mesh from fine detail. Deforming the
base mesh is usually easy, and ideally the detail layer follows it
naturally. If this is not possible, other deformation methods need
to be used, none of which is quite as intuitive and powerful as
vertex-based deformation. Therefore, it seems that currently vox-
els would be feasible only for static parts of the scene. Possible
methods for deforming voxel-based geometry are discussed briefly
in Section 3.4, but in this paper we will restrict our scope to non-
deforming geometry only.

2 Previous Work

There is a vast body of literature on visualizing volumetric struc-
tures, so we will focus on papers that are most directly related to
our work. We specifically omit methods that are restricted to height
fields (see e.g. [Dick et al. 2009] for a recent contribution) or are
based on a combination of rasterization and per-pixel ray casting
in shaders (see [Szirmay-Kalos and Umenhoffer 2008] for an ex-
cellent survey) because these are not capable of performing generic
ray casts.

Amanatides and Woo [1987] were the first to present the regular
grid traversal algorithm that is the basis of most derivative work,
including ours. The idea is to compute the t values of the next
subdivision planes along each axis and choose the smallest one in
every iteration to determine the direction for the next step.

Knoll et al. [2006] present an algorithm for ray tracing octrees con-
taining volumetric data that needs to be visualized using different
isosurface levels. Their method is conceptually similar to kd-tree
traversal, and it proceeds in a hierarchical fashion by first deter-
mining the order of the child nodes and then processing them re-
cursively. The algorithm is not as such well suited for GPU im-
plementation. An extension to coherent ray bundles is given by
Knoll et al. [2009], where a principal axis is chosen and a slice of
voxels, corresponding to the beam of rays, is propagated within the
volume. As with other packet traversal algorithms, the benefit ob-

1

tained on a CPU-based implementation seems unlikely to translate
readily to massively parallel GPUs.

Gobbetti et al. [2005] discuss a framework for rendering mas-
sive voxel datasets on graphics hardware. Their rendering utilizes
the graphics pipeline by drawing antialiased point primitives, and
hence does not support ray tracing. However, their system is no-
table for employing a generic shading method that is based on sam-
pling the original data from various directions. They then choose,
on a per-voxel basis, a shader that can best express the observed
results and compute the shading parameters based on the observa-
tions. A method like this could be very useful in real-world applica-
tions, because no manual tuning is required and shading of different
LOD levels is handled automatically.

Crassin et al. [2009] present a GPU-based voxel rendering algo-
rithm that combines two traversal methods. The first stage casts
rays against a regular octree using kd-restart algorithm to avoid the
need for a stack. The leaves of this octree are bricks, i.e. 3D grids,
that contain the actual voxel data. When a brick is found, its con-
tents are sampled along the ray. Bricks typically contain 163 or 323

voxels, yielding a lot of wasted memory except for truly volumetric
or fuzzy data. On the other hand, mipmapped 3D texture lookups
supported by hardware make the brick sampling very efficient, and
the result is automatically antialiased. An interesting feature of the
algorithm is the data management between CPU and GPU. While
traversing the octree, the renderer detects when data is missing in
GPU memory and signals this to the CPU, which then streams the
needed data in. This way, only a subset of nodes and bricks needs
to reside in GPU memory at any time.

Our approach is different from Crassin et al. in several ways. We
aim for storing representations of large-scale scenes in GPU mem-
ory with enough detail for high-quality rendering, which necessi-
tates a small memory footprint. Also, our primary interest is in rep-
resenting surfaces instead of volumes, because surfaces arguably
play a more significant role in most real-world content. Because
of these considerations, we use of a single hierarchical structure
instead of separate schemes for coarse and fine data. We also intro-
duce additional contour data to allow accurate surface placement
within individual voxels.

3 Triangles vs. Voxels

In this section, we consider the main differences and similari-
ties between triangle- and voxel-based geometry representations.
For triangle-based representation, we assume a (coarse) base mesh
equipped with unique color textures as well as displacement maps
for achieving geometric detail. In this way, both representations
are more or less equally powerful for representing static, highly de-
tailed objects. There are major differences in other aspects, though,
as we will see in a moment.

3.1 Memory Usage

Voxels are generally assumed to consume huge amounts of mem-
ory. This is true if the data is truly volumetric 3D such as an MRI
scan, but if we only encode surfaces, the memory usage drops to
O(N2) where N is the resolution along one spatial dimension. The
resolution could be defined, for example, as the maximum number
of distinguishable features per unit length. In terms of complexity,
this is the same as with triangles, where the total surface area is
also the factor that most affects memory usage, assuming unique
texturing.

Triangles. Let us assume that the base meshes are coarse enough
so that we can ignore them altogether. What remains is the color

triangles voxels
with contours

geometry 1 1
color 0.5 1
normals 0 2
contours – 1
total 1.5 5

Table 1: Memory usage per voxel for uniquely textured, displaced
triangles, and voxels. All numbers are in bytes.

and displacement detail maps. Assuming DX texture compression,
colors can be encoded using 4 bits per sample, and for three-axis
displacement 8 bits per sample might be sufficient using e.g. DXT5
compression [van Waveren and Castaño 2008], totalling 1.5 bytes
per sample. Normals are not required, because it should be possible
to derive them from the displacement map.

Voxels. A comprehensive analysis of voxel memory consumption
is presented later in Section 5.6. In total, voxels with colors, nor-
mals and contours (Section 5.2) require approximately 5 bytes per
voxel. The memory consumption is therefore 3.33 times as high as
with triangle-based representation. The relevant values are summa-
rized in Table 1. If we consider memory usage per leaf voxel, i.e.
target-resolution sample, we need to multiply per-voxel cost by 4

3
,

yielding 6.67 bytes per sample. For triangles, the same multiplier is
required for taking mipmaps into account, which yields 2 bytes per
highest-resolution sample.

It is important to note that texture resolution cannot be controlled
on a fine-grained basis, but voxel resolution can. For instance, if a
color texture contains a large patch of constant color, textures can-
not easily take advantage of this, but with hierarchical voxel encod-
ing it is possible to simply leave out further detail levels where they
would not make any difference. The same applies to displacement
maps, and therefore to geometric detail as well. In this sense, direct
comparison between textures and voxels is somewhat crude, as the
nature of the content determines how much voxels can benefit from
local resolution fine-tuning.

To estimate how much data one can fit in e.g. 4GB video mem-
ory available on NVIDIA Quardo FX 5800 board, let us assume
1 mm × 1 mm constant resolution for geometry. This gives us one
sample per pixel when content is viewed not closer than approxi-
mately one meter away using 90∘ FOV in 1080p display resolution
(1920 × 1080). For triangles, we could fit 232/2 = 231 samples
into GPU memory, giving 231/106 = 2147 sq.m (≈ 23000 sq.ft).
For voxels, the same calculation gives 644 sq.m (≈ 6900 sq.ft).

Note that this estimation is inaccurate because it does not ac-
count for diminishing resolution requirements as distance to camera
grows. In the scenario above, assuming that one sample per pixel
is enough, the full resolution would only be needed in a sphere
with radius of two meters, and after this the memory requirements
would start to drop drastically. This effect will be analyzed in detail
in Section 4.

3.2 Downsampling

Downsampling of triangle meshes is fairly straightforward, and in-
dividual displacement and color maps can also be trivially down-
sampled. A major remaining problem—that is to our knowledge
not properly solved yet—is how to make high-frequency geomet-
ric occlusion (e.g. fur, grass, dense grating) transform into partial
transparency when downsampled. There are also situations where
triangle meshes cannot represent downsampled data appropriately,

2

e.g. when fur should turn into partially transparent volumetric mass
after enough downsampling.

Downsampling voxel data is theoretically very simple. The appear-
ance of a parent voxel needs to match the combined appearance of
its child voxels with occlusion and transparency taken into account.
This is much easier to achieve than generic triangle-based level of
detail, and volumetric transparency can also be easily represented.
During rendering, the level of detail can be efficiently decided on
the fly. For example, our ray caster always uses a level of detail that
is appropriate for the distance that the ray has traversed.

However, there are practical difficulties in downsampling voxel
data. Firstly, partial binary occlusion in finer detail should trans-
late to transparency in coarser detail level. We have not yet at-
tempted to incorporate this into our builder, so there could be un-
foreseen difficulties along the way. Also, some detail is invariably
lost when downsampling the data. For example, if child voxels have
highly specular BRDFs and different normals, the parent’s BRDF
should have multiple spikes according to the child voxels’ normals.
It would not be practical to have BRDFs with variable amount of
detail, so an optimization problem arises: how to set the parent
BRDF (or more generally, shading model) parameters so that they
mimic the combined BRDFs of the child voxels as well as possible.

Our builder computes colors and normals by spatially filtering input
data so that filter size is chosen according to voxel scale. Handling
each parameter separately works well in most cases, but obviously
there are situations that are not properly handled. An example is
a highly specular surface with very high-frequency displacement.
When such a surface is downsampled, the high-frequency bumpi-
ness is lost. The proper way to compensate for the lost frequencies
would be to increase the surface roughness of the BRDF. Consider-
ing downsampling, another limitation of our current builder is that
it does not work bottom-up, i.e. parent data is not derived from child
data. This would result in better matching between LOD levels.

It should be noted that exactly the same difficulties arise when using
mipmapped normal maps and surfaces with varying BRDF param-
eters, both common in games today. We expect that solutions that
are currently in use for handling these issues can be accommodated
to handle downsampling voxel data as well.

3.3 Zooming

A common argument against voxels is that they become blocky
when viewed up close. This is true in the same sense that bitmap
images become blocky when zoomed enough, and the same holds
for textures in traditional triangle-based graphics.

The loss of color, normal, etc. detail in surfaces can be battled by
filtering the data. In triangle-based graphics this is done at texture
lookup stage by performing interpolated fetches. Similar interpola-
tion is possible for voxels as well, but the cost is higher because the
data is not organized into a 2D array that can be easily addressed.
We have found that post-process filtering is a better alternative, as
discussed in Section 6.3. In any case, achieving smoothly textured
surfaces is equally possible with voxels as with textured triangles.

A more severe problem is the blockiness of silhouettes that is not
equally easily solved by means of blurring. Our experiences with
this are briefly described in Section 6.4. However, the additional
contour data, explained in detail in Section 5.2, reduces the blocki-
ness of silhouettes to a great extent and also has other benefits such
as lower memory usage and faster rendering. This is our preferred
solution for fixing the silhouettes.

3.4 Deformation

Triangle meshes are easy to animate by applying transformations to
the vertices and allowing the rest of the surface to follow. Blending
multiple transformations by interpolating vertex positions is the de
facto method for animating triangle meshes today.

Animating voxel data is considerably different from animating tri-
angle data. A trivial method for animating voxel data would be
having separate datasets for each animation frame. As a brute-force
solution this is close to a video sequence that consists of a series of
individual bitmap frames. The amount of raw data may be over-
whelming, but compression methods similar to what is being used
in video compression might bring the datasets to tolerable sizes. A
major downside is that only pre-recorded animations can be played.
All in all, this is not a particularly attractive solution.

There is an increasing amount of research targeted at more generic
deformation of spatial data. The model is usually enclosed in a hull
that is deformed so that the object follows as naturally as possible
while taking constraints such as volume conservation into account.
Rendering the deformed dataset is a concern. For ray tracing, there
would need to be inverse mapping for the final deformation function
so that the rays can be bent while the model remains in a reference
pose.

The main problem with deforming voxel data is that voxels can-
not be easily moved from one place to another. Because of this,
another sample-based representation, surface splats [Zwicker et al.
2001; Weyrich et al. 2007], might be better suited for deformable
objects. Splats can be easily organized into a standard BVH tree
that can be updated in linear time when splats are moved according
to deformation. The required BVH size also grows linearly with
respect to number of splats, so even though the memory usage is
higher than for voxels, it is only a constant multiplier away.

3.5 Authoring

There is a well established content pipeline for triangle-based 3D
modeling. Automated tools can be used to generate UV atlases
for textures, and artists can freely paint on the models themselves
without modifying the textures directly.

A different methodology is usually employed when the content
needs to be geometrically detailed. In this case, the content is typ-
ically generated using sculpting software such as ZBrush or Mud-
box. ZBrush utilizes voxel-like data structures whereas Mudbox
works with meshes with locally adjustable resolution. Both tools
allow the artist to modify the geometry using sculpting tools and to
paint textures on the model. The finished model can then be reduced
into low-polygon base mesh detailed with normal or displacement
maps.

Considering voxels, the sculpting-like interface seems to be cur-
rently the only method for authoring highly detailed data directly.
Conversion from triangle meshes is another approach, and the only
one we so far support in our system. Unfortunately, converting tri-
angle meshes into voxels has the drawback of combining the lim-
itations of both paradigms. Unless the source data is extremely
detailed, voxels are not used to their full potential.

More generally, authoring content with extremely high geometric
detail seems to be in its early stages. Digital sculpting, acquisi-
tion using laser scanning devices, procedural generation, and sev-
eral ad hoc methods for e.g. scanning faces are currently in use. Of
these, only the sculpting-to-mesh pipeline can be considered ma-
ture enough for wide adoption. It remains to be seen how the field
develops when real-time rendering of highly detailed geometry be-
comes possible.

3

3.6 Acquisition

Acquiring real-world data using cameras or scanning devices is
where voxels and other sample-based representations excel. It is
difficult to imagine a device that would produce something other
than discrete data points over the 2D or 3D domain being scanned.
Point clouds can certainly be converted to detailed, colored trian-
gle meshes, which can in turn be converted to a base mesh and a
displacement map. However, for structures that are badly suited for
such representation, such as thin branches or undersampled data, it
can be very difficult to perform either stage of the conversion.

Such conversion chain is unnecessary if we can directly translate
the raw input data into splat or voxel data. If we have e.g. a badly
undersampled blade of grass that has only a handful of samples that
do not form a continuous surface, it is not a problem for sample-
based representation (as long as the object is not viewed from too
close). We could still render the samples we have, and there would
be little risk of catastrophic failures.

3.7 Rendering

Displacement-mapped triangles can be directly rasterized using
GPU hardware tessellation. This keeps the rendering process simi-
lar to current triangle-based graphics. Ray casting such meshes is,
however, much more difficult. The power of displacement maps
lies in their ability to compactly encode the equivalent of millions
of triangles, and therefore it would be unfeasible to ”decompress”
them into individual triangles and place them into an acceleration
hierarchy for efficient ray casting. In practice, the ray caster would
therefore need to consider the two detail levels separately, first inter-
secting the rays against bounding volumes of displaced geometry,
and then against the displacement maps themselves.

Voxels can also be rasterized directly, but as explained in Sec-
tion 6.4, this does not seem to be as efficient as ray casting. On the
other hand, ray casting a voxel hierarchy is very simple and efficient
thanks to the regular structure of an octree. Very little arithmetic has
to be carried out during ray casts, except for the contour evaluation
which requires intersecting the ray against a pair of parallel planes.
Benchmark results from our implementation can be found in Sec-
tion 8. As mentioned earlier in Section 3.2, rays cast into voxel
structure can work on appropriate level of detail according to dis-
tance from ray origin. This reduces the amount of computation and
memory bandwidth usage, and simultaneously decreases aliasing
caused by high-frequency content.

3.8 Summary

Considering memory usage, triangles and displacement maps are
more compact than voxels, but only by a multiplier of 3.33. Tak-
ing into account that voxel representation can adapt to data reso-
lution on much finer scale than displacement maps, the difference
is smaller in practice. In Section 5.7, we also propose additional
methods for decreasing memory usage of voxels.

The downsampling of voxels is attractive because a single algo-
rithm should be able to handle all possible content, properly trans-
forming dense partially occluding geometry into volumetric trans-
parency. Also, combining shading models of eight child voxels into
parent voxel is probably more straightforward than doing the same
for triangles. Voxels have the ability to represent downsampled
dense opaque data, e.g. fur, correctly as partially transparent, volu-
metric ”cloud”. This is something that displacement maps cannot
do.

Triangle data handles zooming better than voxels, and parametric
patches handle it even better. The blockiness of voxel data can usu-

ally be removed to great extent, but sharp features cannot always be
represented well without increasing the resolution.

Generic deformation of voxel data is, with current knowledge, im-
possible to do efficiently, whereas triangles have no problems with
it. However, fracturing voxel data, i.e. separating chunks of it, is
easy, and this could be enough for e.g. simulating destructible walls
and buildings.

Authoring is an open question for both triangles and voxels. While
manual triangle modeling is the de facto method of content creation
today, the transition to extremely detailed geometry is non-trivial.
The key issues are the kind of data that can be represented, and the
set of tools required by artists. The winning data structure is the
one that fulfills the real-world requirements best.

The acquisition pipeline from scanned samples to voxels appears
simpler than conversion of raw data into triangles and displacement
maps. Especially the handling of imperfect data should be more
easily achieved in samples-to-samples conversion.

Finally, rendering of triangle data enjoys the benefits of immensely
fast rasterization. On the other hand, ray casting geometrically de-
tailed surfaces is probably more efficient with voxels than with tri-
angles, as our results suggest (Section 8). Voxels would therefore
seem more suitable for rendering with advanced illumination ef-
fects such as reflections and path tracing.

4 Dimensional Analysis of Memory
Consumption

When rendering images from voxel data, it is desirable to keep in
GPU memory high resolution data near the camera, and lower res-
olution data for things that are far away. While this is clear, it is
not obvious how much data is needed for obtaining a given viewing
distance, or how the memory requirements vary according to scene
resolution, image resolution, and viewing distance. In this section,
we will provide a theoretical framework for analyzing these issues.

Let us consider the contents of the world around a cube centered
at an arbitrary point and having side length of 2l. Suppose we are
inspecting voxels, i.e. non-empty cubical pieces of space, of scale
s, meaning that each voxel cube has side length of 2s. Neglecting
the position of the cube, we define voxel count function N(l, s) to
give the number of scale-s voxels in a scale-l cube. Because we
only consider non-empty voxels, this is generally much less than
the upper bound of 23(l−s).

To examine how the number of voxels changes when changing
voxel scale s or cube size l, we define two auxiliary functions. Let
us first consider how the number of voxels changes when voxel
scale is doubled. This yields the local dimensionality function
Dlocal defined as:

Dlocal(l, s) = log2
N(l, s)

N(l, s+ 1)
,

The logarithm converts the ratio of voxels into a dimensionality, i.e.
3 if the number of voxels increases eight-fold, 2 if it increases four-
fold, and so on. It should be noted that the dimensionalities are
not necessarily integer numbers but may assume any real in range
]0, 3].

The local dimensionality tells how the data behaves when its reso-
lution is increased or decreased. Therefore, a planar surface would
have local dimensionality of 2, and a volumetric chunk would have
a local dimensionality of 3. If most of the content we are represent-
ing consists of surfaces, we can expect the local dimensionality to

4

hover around 2. Figure 24 shows the measured dimensionalities of
our test scenes on different scales.

Let us now define the global dimensionality function which tells
how the number of voxels changes when cube size l is doubled, i.e.
l is increased by 1. This is defined as

Dglobal(l, s) = log2
N(l + 1, s)

N(l, s)
.

The global dimensionality tells how expanding our observed re-
gion affects the amount of data. For instance, in a world where the
content is located above a ground plane, the global dimensionality
would be about 2 for scales that encompass the entire vertical range
of the data. This holds even if there is e.g. a layer of volumetric fog
above the ground—doubling the radius of our observed universe
does not increase the amount of data eight-fold, which would be
the local dimensionality of the fog data, but only four-fold.

The combined effect of doubling the cube size and doubling the
voxel scale can now be expressed as a combination of local and
global scale changes. We call this the scale dimensionality because
it tells how the amount of data changes along with viewing scale.

Dscale(l, s) = log2
N(l + 1, s+ 1)

N(l, s)

= Dglobal(l, s)−Dlocal(l + 1, s).

Decomposing the dimensionality of the scaling into local and global
parts is useful, because these parts are governed by different fea-
tures of the voxel content. The local dimensionality depends on the
shapes of small neighborhoods, whereas the global dimensionality
depends on large-scale features of the scene.

The rationale for calculating the combined effect of the two scales is
as follows. Assume that we have some part of the world in memory
with resolution that is sufficient for high-quality rendering. Now
assume that we want to double the radius (or side) of the area we
can see, i.e. double the viewing distance. If we kept the resolution
the same, we would require 2Dglobal as much data, but because the
new content is on the average twice as far as the data we originally
had, we can decrease the resolution according to 2Dlocal for that
part.

We can see that especially the case where local dimensionality is
lower than global dimensionality causes the information content to
grow rapidly as a function of the view distance. Vegetation is a good
example of this kind of data, because leaves and grass blades are
two- or perhaps only one-dimensional, but they (more or less) fill
the entire space until a certain scale is reached. On the other hand,
a layer of fog behaves much more nicely, because the resolution
requirement drops eight-fold when distance grows, but only four
times as much content is contained in the larger region. Therefore,
doubling the viewing distance gets cheaper as the distance grows.

Assuming constant scale dimensionality D, we can obtain the com-
plexity of the total amount of data required to obtain view distance
of r by taking the integral of xD up to log2(r), i.e.

∫ log2 r

0

xD dx =

⎧⎨⎩ O((log r)D+1) , D > −1
O(log log r) , D = −1
O(−(log r)D+1) , D < −1

We can see that the memory usage complexity always grows sub-
linearly with respect to radius. The usual situation with Dscale = 0
yields logarithmic complexity with respect to view radius, whereas

info section contour datachild descriptors

raw attachment lookup raw attachment data

compressed attachment

Figure 1: Single block of octree data. The child descriptor and at-
tachment arrays are addressed with the same index. The gaps in the
arrays are due to page headers and far pointers. Page headers are
placed at every 8 kilobyte boundary, and point to the info section.

when Dglobal > Dlocal , the complexity is logarithm raised to a
power.

The effect of increasing display resolution is simpler to analyze. If
the display resolution is multiplied by two, this means that Dlocal

and Dglobal will be evaluated with scale parameter s− 1 instead of
s. This is equivalent to applying scaling by 2Dlocal . Therefore, it is
only the local dimensionality (in appropriate scales due to distance)
that affects the memory usage when display resolution is varied.
Locally low-dimensional data such as surface fragments and hair
thus behaves more nicely than high-dimensional volumetric data.

5 Voxel Data Structure

We store voxel data in GPU memory using a sparse octree data
structure where each node represents a voxel, i.e. an axis aligned
cube that is intersected by surface geometry. Voxels may be further
subdivided into smaller ones, in which case both the parent voxel
and its children are included in the octree. The data structure has
been designed to minimize the memory footprint while supporting
efficient ray casts. Sometimes both can be achieved at the same
time, because more compact data layout also reduces the memory
bandwidth requirements.

To this end, we adopt a scheme where most of the data associated
with a voxel is stored in conjunction with its parent. This removes
the need to allocate storage for individual leaf voxels and makes
compression of shading attributes more convenient.

On the highest level, our octree data is divided into blocks. Blocks
are contiguous areas of memory that correspond to localized por-
tions of voxels in the tree, storing the octree topology along with
voxel geometry and shading attributes. All memory references
within a block are relative, making it easy to reorganize blocks in
memory. This facilitates dynamic octree updates, for example when
streaming data from disk.

Each block consists of an array of child descriptors, an info section,
contour data, and a variable number of attachments. This is illus-
trated in Figure 1. The child descriptors (Section 5.1) and contour
data (Section 5.2) encode the topology of the octree and the ge-
ometrical shape of voxels, respectively. Attachments (Section 5.5)
are separate arrays that store a number of shading attributes for each
voxel. The info section encompasses a directory of the available at-
tachments as well as a pointer to the first child descriptor.

We access child descriptors and contour data during ray casts. Once
a ray hits surface geometry, we execute a shader that looks up the
attachments contained by the particular block and decodes the shad-
ing attributes. For the datasets presented in this paper, we use a sim-
ple Phong shading model with a unique color and a normal vector
associated with each voxel.

5

valid maskchild pointer far
815 1

leaf mask
8

contour maskcontour pointer
824

Figure 2: 64-bit child descriptor stored for each non-leaf voxel.

A

B C D

E

F

010010100 00000000

000101000 00010100
000110010 00010001
001000000 00100000

010010101 01001000

far pointer

100000000 10000000

...

page header

page header
...

...
info section

A

B
C
D

E

F

Figure 3: Layout of the child descriptor array. Left: Example voxel
hierarchy. Right: Child descriptor array containing one descriptor
for each non-leaf voxel in the example hierarchy.

5.1 Child Descriptors

We encode the topology of the octree using 64-bit child descrip-
tors, each corresponding to a single non-leaf voxel. Leaf voxels do
not require a descriptor of their own, as they are described by their
parents. As illustrated in Figure 2, the child descriptors are divided
into two 32-bit parts. The first part describes the set of child voxels,
while the second part is related to contours (Section 5.2).

Each voxel is subdivided spatially into 8 child slots of equal size.
The child descriptor contains two bitmasks, each storing one bit per
child slot. valid mask tells whether each of the child slots actually
contains a voxel, while leaf mask further specifies whether each of
these voxels is a leaf. Based on the bitmasks, the status of a child
slot can be interpreted as follows:

∙ Neither bit is set: the slot is not intersected by a surface, and
is therefore empty.

∙ The bit in valid mask is set: the slot contains a non-leaf voxel
that is subdivided further.

∙ Both bits are set: the slot contains a leaf voxel.

If the voxel contains any non-leaf children, we store an unsigned
15-bit child pointer in order to reference their data. These children,
in turn, store their own child descriptors at consecutive memory
addresses, and the child pointer points to the first one of them as
illustrated in Figure 3. This way, we can find a particular child by
incrementing the pointer based on the bitmasks. The children can
reside either in the same block as the parent or in a different one,
making it possible to traverse the octree without having to consider
block boundaries.

In case the children are located far away from the referencing de-
scriptor, the 15-bit field may not be large enough to hold the relative
pointer. To indicate this, we include a far bit in the child descriptor.
If the bit is set, the child pointer is interpreted as an indirect refer-
ence to a separate 32-bit far pointer. The far pointer is interleaved
within the same array and has to be placed close enough to the refer-
encing descriptor. In practice, far pointers can be made very rare by

thickness
7

position
7

nx
6

ny
6

nz
6

Figure 4: Bitfields in a contour value. Components of the normal
vector as well as spatial position are encoded as signed integers.
Thickness is encoded as an unsigned integer.

sorting child descriptors in an approximate depth-first order within
each block.

In addition to traversing the voxel hierarchy, we must also be able to
tell which block a given voxel resides in. This is accomplished us-
ing 32-bit page headers spread amongst the child descriptors. Page
headers are placed at every 8 kilobyte boundary, and each contains
a relative pointer to the block info section. By placing the begin-
ning of the child descriptor array at such a boundary, we can always
find a page header by simply clearing the lowest bits of any child
descriptor pointer.

5.2 Contours

The most straightforward way to visualize voxel data is to approx-
imate the geometry contained within each voxel as a cube. The
resulting visual quality is acceptable as long as the data is oversam-
pled, i.e. the projection of each voxel on the screen is smaller than a
pixel. However, if voxels are considerably larger due to undersam-
pling, the approximation produces very noticeable artifacts near the
silhouettes of objects. This is due to the fact that replacing each
intersection between a voxel and the actual surface with a full cube
effectively expands the surface. This introduces significant approx-
imation error as illustrated in top row of Figure 5.

To reduce the approximation error, we constrain the spatial extent of
each voxel by intersecting it with a pair of parallel planes matching
the orientation of the approximated surface. We refer to such a pair
of planes as a contour. The result is a collection of oriented slabs
that define a tight bounding volume for the surface, as illustrated
in the middle and bottom rows of Figure 5. For flat and relatively
smooth surfaces, the planes can be oriented with the average surface
normal to obtain a good fit. For curved and undersampled surfaces,
the planes can still be used to reduce the approximation error, as
can be seen in Figure 6.

We use 32 bits to store the contour corresponding to one voxel. The
value is divided into five components: three to define the normal
vector of the two planes, and two to define their positions within
the voxel. See Figure 4 for details.

The mapping between voxels and their corresponding contours is
established by two fields in the child descriptor (Figure 2). contour
mask is an 8-bit mask telling whether the voxel in each child slot
has an associated contour. Storing a separate bitmask allows omit-
ting contours in voxels where they do not significantly reduce the
approximation error. Similar to the child pointer, the unsigned 24-
bit contour pointer references a list of consecutive contour values,
one for each bit in contour mask that is set.

5.3 Cooperation Between Contours

While using only one contour per leaf voxel would be enough to
represent smooth surfaces, it would also introduce distracting arti-
facts near sharp edges of objects. This is because the orientation of
the surface varies a lot within voxels containing such an edge, and
no single orientation can be chosen as a good representative for all
the points on the surface.

6

Level 1 Level 2 Level 3 Result

Level 1 Level 2 Level 3 Result

Level 1 Level 2 Level 3 Result

Figure 5: Effect of contours on surface approximation. Top row: cubical voxels. Middle row: voxels enhanced with contours. The resulting
approximation follows the original surface much more closely than in the top row, with some jaggedness remaining in the areas of high
curvature. Note that in absence of sharp corners, contours on the most detailed level would be sufficient for obtaining the final result. Bottom
row: surface with sharp edges. The result is obtained by intersecting the overlapping contours of each level. In the highlighted area, all three
levels contribute to the final shape of a voxel.

Fortunately, we can utilize the fact that we are storing a full hierar-
chy of overlapping voxels. To enable cooperation between multiple
contours, we define the final shape of a voxel as the intersection of
its cube with all the contours of its ancestors. This way, we can in-
crementally augment the set of representative surface orientations
by selecting different normal vectors for the contours on each level
of the octree, yielding significant quality increase. The effect can be
seen near the areas of high curvature in the bottom row of Figure 5.

5.4 Uncompressed Shading Attributes

In addition to the geometrical shape of voxels, we also need to store
a number of material attributes for shading. Such attribute data is
included within octree blocks in the form of one or more attach-
ments. Attachments are auxiliary data buffers whose interpretation
is specific to their type. The info section of each block stores a di-
rectory of attachments contained by the block, each identified by a
type ID and a relative data pointer. The access model is such that
once a ray hits a surface during rendering, the shader can query

the attachments available for the particular voxel and decode the
attributes it needs.

The Phong shading model we use needs a color and a normal vec-
tor for each voxel. We have two different schemes for storing these
attributes. In this section, we describe a straightforward storage for-
mat for uncompressed, i.e. raw, attribute data, and the next section
(Section 5.5 will introduce a more compact block-based compres-
sion scheme. Even though we only consider colors and normals,
we expect the same ideas to apply to a wide range of other material
attributes as well.

In the simple but inefficient uncompressed storage format, we use a
64-bit encoding to store the color and normal vector associated with
a single voxel. The 64-bit value is divided into 32 bits for the color
and 32 bits for the normal as illustrated in Figures 7a and 7b, re-
spectively. We use a standard ABGR-encoding for the color value,
storing each channel as a separate 8-bit integer. For the normal
vector, however, we have to use a more specialized encoding.

7

(a) (b) (c) (d)

Figure 6: (a) and (c): Cubical voxels. (b) and (d): The same voxels with contours. In this kind of situation where surfaces are reason-
ably smooth, contours can provide several hierarchy levels’ worth of geometric resolution improvement. Note that the models have been
deliberately undersampled to illustrate the effect. In practical content, the improvement would be seen in details, not in the overall shape.

(a)

(b)

(c)

sign
1

axis
2

u coordinate
15

v coordinate
14

blue
8

green
8

red
8

alpha
8

maskvalue pointer
824

Figure 7: Bitfields related to storing uncompressed attributes. (a)
Color value. (b) Normal vector. (c) Lookup entry.

Contrary to how normal maps are traditionally stored in triangle-
based representations, we have to use object-space normals in-
stead of tangent-space normals. Experimentation shows that on
large smoothly curved surfaces, object-space normals need at least
12 bits of precision to avoid visible quantization artifacts. To maxi-
mize precision, we store each normal as a point on a cube. The face
is identified using 3 bits (sign and axis), and the coordinates on the
face are stored using two fixed-point integers, one with 14 bits and
one with 15 bits, totalling 32 bits.

The attachment storing uncompressed colors and normals consists
of two parts. The first part is an array of lookup entries matching the
layout of the child descriptor array. The second part is a collection
of 64-bit attribute values referenced by the lookup entries. Every
entry in the child descriptor array has a direct correspondence to
an entry in the lookup array, including the gaps due to far pointers
and page headers. This makes it possible to map child descriptor
pointers to their corresponding lookup entries without the need for
additional data structures. See Figure 1 for an illustration.

The encoding of a lookup entry is illustrated in Figure 7c, and is
similar to the second part of a child descriptor. The 8-bit attribute
mask tells whether a child voxel in each slot of the voxel has an at-
tribute value. Child slots whose corresponding bit is not set inherit
their attributes from the parent voxel, allowing attributes to be omit-
ted in areas where they do not vary significantly. The value pointer
references a list of consecutive attribute values in the second part
of the attachment, one for each bit that is set in the attribute mask.
The pointer is relative to the beginning of the attachment.

The example code in Figure 8 summarizes the process of finding the
uncompressed attribute value corresponding to a given voxel. Even
though the process involves multiple indirect memory lookups, it is
relatively cheap compared to the cost of ray casts.

5.5 Compressed Shading Attributes

Assuming an average branching factor of four, the child descrip-
tor array takes approximately 2 bytes per voxel (taking leaf voxels

int lookupUncompressedAttributeAddress(
int childDescAddr,
int childSlotIdx,
int attachmentIdx)

{
// Find the info section.

int pageSize = 8192;
int pageAddr = childDescAddr & ˜(pageSize - 1);
int infoAddr = pageAddr + *((int*)pageAddr) * 4;
InfoSection* info = (InfoSection*)infoAddr;

// Determine index of child descriptor in block.

int blockAddr = infoAddr + info->blockPtr * 4;
int childDescIdx = (childDescAddr - blockAddr) / 8;

// Find and decode the lookup entry.

int attachPtr = info->attachPtr[attachmentIdx];
int attachAddr = infoAddr + attachPtr * 4;
int lookupAddr = attachAddr + childDescIdx * 4;
int lookupEntry = *(int*)lookupAddr;
int attribMask = lookupEntry & 0xFF;
int valuePtr = (lookupEntry >> 8) & 0xFFFFFF;

// Is the attribute omitted for the voxel?

int childBit = 1 << childSlotIdx;
if ((attribMask & childBit) == 0)

return 0;

// Find value for the requested child slot.

int valueIdx = popc8(attribMask & (childBit - 1));
return attachAddr + valuePtr * 4 + valueIdx * 8;

}

Figure 8: Example code for finding uncompressed attribute value
for a given voxel. The voxel is specified using a child slot index and
the memory address of the corresponding child descriptor.

into account), which is quite compact. However, raw encoding of
shading attributes can easily ruin this compactness. Since the ma-
jority of rendering time is spent in ray casts which do not access
the attribute data at all, it makes sense to trade attribute decoding
performance for reduced memory footprint.

To do this, we encode colors and normals together, employing a
block-based compression scheme that spends an average of 1 byte
for colors and 2 bytes for normals per voxel. As in DXT (see e.g.
[van Waveren and Castaño 2008]), each compression block is able
to represent 16 values. Since voxels have 8 child slots, we assign
the voxels described by two consecutive child descriptors to the
same compression block to establish a direct correspondence be-
tween compressed values and child slots. Roughly half of the child
slots are empty on average, resulting in 8 used and 8 unused val-

8

r1
5

g1
6

b1
5

r0
5

g0
6

b0
5

node B color bits
8x2

node A color bits
8x2

base normal
32

node B u-axis bits
8x2

node A u-axis bits
8x2

vy
4

vz
4

vexp
4

vx
4

uy
4

uz
4

uexp
4

ux
4

node B v-axis bits
8x2

node A v-axis bits
8x2

Figure 9: Compression block consisting of six 32-bit words. The
first two words encode the colors of 16 child slots, while the remain-
ing four words encode the corresponding normals.

ues per block. We avoid placing values from different parts of the
hierarchy into the same compression block by simply leaving gaps
in the child descriptor array to ensure that we only pair descriptors
having the same parent voxel.

Even though our scheme wastes approximately half of the capacity
available in the compression blocks, it avoids the cost of an addi-
tional lookup table. It also has the benefit that individual values
can be represented more accurately, since there is less competition
within each compression block. An alternative would be to intro-
duce a lookup table similar to the one used with uncompressed at-
tributes, and encode each consecutive run of 16 attributes as a single
block.

The encoding of the compression block is shown in Figure 9.

Colors. Voxel colors are encoded using a simplified variant of
DXT1 that omits the semantics related to transparency. The first
32 bits of a compression block store two reference colors, c0 and
c1, using 16-bit RGB-565 encoding. The remaining 32 bits store
two-bit interpolation factors to choose each of the 16 colors from
the set {c0, c1, 2

3
c0 + 1

3
c1,

1
3
c0 + 2

3
c1}.

Normals. Most of the existing literature on normal compression
considers only tangent-space normals (e.g. [ATI 2005; Munkberg
et al. 2006; Munkberg et al. 2007]), and therefore is not applicable
in our case because no tangent frame can be implicitly derived. For
voxel normals, one could utilize existing normal map compression
techniques such as object-space DXT5 [van Waveren and Castaño
2008]. Unfortunately, the 8-bit precision provided by such methods
is insufficent for smooth highlights and reflections. We thus employ
a novel compression scheme that provides up to 14 bits of precision
for smoothly varying normals.

Our normal compression scheme is based on placing a linear 4×4
grid of points in the 3-dimensional normal space and selecting each
individual normal from the 16 candidates. The grid is defined using
a base normal nb and two axis vectors nu and nv, as illustrated in
Figure 10. Each candidate normal is defined as nb+cunu+cvnv,
with cu and cv selected independently from the set {−1,− 1

3
, 1
3
, 1}.

For better adaptation to various kinds of data, we do not make any
orthogonality requirements for nb, nu, and nv.

The base normal nb is encoded as a point on a cube using the
same encoding as with raw attributes (Figure 7b). Axis vector nu is
stored using three signed 4-bit integers and a single 4-bit exponent,
i.e. a floating-point vector with common exponent. The nv axis is
stored in a similar fashion, yielding a total of 32 bits for the axis

Figure 10: Illustration of our normal compression scheme. Base
normal nb specifies a point on a unit cube, and two axis vectors
nu and nv define an arbitrary 4× 4 grid around this point. There
are no orthogonality requirements between the three vectors, and
the axis vectors are not constrained to lie on the face of the cube,
allowing maximal flexibility. The dashed arrows indicate two of the
16 normals defined by this set of vectors.

vectors. The remainder of the compression block contains two u-
axis bits and two v-axis bits for each individual normal specifying
the values of cu and cv , respectively.

The compression scheme is flexible in its ability to handle differ-
ent kinds of cases. If the variance of the normals within a block
is small, nb can be used to store the average normal with a high
precision while using small exponents for nu and nv to minimize
quantization errors. If the normals vary only in one direction, nu

and nv can be set to have the same direction but different length
in order to maximize the precision along that particular direction.
Finally, if the normals are oriented in entirely different directions,
one of the directions can be selected as nb while using nu and nv

to approximate two other directions.

5.6 Memory Usage Analysis

Let us first consider the voxel hierarchy and later the attributes (col-
ors, normals, contours). For every non-leaf voxel, our hierarchy en-
coding requires two 8-bit masks and a 15+1 -bit child pointer. For
offsets larger than what the 15-bit field can accommodate, we need
separate far pointers, but the amount of memory taken by these is
negligible. For leaf voxels, which correspond to finest-resolution
samples, no hierarchy data is stored. With average branching fac-
tor of four, we thus have 1 byte of hierarchy data per voxel on the
average.

Contours require 32 bits for each voxel where they are used. How-
ever, contours are only required in voxels where they enhance the
surface quality, which in most cases is a small subset of all voxels.
Nonetheless, a 32-bit lookup entry (contour pointer and mask) is
required per non-leaf voxel, which makes the total cost of contours
slightly above 1 byte per voxel.

Let us now consider the attribute data sizes. As described above,
colors can be compressed into 4 bits per slot, making it preferable
to not use attribute data pointers and instead allow empty space in
attribute data buffers. All eight children will always need to be
encoded, so we need 32 color bits per non-leaf voxel, yielding 1
byte per voxel. Our normal compression format requires 8 bits per
sample, which yields 2 bytes per voxel in total, assuming an average
branching factor of 4.

Counting together hierarchy, contours, colors, and normals, we ar-
rive at approximately 5 bytes per voxel (Table 1).

5.7 Potential Improvements

In this section we list a number of potential but yet untested im-
provements to the data structure. Some of these have easily pre-

9

dictable outcomes, while the impact of others cannot be evaluated
without empirical tests. Note that some of the following ideas are
not compatible with each other.

Combined indirect attribute lookups. Using lookup entries (Fig-
ure 7c) is beneficial when the size of the attribute is large enough.
With average of 4 children per voxel, the breakeven point is 1 byte,
so neither colors or normals, compressed down to 4 and 8 bits per
voxel, benefit from the additional indirection. However, since we
always store color and normal together, it would make sense to have
the lookup entry.

Currently color-normal pair takes effectively 24 bits per voxel due
to wasted slots in compressed tiles, but with lookups we could cut
this down to 12 bits for payload and approximately 8 bits for the
lookup entry, totalling 20 bits. Furthermore, the lookup entry would
allow omitting attributes where they are not required, unlike the di-
rect addressing scheme. This could allow some amount of com-
pression near the leaf voxels without sacrificing quality.

Repurposing unused child pointers. Voxels that contain only
leaf voxels as children waste the 16 bits reserved for far and child
pointer in the child descriptor (see Figure 2). Because this is ob-
viously a common situation near the leaves of the tree, it would
make sense to repurpose the unused fields. One interesting possi-
bility would be storing the contour pointer and contour mask in the
vacant space.

Since there would be only 8 bits left for the contour pointer this
way, we would need to interleave the contour data with the child
descriptors, unlike in the current approach. Also, having some child
descriptors take 32 bits and some take 64 bits would complicate the
memory fetches. Whereas we currently always fetch 64 bits, we
would then need to fetch 32 bits first and check the contents of leaf
mask. If not, another 32 bits would need to be fetched. Note that
always reading 64 bits would not be possible, because the child
descriptors would not be suitably aligned anymore.

If all leaf voxels were on the same level, we could save approx-
imately 1 byte per leaf with this scheme. Taking the rest of the
levels into account, this translates to about 0.75 bytes per voxel,
thus removing most of the contour-related memory consumption.
In practice, the savings would be less than this, because a voxel can
have both leaf and non-leaf children, and in this case the optimiza-
tion would not be possible. We have not measured how common it
is for a voxel to contain only leaves as children, so the true impact
of this optimization is still somewhat speculative.

Repurposing unused contour pointers. This potential optimiza-
tion is a major reorganization of child descriptors and contour and
attachment lookup entries. The idea is to store attribute lookup en-
tries within the node array, utilizing unused contour pointers when-
ever possible.

In the following, we assume that all attributes are accessed indi-
rectly using lookup entries. Let us consider a list of child descrip-
tors laid out consecutively in GPU memory. Currently each voxel
has a 64-bit entry, half of which encodes the hierarchy and half of
which points to the contour data. Attachment lookup entries are
stored in a separate array.

To improve the memory utilization, the child descriptor span could
be laid out as follows. Each child descriptor of a non-leaf voxel
still consumes 64 bits, allowing fast lookup based on the index of
the child in the parent voxel. However, the latter 32 bits of the
child descriptor may or may not contain the contour lookup entry.
Contour lookup entries are identified by e.g. setting their highest
bit, whereas other possible contents for this space have their highest
bit cleared. This way, the ray caster can peek at the bit and if the
entry is not a contour lookup entry, none of the voxel’s children

N1 N2 N3C1 a1 a3a2b1 b3SE

Figure 11: The hypothetical interleaving scheme for child descrip-
tor entries and lookup entries. Illustrated is a span with three non-
leaf voxels N1–N3. All boxes correspond to 32 bits. Only the first
voxel has a contour lookup entry C1. Attachment lookup entries
a1–a3 and b1,b3 are stored in an unintuitive but efficient way on
both sides of span entry field SE. See text for discussion.

have contours. The amount of data touched by the ray caster would
therefore not change from the current encoding.

After the child descriptor entries, the span continues with a 32-bit
span entry. The span entry acts as a directory for the child descrip-
tor span, indicating which voxels have contour pointers, and which
attribute lookup entries are present in each child voxel. These at-
tribute lookup entries can then be stored partially into the unused
halves of child descriptors, partially after then span entry.

Consider the situation depicted in Figure 11. There are three voxels
in the span, labeled N1–N3. Only N1 has children with contours, so
it has a contour lookup entry C1 next to it. Attribute lookup entries
a1 and b1 are stored in the unused contour pointer slots.

What is most important in this scheme is that it would allow omit-
ting contour and attachment lookup entries selectively. For exam-
ple, if we had an attachment that had data for very few voxels, the
current encoding would always need to store at least the lookup en-
try, yielding 1 byte per voxel. This overhead could be removed with
the suggested encoding.

The unused combination. We currently use only three out of four
possible combinations in valid mask and leaf mask (Figure 2). We
have so far refrained from taking this combination in use, because
the best way to utilize it is not obvious.

One interesting extension to the current scheme would be indicat-
ing partially transparent voxels using the unused combination. This
would allow e.g. accumulating occlusion factor or performing color
accumulation and attenuation during raycasting. A slight compli-
cation is that one cannot distinguish transparent leaf voxels from
transparent non-leaf voxels. Therefore, all transparent voxels would
need to have a corresponding child descriptor entry, even when they
are leaf voxels.

6 Rendering

The regularity of the octree data structure is the key factor in en-
abling efficient ray casts. As most of the data associated with a
voxel is actually stored within its parent, we need to express the
voxel that the ray is currently traversing using its parent voxel
parent and a child slot index idx ranging from 0 to 7. Since we
do not store information about the spatial location of voxels, we
also need to maintain a cube corresponding to the current voxel.
We express the cube using position vector pos ranging from 0 to
1 in each dimension, and a non-negative integer scale that defines
the extent of the cube as exp2(scale − smax). The entire octree is
contained within a cube of scale smax positioned at the origin.

Basics. Let our ray be defined as pt(t) = p + td. Solving t for
an axis-aligned plane gives

tx(x) =

(
1

dx

)
x+

(
−px
dx

)
for the x-axis, and similar formulas for the y and z axes. With
precomputed ray coefficients this amounts to a single multiply-

10

Figure 12: Advancing through voxels of equal scale. The ray is
defined by the origin vector p and direction vector d. It enters v at
t = tx(x0) and exits it at t = ty(y1), proceeding to v′.

add instruction per axis. We can represent an axis-aligned cube
as a pair of opposite corners (x0, y0, z0) and (x1, y1, z1) so that
tx(x0) ≤ tx(x1), ty(y0) ≤ ty(y1), and tz(z0) ≤ tz(z1). Us-
ing this definition, the span of t-values intersected by the cube
is given by tcmin = max(tx(x0), ty(y0), tz(z0)) and tcmax =
min(tx(x1), ty(y1), tz(z1)).

Let us consider the problem of determining the next voxel v′ along
the ray, given the current voxel v as specified by parent and idx .
We will start by assuming that v and v′ are siblings of each other,
implying that they are of the same scale as depicted in Figure 12. In
this particular case, the current voxel’s cube spans the range [x0, x1]
horizontally and [y0, y1] vertically. This means that the ray must
exit v through either x1 or y1, whichever it happens to intersect first.
The values of t corresponding to the intersections are given by the
functions tx and ty . We see that ty(y1) < tx(x1), meaning that the
ray intersects y1 before x1. With reasoning similar to [Amanatides
and Woo 1987], we can thus conclude that v′ lies directly above v.

Therefore, we can determine the next voxel of the same scale by
comparing tx(x1), ty(y1), and tz(z1) against tcmax and advancing
the cube position along each axis for which the values are equal.
Assuming that the two voxels share the same parent, we obtain the
new child slot index idx ′ by flipping the bits of idx corresponding
to the same axes.

Hierarchy traversal. We will now extend the idea of incremen-
tal traversal to a hierarchy of voxels. This is necessary since our
octree data structure is sparse in the sense that we do not include
the subtrees corresponding to empty space. Doing the traversal in
a hierarchical fashion also has the benefit of being able to improve
the performance by using contours as bounding volumes of their
corresponding subtrees.

Our algorithm traverses the set of voxels intersected by the ray in
depth-first order. In each iteration, there are three distinct cases for
selecting the next voxel:

∙ PUSH: Proceed to the child voxel that the ray enters first.

∙ ADVANCE: Proceed to the next sibling voxel.

∙ POP: Proceed to the next sibling of the highest ancestor that
the ray exits.

Figure 13 shows an example of the resulting traversal order.

Figure 13: Order of hierarhicy traversal. The algorithm starts at
voxel 2, which is a child of the root 1. It executes PUSH twice to
reach voxel 3 and then leaf 4. After executing ADVANCE twice to
traverse siblings 5 and 6, the algorithm notices that the ray exits
their common parent 3. It thus executes POP, reching voxel 7. The
traversal terminates after leaf 22 when the ray exits the root. Note
that the voxels in the image have been shrunk to make the number-
ing clearer.

The algorithm incorporates a stack of parent voxels and contour
t values associated with the ancestors of the current voxel. The
depth of the stack is smax , making it possible to address its entries
directly using cube scale values. Whenever the algorithm descends
the hierarchy by executing PUSH, it potentially stores the previous
parent into the stack at scale based on a conservative check. When
the ray exits the current parent voxel, the algorithm ascends the
hierarchy by executing POP. It first uses the current position pos to
determine the new pos ′, scale ′, and idx ′ as described below. It then
reads the stack at scale ′ to restore the previous parent.

Determining the child voxel that the ray enters first in the case of
PUSH is similar to selecting the next sibling in ADVANCE. We eval-
uate tx, ty , and tz at the center of the voxel and compare them
against tcmin to determine each bit of the new idx ′.

To differentiate between ADVANCE and POP, we need to find out
whether the ray stays within the same parent voxel. We start by
assuming that it does, and compute candidate position pos∗ and
child slot index idx∗. We then check whether the resulting idx∗

is actually valid considering the direction of the ray. As described
previously, we obtain idx∗ by flipping one or more bits of idx , each
corresponding to an axis-aligned plane crossed by the ray. For idx∗

to be valid, the direction of the flips must agree with sign of the
corresponding component of ray direction d. For example if dx >
0, the bit corresponding to the x-axis is only allowed to increase. If
all of the flips agree with the ray direction, we execute ADVANCE
by using pos∗ and idx∗ as the new pos ′ and idx ′, respectively. If
we encounter any conflicting flips, we proceed with POP.

In the case of POP, we can determine the next voxel by looking at
the bit representations of pos and pos∗. Figure 14 illustrates the con-
nection between cube positions and child slot indices. Each triplet
of bits at a given bit position forms a child slot index corresponding
to a particular cube scale. Starting from the highest bit position,
the child slot indices define a path in the octree from the root to the
current voxel.

11

pos.x
pos.y
pos.z
idx

. 1 0 1 1 0 0 1 0 0 0

. 0 0 0 1 1 1 0 0 0 0

. 0 1 1 1 0 1 1 0 0 0

scale 9 8 7 6 5 4 3 2 1 0

1 4 5 7 2 6 5

0
0
0

Figure 14: Connection between pos and child slot indices. Each
bit position of pos corresponds to a cube scale value. Interpreting
the bit triplet corresponding to scale as an integer yields idx . Bits
above scale define a progression of child slot indices that forms a
path from the root to the current voxel. Bits below scale are zero.

Let us denote the paths corresponding to pos and pos∗ with p and
p∗, respectively. We know that the traversal must have visited all the
voxels along p in order to reach the current voxel, and that p∗ must
diverge from this set of voxels at some point along the path. The
fact that a ray can never re-enter a voxel after exiting it implies that
the first differing voxel in p∗ is necessarily unvisited. In a depth-
first traversal it is also the voxel that we should visit next.

Therefore, we determine the next voxel as follows. We first obtain
the new scale ′ by finding the highest bit that differs between pos
and pos∗. We then find child slot index idx ′ by extracting the bit
triplet of pos∗ corresponding to scale ′. To obtain pos ′, we take
pos∗ but clear the bits below scale ′. This yields a cube with the
correct scale that contains pos∗. Finally, we restore the parent voxel
from the stack entry at scale ′.

6.1 Ray Cast Implementation

Pseudocode for the complete ray cast algorithm is given in Fig-
ure 15. The code consists of initialization phase followed by a loop
traversing each individual voxel along the ray.

The algorithm starts by initializing state variables on lines 1–7. The
active span of the ray is stored as an interval between two t-values,
tmin and tmax , and is initialized to the intersection of the ray with
the root. ℎ is a threshold value for tmax used to prevent unnecessary
writes to the stack. The current voxel in the octree is identified using
parent and child slot index idx . It is initialized to a child of the root
by comparing tmin against tx, ty , and tz at the center of the octree.
Finally, pos and scale are initialized to represent the corresponding
cube.

The loop on lines 8–39 is iterated until the ray either hits a voxel or
leaves the octree. Each iteration intersects the current voxel against
the active span on lines 11–16 and potentially descends to its chil-
dren on lines 18–25. If the voxel is not intersected by the ray, the
algorithm executes ADVANCE on lines 28–30, potentially followed
by POP on lines 32–37.

Line 9 computes the span tc corresponding to the current cube to be
used by INTERSECT and ADVANCE, and line 10 checks whether to
process the current voxel or skip it. If the bit corresponding to the
voxel in valid mask is not set, or the active span t is empty, the code
determines that the ray cannot intersect the voxel and skips directly
to ADVANCE. Otherwise, the voxel may intersect the ray and is thus
processed further.

Line 11 checks whether the voxel is small enough to justify termi-
nation of the traversal. This provides a way to pre-filter the geom-
etry by dynamically adapting voxel resolution to match the screen
resolution, and is accomplished by comparing exp2(scale) against
a linear function of tcmax . The check can be executed before it is
known for sure whether the voxel actually intersects the ray, since
the exactness of the result is not relevant for very small voxels.

⎡⎢⎢⎢⎢⎢⎢⎢⎣INITI
A

L
IZ

E

⎡⎢⎢⎢⎣

IN
T

E
R

S
E

C
T

⎡⎢⎢⎢⎢⎢⎢⎢⎣PU
S

H

[
A

D
V

A
N

C
E

⎡⎢⎢⎢⎢⎢⎣PO
P

1: (tmin , tmax)← (0, 1)
2: t′ ← project cube(root , ray)
3: t← intersect(t, t′)
4: ℎ← t′max
5: parent ← root
6: idx ← select child(root , ray, tmin)
7: (pos, scale)← child cube(root , idx)
8: while not terminated do
9: tc← project cube(pos, scale, ray)

10: if voxel exists and tmin ≤ tmax then
11: if voxel is small enough then return tmin

12: tv ← intersect(tc, t)
13: if voxel has a contour then
14: t′ ← project contour(pos, scale, ray)
15: tv ← intersect(tv, t′)
16: end if
17: if tvmin ≤ tvmax then
18: if voxel is a leaf then return tvmin

19: if tcmax < ℎ then stack [scale]← (parent , tmax)
20: ℎ← tcmax

21: parent ← find child descriptor(parent , idx)
22: idx ← select child(pos, scale, ray, tvmin)
23: t← tv
24: (pos, scale)← child cube(pos, scale, idx)
25: continue
26: end if
27: end if
28: oldpos ← pos
29: (pos, idx)← step along ray(pos, scale, ray)
30: tmin ← tcmax

31: if idx update disagrees with ray then
32: scale ← highest differing bit(pos, oldpos)
33: if scale ≥ smax then return miss
34: (parent , tmax)← stack [scale]
35: pos ← round position(pos, scale)
36: idx ← extract child slot index(pos, scale)
37: ℎ← 0
38: end if
39: end while

Figure 15: Pseudocode for the ray cast algorithm.

Lines 12–16 compute the span tv as the intersection of the cur-
rent cube with the active span and voxel contour. The effect of the
contours corresponding to the ancestor voxels is included in the ac-
tive span, so tv represents the exact intersection with the geometric
shape of the current voxel. Line 17 checks whether the intersection
is non-empty, and if so, proceeds to execute PUSH. Otherwise, the
voxel is skipped by executing ADVANCE.

If the current voxel is a leaf, as seen from the leaf mask of parent ,
line 18 terminates the traversal because the desired intersection has
been found. Line 19 stores the old values of parent and tmax to the
stack if necessary. The decision is based on the limit ℎ as follows:

∙ Normally, ℎ corresponds to the t value at which the ray exits
parent . tcmax = ℎ means that the ray exits both the voxel
and its parent at the same time, in which case we do not need
to store parent as it will not be accessed again.

∙ If parent has already been stored to the stack, we set ℎ to 0.
As tcmax ≥ 0 is always true, this has the effect of preventing
the same parent from being stored again.

Descending the hierarchy, lines 20–24 replace parent with the cur-
rent voxel and set idx , pos , and scale to match the first child voxel
that the ray enters. Finally, line 25 restarts the loop to process the
child voxel.

12

Lines 28–30 execute ADVANCE. The current cube position is first
stored into a temporary variable. pos and idx are then advanced to
the next cube of the same scale along the ray. All t values required
for deciding the axes to advance along have already been computed
on line 9, and can be reused here. Finally, the active span of the
ray is shortened by replacing tmin with the value at which the ray
enters the new cube. Line 31 checks whether the child index bit
flips agree with the direction of the ray, i.e. whether the traversal
stays in the same parent voxel. If so, the loop restarts. Otherwise,
the algorithm proceeds to execute POP.

Lines 32–36 execute POP as described previously. If the new scale
exceeds smax , line 33 determines that the ray exits the octree and
terminates the traversal with a miss. Finally, line 37 sets ℎ to 0
to prevent the parent that was just read from the stack from being
stored again.

For the sake of clarity, a few implementation details have been left
out of the pseudocode. The most important of them are outlined
below. The actual ray caster code is given in Appendix A.

Alternate coordinate system. The algorithm contains multiple
operations that have to explicitly check the signs of the ray direc-
tion. These checks can be avoided by mirroring the entire octree
to redefine the coordinate system so that each component of d be-
comes negative. In practice, we accomplish this by determining an
octant bitmask based on the ray direction during initialization. We
then use this mask to flip the bits of idx whenever we interpret the
fields of a child descriptor. In the same vein, we can also offset the
origin of pos to make its components range within [1, 2] instead of
[0, 1]. This has the benefit of enabling us to operate directly on the
corresponding floating point bit representations in POP.

Caching the current child descriptor. Whenever the algorithm
executes ADVANCE, parent remains unchanged for the next itera-
tion. It is thus reasonable to conserve memory bandwidth by fetch-
ing the corresponding child descriptor only once. This is accom-
plished by invalidating the local copy of it in PUSH and POP, and
fetching the descriptor from memory in the beginning of the loop
only if it is invalid.

Sharing computation between INTERSECT and PUSH. It is pos-
sible to organize the computation of contour projections so that it
utilizes the values of tx, ty , and tz evaluated at the center of the
voxel. The same values are also used to determine the first child
voxel that the ray enters in PUSH. It is thus beneficial to compute
the values in the beginning of INTERSECT and re-use them in PUSH.

Hit position. In most cases, the position where the ray intersects
voxel geometry is also needed in addition to the t value. Computing
the position simply as p + td is not robust in practice, as floating
point inaccuracies can cause the resulting point to lie outside the
cube corresponding to the intersected voxel. It is thus necessary to
explicitly clamp each component of the position to the minimum
and maximum coordinates of the cube.

6.2 Beam Optimization

There is a relatively simple way to accelerate the ray casting pro-
cess for primary rays. With cubical voxels, it is possible to render
a coarse, conservative distance image and then use it to adjust the
starting positions of individual rays. This has the effect of making
the individual rays skip majority of the empty space at their begin-
ning before intersecting a surface.

For many acceleration structures this kind of approach is not feasi-
ble, because it is generally impossible to guarantee that the coarse
grid of rays does not miss features that would be important for the

Figure 16: Illustration of the effect of beam optimization on itera-
tion counts. Left: SIBENIK-D with no beam optimization. Right:
with beam optimization in 8×8 blocks. White corresponds to 64
iterations in both images.

individual rays. However, with voxel data we can make this guar-
antee by terminating the traversal as soon as we encounter a voxel
that is not large enough to certainly cover at least one ray in the
coarse grid. Note that contour tests must be disabled in the coarse
pass in order for this to work.

In practice, we divide the image into 4×4 or 8×8 pixel blocks and
cast a distance ray for the corners of these blocks in the coarse pass.
For each ray in the actual rendering pass, we identify the corre-
sponding block and fetch the distance values for the four corners.
We then subtract an appropriate constant from their minimum to de-
termine the starting point of the ray. Figure 16 illustrates the effect
of beam optimization on iteration counts.

6.3 Post-Process Filtering

To smooth out the blockiness caused by discrete sampling of shad-
ing attributes, we apply an adaptive blur filter on the rendered im-
age as a post-processing step. Without filtering, the result would
resemble the effect of nearest-sampled texture lookups. Note that
silhouette edges are generally represented well by contours, so we
want to avoid excess blurring around them.

The most reliable way to estimate the proper filter radius is to look
at the size of the intersected voxel on the screen. However, adjacent
voxels on the same surface may reside on different hierarchy levels
due to the fact that the voxel resolution is allowed to vary depend-
ing on the local geometrical complexity and variance in shading
attributes. As a result, the desired filter radius also varies across the
surface. This can cause rendering artifacts due to abrupt changes in
the filter radius at voxel boundaries, as illustrated in Figure 17.

Our method is based on a sparse set of sampling points, stored in
a look-up table in ascending order according to distance from the
center. We use a set of 96 samples distributed in a disc with radius
of 24 pixels. The density of the samples falls as the square root of
distance from the center, and each sample has an associated weight
corresponding to the area of the disc it represents. Algorithms that
smooth out undersampled data such as single-sample shadows or
reflections tend to require two passes (e.g. [Fernando 2005; Robi-
son and Shirley 2009]), but the ordered look-up table allows us to
perform the computation in a single pass. The kernel we have used
for the images in this paper is shown in Figure 18.

Pseudocode of the algorithm is given in Figure 19. To process a
pixel, we start by determining the desired filter radius r based on
the voxel in the pixel itself. If the radius is one pixel or less, there
is no need for filtering, and we return the original color. Otherwise,
we start processing sampling points in the order determined by the
look-up table until their distance from the center exceeds r. For
each sample, color c′ and blur radius r′ of the corresponding pixel
are fetched. To adapt blur radius to the neighborhood, we clamp r

13

(a) (b)

(c) (d)

(e) (f)

Figure 17: The problem with varying filter radii. (a) False-colored
voxels on an oblique surface. (b) Octree depth of each point,
brighter tone indicating shallower tree, i.e. larger voxel. (c) Fil-
tering each pixel with a radius deduced from the size of the corre-
sponding voxel. Seams are visible at hierarchy level changes. (d)
Our method adjusts the filter radius while accumulating neighbor-
ing colors, yielding smooth transition between levels. (e) and (f):
standard and our method applied to FAIRY’s hand built with ag-
gressive pruning and few voxel levels.

to min(r, r′). This prevents visible seams from forming by making
filter radius agree between nearby regions. Accumulation weight is
calculated by taking sample weight and adjusting it so that it tapers
off to zero linearly between r− 1 and r. This ensures smooth tran-
sition between different filter radii. Finally, color is accumulated
according to the computed weight.

In practice, we store the logarithm of the voxel size into the alpha
channel of the result image when casting the rays. One byte is
sufficient when the value is stored as 3.5 fixed point, yielding range
from 1 (no blur) to about 128 pixels.

6.4 Failed Approaches

We tried out a number of ideas that seemed feasible, but ultimately
proved not to be. This section collects some of the most fundamen-
tal ones in terms of expected gain and observed results.

Rasterizing voxels. We wrote a simple hierarchical voxel ras-
terizer that was inspired by the micro-rendering technique of
Ritschel et al. [2009]. Each thread is given a beam of 4 × 4 or
8 × 8 rays to process. The thread traverses the voxel hierarchy so
that voxels outside the beam are culled. This can be done quite
efficiently using box vs frustum intersection tests. Whenever the
traversal encounters a voxel that projects to about one pixel in size,

Figure 18: Filter kernel used for the images in this paper. The sam-
ples are stored in constant memory and ordered in ascending order
of distance from the center. Each sample has a weight proportional
to the disc area it represents. Kernel radius is 24 pixels and it has
96 samples. This particular kernel causes some banding artifacts
as can be seen in e.g. Figure 17d, but we expect that tweaking the
sample positions manually or using a more sophisticated relaxation
method could improve the situation considerably.

1: (c, r)← fetch(x, y)
2: if r ≤ 1 then return c
3: accum ← (0, 0, 0, 0)
4: for each sample s in kernel do
5: (c′, r′)← fetch(x+s.x, y+s.y)
6: r ← min(r, r′)
7: if s.dist > r then break
8: w ← s.weight ⋅min(r − s.dist , 1)
9: accum.rgb ← accum.rgb + c′ ⋅ w

10: accum.w ← accum.w + w
11: end for
12: return accum.rgb/accum.w

Figure 19: Pseudocode for the post-process filtering algorithm.

this pixel is plotted into a small frame buffer kept in local memory,
and the children of the voxel are not visited.

The main benefit of this approach is that there is strictly less traver-
sal work to be done, because the common part of traversal for rays
in each beam is performed only once. However, there are two major
complications. Firstly, the result is not quite exact because voxels
are drawn in the frame buffer as points, and no exact ray vs voxel
test is performed. Secondly, leaf voxels that are larger than a pixel
require specific handling.

Besides these issues, it seems that there is very little coherence
between beams, and this can make the execution and memory ac-
cesses diverge significantly between SIMD threads. Updating the
frame buffer in local memory has no coherence between threads,
making the updates expensive. Even when only updating a depth
buffer and without specific handling of large voxels, the rasterizer
was several times slower than the ray caster. Beating the ray caster
seemed very unlikely, and therefore the development of the raster-
izer was ceased.

We hypothesize that the main benefit of rasterization—shared pro-
cessing of the common part of traversal—is already adequately han-
dled by the beam optimization for the ray caster. Also, the common
part is cheap to execute because of high data and execution coher-
ence.

Short stack. Thanks to profiling (Section 8.5) we noted that our
ray caster causes a significant amount of stack traffic. Therefore,
it would seem like a good idea to reduce it by storing only the top
of the stack in registers. This is known as short stack [Horn et al.
2007]. The downside of using a short stack is that whenever the
stack is exhausted, the traversal has to be restarted from the root.
Restarts are quite expensive, but it can be argued that the restarts
are so infrequent that their total cost is small.

14

We have previously found short stack to be somewhat slower than
full stack in case of triangle ray casting, and with voxels the penalty
is even more pronounced. The reason is that the stack is used for
different purposes in the two cases.

For triangle ray caster, the stack acts as a list of nodes to visit, and
each pop removes the topmost item. With voxels, however, the
stack is used for storing the path to the current voxel, and the level
that is popped depends on which boundary is crossed by the ray
while traversing. Consider, for example, the axis-aligned planes
that lie at the middle of the octree. When the ray crosses any of
these, we need to pop all the way to the very first, i.e. the bottom,
entry of the stack. This kind of random access is much less suitable
for short stack approach than the usual pops.

Re-use of ray cast stack. This optimization is related to secondary
rays. Because the ray cast stack always contains the path to the
current voxel, it is possible to take the final stack of a primary ray
and use it as a starting point for the secondary ray, given that the
secondary ray starts where the primary ray ended.

In an ideal world this would work as-is, but in practice it is neces-
sary to move the starting point of the secondary ray a bit to account
for inaccuracies. It turns out that this can be handled as long as the
offset is in the same coordinate octant as the direction of the ray,
but offset to other octants is complicated. Therefore, the only prac-
tical offset direction is to the direction of the secondary ray, which
is fortunately fine for most purposes. However, the larger the offset,
the less useful the re-using of the stack is.

We are still not entirely certain why stack re-use failed to pro-
vide speedup for rendering, but we observed that while the itera-
tion counts for the secondary rays did decrease, the overall perfor-
mance degraded a bit. A possible reason is that starting each of the
secondary rays with its own stack decreases the overall coherence.
Also, the initial descent in the voxel hierarchy is very coherent and
cheap. It looks like avoiding it is not worth even the small amount
of extra code that is required for handling the offsetting of the sec-
ondary ray starting point.

Attribute interpolation. We spent a lot of effort in trying to re-
move the blockiness of the surfaces in the same way that the con-
ventional graphics pipeline of GPUs does it with textures. Initial
experiments with interpolated attribute fetch were discouraging—
finding the neighbors and decoding and interpolating the attributes
was more expensive than performing the actual ray cast.

From this, it became apparent that some amount of redundancy is
required for the attribute storage so that the costly neighbor search
could be avoided. After many experiments, we converged to a
scheme where each non-leaf voxel has a 3× 3× 3 grid of attribute
points, each of which could be occupied or empty. These points
correspond to the corners of the child voxels, and the data points on
the faces of the parent voxel are duplicated between adjacent voxels
so that neighbor lookups are never required.

This scheme yields approximately 4.5 attribute points per voxel,
which is quite a big expansion factor. It would be possible to
decrease this by using smart compression schemes, e.g. by using
fewer than 8 corners per voxel where possible, but it seems that at
least twice the ideal amount of data would be required even in the
best case.

Attribute lookup is quite fast in this kind of structure, because no
neighbor search is needed. However, block-based texture compres-
sion cannot be easily used, because the natural unit of compression
would be a set of eight children, where up to 27 attribute points
may be occupied. Finally, the construction of attributes becomes
non-trivial. It is easy to guarantee continuity between neighboring

voxels, but enforcing continuity between different voxel levels is
tricky.

Currently it seems that it is better to smooth the surfaces using
the post-process blur than to perform interpolated attribute lookups.
More data can be fit in memory without interpolation, and this al-
ready increases the quality more than interpolation in many cases.
The post-process blur also has the advantage of smoothing the sil-
houettes between areas with large blur radii, and this cannot be
achieved with interpolation.

Silhouette blurring. Before the advent of contours, we attempted
to hide the blockiness of silhouettes by simply blurring them. This
proved to be much more difficult than it initially seemed. An ob-
vious problem is that the blur can only operate outwards from the
surface, because due to occlusion we cannot know what lies behind
the silhouette. This has the consequence of making objects appear
to thicken as they come closer to the camera. Blurring around a
silhouette also causes unwanted blurring of details that should re-
main sharp, e.g. distant geometry that is visible right outside the
silhouette.

We tried to counter the unwanted effects in various ways, but no
adequate solution was found. Ultimately, contours removed the
need to hide silhouette blockiness in a neat and memory-friendly
way, while simultaneously offering much better geometry resolu-
tion than cubical voxels could provide.

7 Data management

Because we are working with data sets that may be larger than what
can be fit in GPU memory at one time, our data format is designed
to be suitable for localized on-demand resolution adjustment. As
noted in Section 4, the resolution requirements drop quickly when
distance from camera increases, and we want to be able to exploit
this.

Storage on disk. Our octree data is stored as slices that are kept in
a single file that has a directory of slices it contains. A slice contains
voxel data on one resolution level in a particular cubical part of the
octree. To facilitate on-demand streaming, we constrain the amount
of data that one slice can contain to about 1 MB. The slices are
organized in a hierarchy, and if the next resolution level of a slice
consumes more memory than allowed, the slice is split spatially
so that it has more than one child slice. Figure 20a illustrates the
storage of octree as slices on disk.

The structure of the slice hierarchy, without slice contents, is small
enough to be kept in memory. This makes it efficient to find the
slice that contains data in desired resolution in a particular spatial
region. In our implementation, all data updates are performed by
the CPU.

The contents of a slice differ considerably from the contents of a
block in memory, because whenever we want to load a slice, we
have all voxels above it in the octree already present in memory.
In particular, we already know which voxels the slice will contain,
because the parent level contains this information. Therefore, we
do not need to store any spatial positions, pointers, or indices in the
voxels contained in the slice.

Storage in memory. As discussed in Section 5, the loaded portion
of the octree is stored in GPU memory as blocks. In practice, we
need two kinds of blocks because of dynamic resolution changes.
The highest octree levels are stored in the trunk which is a pool
where child descriptors can be allocated and freed easily. The trunk
is stored as blocks so that the ray caster does not need to handle
voxels in the trunk differently.

15

(a)

disk

(b)

memory

Figure 20: Octree data on disk and in memory. (a) The octree is
stored on disk as a set of slices. Each box represents a slice that is
constrained to contain at most a given amount of data. The lines
between the boxes indicate the slice hierarchy. (b) In memory, the
octree is stored as a set of blocks. The top part is the trunk, and the
bottom boxes represent leaf blocks where new slices may be added.
When a leaf block has to be split, some of its contents are moved to
the trunk.

Child descriptors in the trunk are allocated so that they always have
space for far pointers and every possible attribute. This makes the
trunk blocks flexible, which is necessary because loading and un-
loading of slices often requires small modifications in the trunk.
Because of high branching factor and large blocks, there are only a
handful of trunk blocks in memory at any time.

The vast majority of voxel data is stored in ordinary, or leaf blocks.
Voxels in a leaf block are organized in depth-first order in mem-
ory to make them as compact and efficient as possible. Figure 20b
illustrates the storage of octree as blocks in memory.

Loading slices. Let us consider the situation where we have an
octree in memory and wish to augment a given block by adding an
extra level of resolution. For now, let us assume that the slice is not
split, i.e. has only one child. We first locate the slice that contains
the desired part of the octree and load the slice data from disk. We
also transfer the relevant block from GPU to host memory. We
then merge the block with data from the slice to produce a result
block that contains the desired extra level of resolution. Finally, we
transfer the result block back to GPU memory.

At all times, we maintain one-to-one correspondence between non-
trunk blocks in memory and next-level slices on disk. To accom-
plish this, we must be able to split blocks when loading slices. If
the slice that was loaded has more than one children, we split the
block by contructing one result block for each of the child slices.
This ensures that each result block again has exactly one slice cor-
responding to next resolution level. When a block is split into mul-
tiple blocks, there are one or more voxels near the root of the orig-
inal block that are not in any of the result blocks. These voxels are
transferred to the trunk. See Figure 21 for illustration.

Dynamic loading. We use simple heuristics for dynamically se-
lecting slices to load into memory. Based on the distance from the
camera to a block and the resolution of the block, we can approxi-

block

slice

result

block

slice

slice child

slice childslice child

result result

Figure 21: The process of loading a slice. Top: When loading a
slice that has only one child, the block is augmented with slice data
and one result block is produced. Bottom: If the slice has multiple
children, one result block is produced per slice child. The original
block root is moved to the trunk.

mate the size of a leaf voxel on the screen. Our heuristics attempts
to maintain a constant voxel-to-pixel ratio, utilizing all available
memory resources. For every slice in memory and on disk, we can
calculate a score that approximates how big quality impact the slice
has for the current camera position. Slices are loaded in the or-
der determined by the scores. When GPU memory becomes full,
slices are unloaded from memory to make room for new ones as
long as this improves the overall score. Asynchronous I/O is used
for streaming multiple requests to the operating system, increasing
the total data throughput.

We use a custom memory manager that allocates a large arena of
GPU memory and handles the allocation and freeing of blocks.
Due to loading and unloading of variable-sized blocks, the mem-
ory space will gradually become fragmented. When fragmentation
prevents memory allocation from succeeding, the blocks are com-
pacted so that a larger continuous free space is obtained. To avoid
major hiccups, the compactor only moves as much data as is neces-
sary at any given moment.

7.1 Voxel Hierarchy Construction

The octree hierarchy is constructed in a top-down fashion one slice
at a time. We insert special unbuilt slices in the slice hierarchy
in places where we want to continue construction. Unbuilt slices
contain all data required to construct the voxels for the slice, re-
ferred to as the build data. There are no dependencies between
slices, making it trivial to use all CPU cores for the construction
simultaneously. The build data contains the following information
for each voxel: flags (REFINE-GEOMETRY, REFINE-ATTRIBUTES),
voxel position, indices of input triangles and displacement prim-
itives (Section 7.4) intersecting the voxel, and the most important
ancestor contours. The flags indicate whether the shape or attributes
of the voxel are outside given error tolerances. When variable build
resolution is enabled, at least one of these flags is therefore always
active, because otherwise the voxel would be fine as it is and would
not need to be subdivided further.

The construction begins by taking the input mesh and creating an
unbuilt root slice covering all input triangles. When the builder pro-
cesses an unbuilt slice, it reads the build data and replaces the con-
tents of the slice with actual voxel data. One or more child slices are
also created with their respective build data. Processing of a single
voxel in the build data consists of filtering the triangles and dis-

16

placement primitives to eight child voxels, determining appropriate
contours (if requested by flag REFINE-GEOMETRY) and attributes
(if REFINE-ATTRIBUTES is set) for them, and finally, creating the
build data entries for the child voxels.

Each unbuilt slice contains a description of how the slice should
be split into child slices. It is important to allow a slice to be split
into more than eight child slices. Otherwise we would need to pre-
pare for the worst-case data expansion, which in turn would lead to
very small slices on the average. Consider, for example, a situation
where we have increased the voxel resolution for many levels with-
out splitting the slice, as the data has been low-dimensional in large
scales. As a consequence, there is a large gap between the voxel
level and slice split level, making the slice spatially large compared
to the size of the voxels it contains. Now, assume that the data
starts to behave in a volumetric fashion so that the number of vox-
els grows eight-fold on each level. Remembering that the data was
low-dimensional in large scales, splitting the slice once does not
decrease the amount of data as much as increasing the resolution
increases it. Therefore, the amount of data per slice could grow
uncontrollably.

Even if this example may sound a bit artificial, the problem is severe
in practice unless splits to more than eight children are allowed.
Note that the parent slice must decide the split strategy for each of
its child slices before seeing how much data the child slices will
actually contain after being built, so there is some chance that the
estimate is overrun and a slightly larger slice than what was hoped
for is generated.

7.2 Contour Construction

To simplify the task of approximating a given surface with contours,
we observe that the result does not necessarily need to be smooth.
As long as we ensure that the original surface is fully enclosed by
each contour, we are guaranteed to get an approximation that con-
tains no holes. While discontinuities at voxel boundaries may in-
troduce problems such as false self-shadowing or interreflections in
ray tracing, these can be usually worked around by offsetting the
starting positions of secondary rays by a small amount. Thus, the
construction process can be defined in terms of minimizing the spa-
tial extent of each voxel, regardless of its neighbors. It should be
noted that even though we do not enforce smoothness, the resulting
contour surface tends to be relatively smooth.

We employ a greedy algorithm that constructs a contour for each
voxel in a hierarchical top-down manner. The construction is based
on the original surface contained within a given voxel, as well as the
ancestor contours that have already been determined. We first con-
struct a polyhedron by taking the intersection between the voxel’s
cube and each of its ancestor contours. We then pick a number of
candidate directions and determine how much the original surface
is being overestimated by the polyhedron in each direction. Overes-
timation is calculated as the difference between the spatial extents
of the polyhedron and the original surface along the given candidate
direction, as illustrated in Figure 22. Finally, we select the direction
with the largest overestimation and construct a contour perpendicu-
lar to it so that it encloses the original surface as tightly as possible.

Due to the greedy nature of the construction process, the quality of
the resulting approximation depends heavily on the chosen set of
candidate directions. Since we have a limited number of hierarchy
levels, we want to avoid choosing directions that would only reduce
the spatial extent locally without contributing to the final shape of
leaf voxels. We thus restrict the set of candidate directions to nor-
mals of the original surface as well as perpendiculars of surface
boundaries, since these directions are most likely to contribute to
the final shape. In practice, we have found that it is enough to con-

Figure 22: Evaluation of candidate direction in cooperative con-
tour construction. Left: one contour has already been defined (blue
lines) and candidate direction d is being considered for the next
contour. Outermost dashed lines indicate current voxel extent ℎ in
candidate direction, whereas inner dashed lines show the result-
ing extent ℎ′ if a contour is inserted in this direction. The score of
the candidate direction is determined by difference ℎ − ℎ′. Right:
situation if the candidate direction on the left is chosen.

sider only a relatively small subset of these directions in order to
speed up the processing.

In addition to constructing contours, we also want to detect the
case where the shape of the voxel as defined by its ancestor con-
tours already approximates the original surface well enough. This
is a common situation with smooth input geometry, and omitting
unnecessary contours generally yields significant memory savings.
One way to perform the test is to check whether the distance from
every point within the polyhedron to the original surface is below
a fixed threshold. In practice, an efficient approximation can be
obtained by considering only the vertices of the polyhedron. The
contour quality threshold is currently specified as an effective cubi-
cal octree level, meaning that the shape of the voxel is considered
to be good enough if the geometrical error is smaller than the size
of a cubical voxel on the given level.

7.3 Attribute Construction

Attribute values are computed by integrating over all input surfaces
within the voxel. We experimented with weighted filters, e.g. pyra-
midal filter that extends beyond the voxel boundaries, but the re-
sults were not any better than with the simple box filter. Filters
with larger support tend to blur the content. We also tried taking
the midpoint of the attribute extents, reasoning that this would min-
imize the error metric, but the resulting quality was bad. An obvious
problem in treating all surfaces within a voxel as equally important
is that for close-by surfaces even the parts that are not visible to
the outside can influence the attributes. The correct solution would
be to somehow figure out which are the ”outermost” surfaces and
take only them into account, but this seems non-trivial and is left as
future work.

The decision whether the attributes are represented adequately is
made by looking at the input geometry in the voxel and checking if
it contains values that are too far from the encoded ones. Attribute
quantization and compression is performed before the test. This en-
sures that artifacts caused by them are properly taken into account.
Note that different error tolerances are used for different attributes.

17

The way textures are sampled has a significant effect on the quality
of the results. We build mip-maps of the textures and take one tri-
linear sample per triangle within the voxel. This is not particulatly
accurate, but works satisfactorily. More accurate solutions might
provide some quality improvement, especially if highly anisotropic
texture parameterizations are used.

When attribute compression is enabled, the attributes are encoded
into every voxel. This is necessary because our current implementa-
tion does not allow leaving DXT compression blocks out. Further-
more, because color and normal are encoded together, leaving one
out is not possible either. Note that compression artifacts are de-
tected by the attribute error metric, as the actual compressed value
is used as the reference. Adding more resolution makes the com-
pression blocks spatially smaller and more likely to contain similar
colors, so encoding with variable resolution automatically fixes the
compression artifacts where they occur, unless the maximum level
limit is reached.

7.4 Displacement Mapping

Displacement-mapped triangles are handled by first converting
them into displacement primitives. These are processed similarly to
ordinary triangles, with the exception that they may be split when
necessary. The displacement primitive is represented as a pair of
a power-of-two square in displacement map space and the orig-
inal triangle. As voxels are subdivided, the displacement primi-
tives are split until they become smaller than the voxel in world
space, and primitives that are certainly outside the voxel are culled
away. Operations such as determining geometry extents or inte-
grating over the contents of the voxel are approximative, as they are
carried out conservatively. For example, the geometry extents are
calculated based on minimum and maximum displacement values
fetched from a mip-map.

8 Results

The main tests were performed on an NVIDIA Quadro FX 5800
with 4 GB of RAM installed in a PC with 2.5 GHz Q9300 Intel
Core2 Quad CPU and 4 GB of RAM. The operating system was
64-bit edition of Windows XP Professional. The public CUDA 2.1
driver and compiler was used.

Additional rendering tests were performed on NVIDIA GeForce
GTX 285 with 1 GB of RAM installed in a PC with 2.66 GHz
E6750 Intel Core2 Dual CPU and 2 GB of RAM. The operating
system in this machine was 32-bit Windows Vista Enterprise.

Figure 23 shows the test scenes used in this paper along with their
triangle counts. Due to general lack of large-scale high-resolution
voxel datasets, all of our voxel datasets were built from triangle
meshes.

8.1 Memory Usage and Build Time

Table 2 shows the amount of GPU memory consumed by the voxel
datasets using various voxel levels. We can see that the represen-
tations with contours (lower rows) are much more compact than
representation without them (upper rows). SIBENIK-D and HAIR-
BALL are exceptions, because there contours cannot represent the
surface well enough to allow omitting finer levels. Naturally, the
contour version of the scene is also a much more faithful represen-
tation of the original mesh. The encoding of cubical voxels cur-
rently wastes about one byte per voxel, because we do not omit the
contour pointer even when contours are not enabled. Nevertheless,
this accounts for only about 20% of the total memory usage.

scene 10 11 12 13 14 15 16 bytes

CITY
8 34 152 655 2724 – – 4.99

13 39 131 432 1368 – – 5.44

SIBENIK
33 132 530 2120 – – – 5.18
41 141 440 1034 1857 – – 5.68

SIBENIK-D 47 184 744 2734 – – – 5.52
79 314 1192 2806 – – – 8.10

HAIRBALL
262 1157 – – – – – 5.27
442 1552 – – – – – 7.48

FAIRY
10 36 145 606 2669 – – 5.56
11 35 99 239 376 639 1109 5.62

CONFERENCE
21 89 362 1459 – – – 5.09
17 40 96 220 512 1328 – 5.16

Table 2: GPU memory usage of the test scenes with different octree
depths (MB). For each scene, the upper row denotes dataset with
cubical voxels (no contours) and the lower row denotes one with
contours. The bytes column on the right shows the average memory
consumption per voxel in the largest built dataset.

scene 8 9 10 11 12 13 14 15 16

CITY
5 6 8 16 45 141 505 – –
9 11 14 23 48 115 311 – –

SIBENIK
1 3 7 28 104 395 – – –
2 4 10 31 90 194 336 – –

SIBENIK-D 9 21 56 190 839 2079 – – –
10 24 70 274 1342 2541 – – –

HAIRBALL
45 70 136 335 – – – – –
77 132 294 628 – – – – –

FAIRY
1 2 4 12 42 153 592 – –
2 3 6 15 38 86 121 178 282

CONFERENCE
1 2 4 14 55 222 – – –
3 4 7 13 24 51 115 288 –

Table 3: Voxel hierarchy construction time for various level counts.
Values are in seconds, and each value denotes the total build time
up to the level indicated. The cost of building a single level is thus
the difference between adjacent numbers. For each scene, the upper
row denotes cube voxelization (no contours) and the lower row with
contour voxelization.

The rightmost column in the table shows the average number of
bytes consumed by a single voxel in the highest-resolution repre-
sentation, including all overhead. Comparing to the theoretical fig-
ures (Section 5.6) and taking the one wasted byte for cubes into
account, we see that these measured values are about 0–0.5 bytes
higher than expected without contours, and 0.2–0.7 bytes higher
with contours, excluding HAIRBALL and SIBENIK-D where a dis-
proportionally large fraction of voxels require contours.

The differences are explained by variance in branching factor, gaps
in child descriptor array, and variance in the amount of contour data.
Our attribute compression method requires that every span of child
voxels is aligned at a 128-bit boundary, which causes a bloat of
about 1/8 of data size, assuming an average of 4 children per voxel.
There is also a slight overhead in page headers, far pointers, etc. that
are included in this figure.

Table 3 lists the build times for the test scenes. Note that each
number is the total build time up to the level indicated, and the time
required to load the mesh is not included in these figures. We can
see that for most scenes, the build time with contours falls below
the build time without contours. This happens because voxels cease
to subdivide when contours start to approximate the surfaces well
enough.

18

CITY, 879K tris SIBENIK-D, 77K tris + disp. HAIRBALL, 2.88M tris FAIRY, 93K tris CONFERENCE, 283K tris

Figure 23: Test scenes used in measurements. SIBENIK is the same as SIBENIK-D but with flat triangles.

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

city

sibenik

sibenik-d

hairball

fairy

conference

Figure 24: Local dimensionality of our test scenes on different
voxel levels. We can see that all scenes converge towards the two-
dimensional setting.

8.2 Scene Dimensionalities

Figure 24 illustrates the local dimensionality Dlocal (Section 4)
of our test scenes depending on voxel level. The dimensionality
curve has been calculated by taking base-2 logarithm of the aver-
age branching factor of each level. As the voxels get smaller, the
scenes mostly converge towards two-dimensional setting, i.e. aver-
age of about 4 children per voxel. HAIRBALL looks almost volu-
metric for a long while, until the surface structure of the individual
hairs starts to dominate. It is worth noting that in this case, the one-
dimensional nature of individual hairs never leads to dimensionality
less than two. This is because at the point where the surface of the
individual hairs is not yet discernible, the object is so dense that
the volume-like jumble near the center dominates. In FAIRY, the
dimensionality remains less than two until the surface of the indi-
vidual limbs becomes visible.

8.3 Rendering Performance

Arguably the most interesting piece of information is the rendering
performance using voxel data. In our case, the dominant factor
is the efficiency of ray casts, as shading costs are negligible and
post-process filtering is one to two magnitudes faster than the ray
casting. Table 4 summarizes the ray cast performance in our test
scenes at various resolutions. The values in the table have been
measured as averages over several viewpoints, repeating each frame
several times to amortize startup and flush delays. The increase in
performance as the resolution grows is therefore explained solely
by better ray coherence.

triangle cubical con- cont.
Scene resolution caster voxels tours w/beam

(Mrays/s) (Mrays/s)

CITY
512×384 46.7 45.1 79.9 88.6

1024×768 68.5 54.3 89.1 106.0
2048×1536 77.1 63.9 97.4 123.8

SIBENIK
512×384 64.3 38.7 80.0 82.5

1024×768 94.1 46.5 94.1 103.6
2048×1536 107.1 55.1 103.9 122.0

SIBENIK-D
512×384 – 24.8 32.6 37.5

1024×768 – 30.2 38.7 48.3
2048×1536 – 37.1 43.6 60.9

HAIRBALL
512×384 11.6 22.4 24.1 24.1

1024×768 20.5 22.5 27.9 28.4
2048×1536 31.2 29.2 36.5 38.2

FAIRY
512×384 63.9 62.1 128.2 132.6

1024×768 125.1 69.4 145.4 150.9
2048×1536 155.8 78.6 160.4 169.2

CONFERENCE
512×384 69.1 35.8 97.9 104.4

1024×768 111.9 43.8 110.3 124.3
2048×1536 134.0 52.3 120.2 140.8

Table 4: Ray cast performance for primary rays at various screen
resolutions. Values are in millions of rays per second. The largest
datasets that could be fit in 4 GB were used in the voxel tests.

The triangle caster column refers to the fastest GPU ray caster de-
scribed in our previous paper [Aila and Laine 2009]. The cubi-
cal voxels column shows voxel ray cast performance with cubical
voxel data, while the contours column shows the results for voxel
data that includes contours. It should be noted that the two datasets
are different in terms of their average depth, as the improved ap-
proximation provided by contours makes it possible to prune the
hierarchy more aggressively. Finally, the last column shows the re-
sult with the beam optimization enabled (Section 6.2). It can be
seen that the voxel ray caster consistently outperforms the triangle
ray caster in the test scenes.

Obviously, the comparison between triangle and voxel ray cast per-
formance is between apples and oranges because of the different
type of data we are casting against. The triangle-based representa-
tion is able to discern every edge and corner perfectly, whereas the
voxel representation may be inaccurate in such places. On the other
hand, the voxel representation contains unique, i.e. non-repetitive,
color and normal information on a per-sample basis, and allows
representing unique high-resolution geometry—it is not possible to
render SIBENIK-D using the triangle ray caster.

It is worth noting that the triangle ray caster is painstakingly op-
timized for fast processing of triangles, and the performance is
severely affected by the slightest addition of complexity. It is there-
fore likely that adding support for displacement maps would de-
grade its performance below the voxel ray caster. Admittedly, this
claim remains unproven as currently there exists no such implemen-

19

scene octree MB Quadro GeForce speedup
depth FX 5800 GTX 285 %

CITY 13 432 109.5 126.6 15.6
SIBENIK 12 440 110.1 127.4 15.7
HAIRBALL 10 442 32.1 39.3 22.4
FAIRY 15 639 152.7 182.2 19.3
CONFERENCE 14 512 124.4 144.8 16.4

Table 5: Comparison between two boards with identical GPUs.
The values are in million rays per second, and measured by render-
ing 1024×768 primary rays using contours and beam optimization.
To make comparison fair, the memory usage of both runs were lim-
ited to 1 GB available on our GTX 285 board. This explains why
the reported numbers for Quadro are higher than in Table 4.

tation optimized for current GPUs. In any case, we hypothesize that
in a static scene with extremely detailed geometry, the ray cast per-
formance is greater when ray casting in a voxel hierarchy instead of
triangles and displacement maps.

8.4 GTX 285 Experiments

Because Quadro boards are generally slightly slower than GeForce
boards with the same GPU, we wanted to measure how different
our results would be on a GeForce GTX 285 board. Because our
GTX board has only 1 GB of RAM, we ran the tests with smaller
datasets that fit in 1 GB. For instance, in CITY we could only use
13 levels instead of the 14 used in other tests.

The core clock speed in GTX 285 is about 14% faster than in the
Quadro board, and the peak memory bandwidth is a staggering 56%
greater. Table 5 gives a summary of rendering results with contours
and beam optimization enabled. Based on the results, the rendering
is 15–22% faster on GTX 285 with an average speedup of 18%.
The observed speedup indicates that the ray caster is not strictly
limited by memory bandwidth, because the difference in core clock
speed is almost sufficient to explain the results. If we were severely
limited by memory performance, the speedups should be higher.

8.5 Detailed Execution Profile

Table 6 lists a number of profiling counters from rendering the test
scenes in 1024×768 resolution using contours. All values are per-
ray averages except for those that consider the entire frame. As can
be seen by contrasting the Mrays/s figures with Table 4, there is
some (less than 1%) fluctuation between benchmark runs that we
have not been able to remove.

The top row Mrays/s indicates the measured rendering performance
in millions of rays per second. The next row simulated shows a
simulated performance figure obtained by counting the warp-wide
execution counts of each code block and weighting with the corre-
sponding instruction counts. The effects of warp divergence have
been included in this figure, and it is therefore an upper bound for
how fast the ray casting could optimally be executed. This assumes
that every instruction that could possibly dual-issue does so, and
there are no memory latencies or other hiccups of any kind. The
same technique has been used before for estimating theoretical ray
cast performance on GPUs [Aila and Laine 2009].

The next row shows how much of the simulation performance we
reach in our measurements. The triangle ray caster consistently
performed over 80% of simulated performance for primary rays,
and without beam optimization we obtain close to similar figures
with voxels. However, with beam optimization enabled, our figures
fall to 60–80% range and even below that in FAIRY. This suggests

that with beam optimization we are suffering from limited memory
bandwidth to some degree.

Memory bandwidth bw GB/s is calculated by adding the global and
local memory bytes accessed per ray, multiplying this with rays per
second, and dividing by 230. This figure does not take coalescing or
any other real-world memory subsystem features into account. We
can see that the beam optimization reduces bandwidth requirements
significantly. The final row in the top section shows how much of
the total rendering time was spent in rendering the coarse frame for
beam optimization.

The next section details the execution counts of various parts of
code. The first row shows the average number of instructions ex-
ecuted per ray, not taking SIMD execution into account. Not in-
cluded in the table is the overall SIMD efficiency, i.e. how many
threads in a warp are enabled on the average. This hovers usually
around 70% when no beam optimization is used, and 60% with
beam optimization enabled.

The iterations row tells the number of main loop iterations in the ray
caster, and intersect shows how many voxel-ray intersection tests
(INTERSECT in pseudocode of Figure 15) were performed. Row
push tells the number of times the PUSH branch was executed, and
store shows the number of actual stack writes. Rows advance and
pop correspond to their respective parts of the pseudocode as well.
All figures are per-ray, and SIMD execution is not taken into ac-
count. We can see that by far the most common case is descending
to a child voxel (push), and the least frequent is ascending in the
hierarchy (pop). Comparing rows push and store, we can see that
the optimization to eliminate unnecessary stack writes was able to
remove over half of them.

The bottom section in the table lists memory transfer statistics. The
first row glob acc counts the total number of global memory fetch
instructions executed per ray, and the next row glob bytes counts
the number of bytes that were fetched. Coalescing is not taken into
account in these figures. However, the next row glob trans. counts
the number of fetches after coalescing. This figure is calculated by
taking all fetch instructions executed in parallel and counting how
many requests these generate after the coalescing logic in the GPU
is applied. Again, the grand total is divided by the number of rays
to get a per-ray figure. It is easy to see that the fetches are quite well
coalesced, and the actual transaction count is mostly between 12%
and 16% of fetch instruction count, except for HAIRBALL where
the ratio is as high as 37%.

The next three rows show the same statistics for local memory. All
local memory accesses are due to stack traffic, as there are no lo-
cal memory spills in the ray cast kernel. We have assumed that
local memory is striped so that the same local memory address in
each thread’s address space is stored consecutively in GPU mem-
ory. Calculated this way, the coalescing reduces the request count to
around 13–20%. HAIRBALL is in its own league with transactions
per request ratio of 44%.

Low transaction/request ratios thanks to coalescing are explained
by high coherence between rays. It is worth keeping in mind that
these figures were measured for primary rays only, and other types
of rays will probably exhibit less coherent traversal. However, most
of the per-ray figures will be the same or almost the same for other
types of long rays, too.

9 Adoption of Voxels

In this section, we take a look at the feasibility of voxels as a generic
geometry representation in quantitative terms and make rough ex-
trapolations into the future regarding the remaining bottlenecks.

20

statistic CITY SIBENIK SIBENIK-D HAIRBALL FAIRY CONFERENCE
no beam w/beam no beam w/beam no beam w/beam no beam w/beam no beam w/beam no beam w/beam

Mrays/s 89.1 106.0 94.1 103.6 38.7 48.3 27.9 28.4 145.4 150.8 110.5 124.3
simulated 96.5 133.8 107.1 142.2 46.4 73.5 38.9 41.3 182.4 268.0 122.2 163.0
% of sim. 92.4 79.3 87.9 72.8 83.4 65.8 71.8 68.7 79.7 56.3 90.4 76.3
bw GB/s 33.8 25.5 32.1 23.2 25.6 16.3 12.0 10.3 26.7 14.5 32.3 23.1
coarse % – 15.9 – 15.5 – 10.3 – 3.6 – 15.3 – 18.2
instructions 2238 1370 1983 1256 3866 1953 2627 2220 1103 563 1766 1109
iterations 29.4 19.1 25.8 17.7 52.8 27.2 34.2 29.5 14.8 8.1 22.4 15.3
intersect 25.4 16.7 22.6 15.2 38.8 21.5 28.0 23.9 11.5 6.4 20.0 13.3
push 19.5 14.7 17.0 13.4 30.6 18.3 18.4 16.7 8.0 5.6 14.1 11.2
store 8.8 7.3 8.0 6.7 12.3 8.3 7.6 7.0 3.5 2.6 6.1 5.0

advance 8.9 3.4 7.8 3.2 21.2 7.9 15.3 12.2 6.5 2.1 7.3 3.0
pop 4.1 1.5 3.9 1.4 10.3 3.7 7.4 6.1 3.3 1.1 3.6 1.3
glob acc 51.4 33.1 45.8 31.0 89.2 47.6 58.7 50.3 23.9 13.5 40.4 27.1
glob bytes 303.9 192.6 270.9 179.5 528.9 272.5 340.0 289.4 142.2 77.1 236.2 153.8
glob trans. 6.0 4.5 6.0 4.9 16.3 11.4 19.7 18.7 3.2 2.5 4.8 3.9
local acc 12.9 8.8 11.9 8.1 22.5 12.0 15.1 13.1 6.8 3.6 9.7 6.3
local bytes 102.8 65.7 95.5 60.6 180.4 90.3 120.5 101.9 54.6 26.4 77.8 45.7
local trans. 1.7 1.4 1.7 1.5 4.7 3.5 6.0 5.8 1.0 0.8 1.3 1.1

Table 6: Profiling statistics from runs in 1024×768 resolution. Only contour variants have been included in this table. For each scene,
the left column corresponds to rendering without beam optimization and the right column with beam optimization. All values are per-ray
averages except for the top section that concerns the entire frame. When beam optimization is enabled, the values are calculated by summing
the counters over both the coarse frame and the full-resolution frame, and dividing by the number of rays in the full-resolution frame. Note
that code execution statistics are calculated on a per-ray basis, and actual values are higher due to SIMD execution of 32 rays in parallel.
See text for description of individual rows.

9.1 Rendering Performance

According to the benchmark results, we can cast approximately
50 million primary rays per second in a moderately detailed scene
(SIBENIK-D) using a single GT200 class GPU. This is enough for
first-hit rendering in 1080p resolution with 25 frames per second,
assuming that shading costs are negligible.

The simplest and reasonably good-looking antialiasing takes 4 sam-
ples per pixel, which according to our tests costs about three times
as much as taking one sample per pixel. In addition, shadow rays
and reflections require additional rays. These secondary rays are
less coherent than the primary rays, but based on preliminary tests
they seem to cost roughly as much as primary rays. Incoherent sec-
ondary rays would undoubtedly be more expensive, but we have not
tested those yet.

Assuming that, on the average, four secondary rays are generated
per primary ray sample, we end up having five times as expensive
samples as in the first-hit-only case. Brute-force antialiasing triples
this figure, yielding per-pixel cost multiplier of 15. Extrapolating
GPU performance with 50% growth per year, doing 25 frames per
second with such rendering would take about 7 years to reach.

This estimate disregards the cost of shading, post-process filtering,
and other operations such as data transfers. On the other hand, it is
likely that algorithmic improvements will emerge.

9.2 Memory Size

Considering that we can fit over 600 square meters of surface data in
1mm×1mm resolution into 4 GB of memory (Section 3.1), and that
memory consumption increases only logarithmically with respect to
viewing distance (Section 4), the GPU memory size appears to be
less of a concern than might seem at first. However, more complex
shading models can increase per-voxel memory usage significantly.
Also, it cannot be assumed that every voxel in memory would be
stored at exactly the right resolution. On the other hand, occlusion-
based on-demand streaming [Crassin et al. 2009] could offer huge

savings in terms of memory usage.

In any case, it is comforting that the memory requirements are rel-
atively sensible compared to memory sizes available today. GPU
memory size does not seem to be the worst bottleneck in potential
adoption of voxel rendering.

9.3 Media Size and Speed

While the amount of GPU memory in today’s boards is relatively
high, the same cannot be said about the media used for deploying
digital content. A dual-layer Blu-Ray disc has capacity of 50 GB,
which is just 12.5 times the GPU memory size. Obviously, if the
goal is to make the content so detailed that a couple of gigabytes
worth of data is used for rendering a single viewpoint, the total
amount of data must be much higher.

Unsurprisingly, larger storage media are being researched. Holo-
graphic Versatile Disc (HVD) is a technology being developed by
a consortium of several companies, and it will theoretically have
storage capacity of 6 TB. However, the first releases with 1 TB ca-
pacity are not planned until 2016. Also, the planned transfer rate is
only 125 MB/s, so it would take 32 seconds to completely refresh
the contents of a 4 GB video memory assuming zero time wasted
in seeking, and much longer when seek time is taken into account.

This estimate assumes that the size of the data on the disk is the
same as in GPU memory, and thus neglects the possibility of com-
pressing the data on the disk. It is difficult to estimate what kind
of (lossy) compression ratios could be achieved without intolerable
decrease in data quality. This is an important practical issue that
would deserve a closer look.

Considering the situation today, the only storage media large
enough to accommodate a reasonable amount of content is the hard
disk drive, where 1 TB of storage can be currently bought for
well below $0.10/GB. The data transfer rate is typically less than
100 MB/s, which remains a problem. Solid-state drives can have
much better transfer rates, so this problem might get resolved if
their price drops significantly.

21

Without digging deeper into the issue of storage technology, it
seems that the size and speed of distribution media are among the
biggest challenges in data-intensive content representations.

9.4 Remote Rendering

There is an interesting possibility of sidestepping the storage and
media problems by running the game in a dedicated server farm
and streaming the rendered graphics to the client. There are ven-
tures in this direction, such as OnLive, OTOY, and Gaikai, who
promise high-quality gaming over broadband connection. De-
spite all kinds of technological challenges associated with such ap-
proaches, they could provide something that home gaming cannot
by storing tremendously large assets in high-performance RAID
clusters.

10 Future Work

An obvious step forward would be experimenting with truly vol-
umetric effects such as fog or partially transparent materials. Our
data structure is readily able to represent them, and we assume that
it would be reasonably efficient to e.g. accumulate extinction coef-
ficients or collect illumination during ray casts.

We have used the simple Phong shading model due to availabil-
ity of material data in this form, and when downsampling, we
combine the shading attributes of multiple primitives by averag-
ing them. This produces reasonably good results in most cases, but
it would be better to take occlusion into account when calculating
aggregate shading attributes for large voxels. Moreover, it is not
at all clear if the Phong model is a good choice for representing
the appearance of such voxels. For instance, the approach taken by
Gobbetti et al. [2005]—employing a generic shading method that is
based on sampling the original data from various directions—seems
eminently suitable for our purposes as well.

While the proposed data structure is demonstrably efficient for ren-
dering purposes, it still requires a fair amount of storage. The mem-
ory capacity available in GPUs today is adequate for rendering pur-
poses, but storing large amounts of high-resolution content on an
optical disk or streaming it over network seems impossible with-
out some form of compression. Finding efficient, presumably lossy,
compression algorithms would make voxel-based content more fea-
sible for practical applications.

In our benchmarks we load the entire scenes in full resolution into
GPU memory, while only a small portion would be required for
rendering any single image due to occlusions and resolution re-
quirements falling with distance. Our system already supports on-
demand streaming based on distance to camera, but it would be
interesting to see how much visibility-based streaming (in spirit of
Crassin et al. [2009]) would further reduce the memory footprint.

Acknowledgments. We thank Timo Aila and David Luebke for
discussions and helpful suggestions. Sibenik model courtesy of
Marko Dabrovic. Fairy model courtesy of Ingo Wald, University
of Utah. Conference room model courtesy of Anat Grynberg and
Greg Ward, Lawrence Berkeley Laboratory.

References

AILA, T., AND LAINE, S. 2009. Understanding the efficiency
of ray traversal on GPUs. In Proceedings of High-Performance
Graphics 2009, 145–149.

AMANATIDES, J., AND WOO, A. 1987. A fast voxel traversal
algorithm for ray tracing. In In Eurographics 87, 3–10.

ATI. 2005. Radeon X800: 3Dc white paper. http://www.ati.com/
products/radeonx800/3DcWhitePaper.pdf .

CRASSIN, C., NEYRET, F., LEFEBVRE, S., AND EISEMANN, E.
2009. Gigavoxels: ray-guided streaming for efficient and de-
tailed voxel rendering. In I3D ’09: Proceedings of the 2009
symposium on Interactive 3D graphics and games, 15–22.

DICK, C., KRÜGER, J., AND WESTERMANN, R. 2009. GPU
ray-casting for scalable terrain rendering. In Proc. Eurographics
2009–Areas Papers, 43–50.

FERNANDO, R. 2005. Percentage-closer soft shadows. In SIG-
GRAPH ’05: ACM SIGGRAPH 2005 Sketches, ACM, New
York, NY, USA, 35.

GOBBETTI, E., AND MARTON, F. 2005. Far Voxels – a multires-
olution framework for interactive rendering of huge complex 3D
models on commodity graphics platforms. ACM Transactions on
Graphics 24, 3, 878–885.

HORN, D. R., SUGERMAN, J., HOUSTON, M., AND HANRAHAN,
P. 2007. Interactive k-d tree gpu raytracing. In I3D ’07: Pro-
ceedings of the 2007 symposium on Interactive 3D graphics and
games, 167–174.

KNOLL, A., WALD, I., PARKER, S. G., AND HANSEN, C. D.
2006. Interactive Isosurface Ray Tracing of Large Octree Vol-
umes. In Proceedings of the 2006 IEEE Symposium on Interac-
tive Ray Tracing, 115–124.

KNOLL, A. M., WALD, I., AND HANSEN, C. D. 2009. Coherent
multiresolution isosurface ray tracing. Vis. Comput. 25, 3, 209–
225.

LAINE, S., AND KARRAS, T. 2010. Efficient sparse voxel oc-
trees. In Proceedings of ACM SIGGRAPH 2010 Symposium on
Interactive 3D Graphics and Games.

MUNKBERG, J., AKENINE-MÖLLER, T., AND STRÖM, J. 2006.
High quality normal map compression. In Proc. Graphics Hard-
ware 2006, 95–102.

MUNKBERG, J., OLSSON, O., STRÖM, J., AND AKENINE-
MÖLLER, T. 2007. Tight frame normal map compression. In
Proc. Graphics Hardware 2007, 37–40.

RITSCHEL, T., ENGELHARDT, T., GROSCH, T., SEIDEL, H.-P.,
KAUTZ, J., AND DACHSBACHER, C. 2009. Micro-rendering
for scalable, parallel final gathering. ACM Trans. Graph. (Proc.
SIGGRAPH Asia 2009) 28, 5.

ROBISON, A., AND SHIRLEY, P. 2009. Image space gathering. In
Proc. High Performance Graphics 2009, 91–98.

SZIRMAY-KALOS, L., AND UMENHOFFER, T. 2008. Displace-
ment mapping on the GPU - State of the Art. Computer Graphics
Forum 27, 1.

VAN WAVEREN, J. M. P., AND CASTAÑO, I. 2008. Real-time
normal map DXT compression. http://developer.nvidia.com/
object/real-time-normal-map-dxt-compression.html.

WEYRICH, T., HEINZLE, S., AILA, T., FASNACHT, D. B.,
OETIKER, S., BOTSCH, M., FLAIG, C., MALL, S., ROHRER,
K., FELBER, N., KAESLIN, H., AND GROSS, M. 2007. A
hardware architecture for surface splatting. ACM Transactions
on Graphics (Proc. SIGGRAPH) 26, 3 (Aug.).

ZWICKER, M., PFISTER, H., VAN BAAR, J., AND GROSS, M.
2001. Surface splatting. In SIGGRAPH ’01: Proceedings of the
28th annual conference on Computer graphics and interactive
techniques, 371–378.

22

Figure 25: SIBENIK-D represented as voxels with high-resolution surface displacement and rendered with precomputed ambient occlusion
and a single shadow ray per primary ray. Four samples per pixel antialiasing was used with a reconstruction filter that uses 12 samples,
including 8 from neighboring pixels. 13 octree levels could be fit in memory, corresponding to voxel spacing of about 5mm.

23

CITY HAIRBALL

FAIRY CONFERENCE

SIBENIK-D

Figure 26: Test scenes used in this paper.

24

7 levels 8 levels 9 levels

10 levels 11 levels 12 levels

Figure 27: Voxel renderings of CITY using octrees of different depths. Note how only a few levels are required to make the overall appearance
adequate for e.g. far-field gathering for global illumination.

Figure 28: Voxel renderings of FAIRY. The hair close-up highlights the limitations of the polygonal source data.

1 sample/pixel 4 samples/pixel 1 sample/pixel 4 samples/pixel

Figure 29: Effects of antialiasing in CITY close-ups. The images are 180 × 180 pixels in size. As can be seen, automatic downsampling of
voxels does not remove the need for antialiasing.

25

Figure 30: Effects of post-process filtering. All images are 768 × 768 pixels in size. Voxel resolution is limited in order to make the effect
stand out better. The leftmost image is from a car scene that was not used in benchmarks.

Figure 31: Voxel renderings without (upper row) and with (lower row) contours. Post-process filtering is disabled to better visualize the
individual voxels. Voxel resolution is limited in order to highlight the differences. For example, in FAIRY it would be impossible to find a
badly undersampled region if all voxel levels were used.

26

Figure 32: Iteration count images without (upper row) and with (lower row) beam optimization. The scale from black to white corresponds
to 0–64 iterations.

27

Appendix A CUDA source for the ray cast algorithm

__device__ void cast_ray(
int* root, // In: Octree root (pointer to global mem).
volatile float3& p, // In: Ray origin (shared mem).
volatile float3& d, // In: Ray direction (shared mem).
volatile float& ray_size_coef, // In: LOD at ray origin (shared mem).
float ray_size_bias, // In: LOD increase along ray (register).
float& hit_t, // Out: Hit t-value (register).
float3& hit_pos, // Out: Hit position (register).
int*& hit_parent, // Out: Hit parent voxel (pointer to global mem).
int& hit_idx, // Out: Hit child slot index (register).
int& hit_scale) // Out: Hit scale (register).

{
const int s_max = 23; // Maximum scale (number of float mantissa bits).
const float epsilon = exp2f(-s_max);

int2 stack[s_max + 1]; // Stack of parent voxels (local mem).

// Get rid of small ray direction components to avoid division by zero.

if (fabsf(d.x) < epsilon) d.x = copysignf(epsilon, d.x);
if (fabsf(d.y) < epsilon) d.y = copysignf(epsilon, d.y);
if (fabsf(d.z) < epsilon) d.z = copysignf(epsilon, d.z);

// Precompute the coefficients of tx(x), ty(y), and tz(z).
// The octree is assumed to reside at coordinates [1, 2].

float tx_coef = 1.0f / -fabs(d.x);
float ty_coef = 1.0f / -fabs(d.y);
float tz_coef = 1.0f / -fabs(d.z);

float tx_bias = tx_coef * p.x;
float ty_bias = ty_coef * p.y;
float tz_bias = tz_coef * p.z;

// Select octant mask to mirror the coordinate system so
// that ray direction is negative along each axis.

int octant_mask = 7;
if (d.x > 0.0f) octant_mask ˆ= 1, tx_bias = 3.0f * tx_coef - tx_bias;
if (d.y > 0.0f) octant_mask ˆ= 2, ty_bias = 3.0f * ty_coef - ty_bias;
if (d.z > 0.0f) octant_mask ˆ= 4, tz_bias = 3.0f * tz_coef - tz_bias;

// Initialize the active span of t-values.

float t_min = fmaxf(fmaxf(2.0f * tx_coef - tx_bias, 2.0f * ty_coef - ty_bias), 2.0f * tz_coef - tz_bias);
float t_max = fminf(fminf(tx_coef - tx_bias, ty_coef - ty_bias), tz_coef - tz_bias);
float h = t_max;
t_min = fmaxf(t_min, 0.0f);
t_max = fminf(t_max, 1.0f);

// Initialize the current voxel to the first child of the root.

int* parent = root;
int2 child_descriptor = make_int2(0, 0); // invalid until fetched
int idx = 0;
float3 pos = make_float3(1.0f, 1.0f, 1.0f);
int scale = s_max - 1;
float scale_exp2 = 0.5f; // exp2f(scale - s_max)

if (1.5f * tx_coef - tx_bias > t_min) idx ˆ= 1, pos.x = 1.5f;
if (1.5f * ty_coef - ty_bias > t_min) idx ˆ= 2, pos.y = 1.5f;
if (1.5f * tz_coef - tz_bias > t_min) idx ˆ= 4, pos.z = 1.5f;

// Traverse voxels along the ray as long as the current voxel
// stays within the octree.

while (scale < s_max)
{

// Fetch child descriptor unless it is already valid.

if (child_descriptor.x == 0)
child_descriptor = *(int2*)parent;

// Determine maximum t-value of the cube by evaluating
// tx(), ty(), and tz() at its corner.

float tx_corner = pos.x * tx_coef - tx_bias;
float ty_corner = pos.y * ty_coef - ty_bias;
float tz_corner = pos.z * tz_coef - tz_bias;
float tc_max = fminf(fminf(tx_corner, ty_corner), tz_corner);

28

// Process voxel if the corresponding bit in valid mask is set
// and the active t-span is non-empty.

int child_shift = idx ˆ octant_mask; // permute child slots based on the mirroring
int child_masks = child_descriptor.x << child_shift;
if ((child_masks & 0x8000) != 0 && t_min <= t_max)
{

// Terminate if the voxel is small enough.

if (tc_max * ray_size_coef + ray_size_bias >= scale_exp2)
break; // at t_min

// INTERSECT
// Intersect active t-span with the cube and evaluate
// tx(), ty(), and tz() at the center of the voxel.

float tv_max = fminf(t_max, tc_max);
float half = scale_exp2 * 0.5f;
float tx_center = half * tx_coef + tx_corner;
float ty_center = half * ty_coef + ty_corner;
float tz_center = half * tz_coef + tz_corner;

// Intersect with contour if the corresponding bit in contour mask is set.

int contour_mask = child_descriptor.y << child_shift;
if ((contour_mask & 0x80) != 0)
{

int ofs = (unsigned int)child_descriptor.y >> 8; // contour pointer
int value = parent[ofs + popc8(contour_mask & 0x7F)]; // contour value
float cthick = (float)(unsigned int)value * scale_exp2 * 0.75f; // thickness
float cpos = (float)(value << 7) * scale_exp2 * 1.5f; // position
float cdirx = (float)(value << 14) * d.x; // nx
float cdiry = (float)(value << 20) * d.y; // ny
float cdirz = (float)(value << 26) * d.z; // nz
float tcoef = 1.0f / (cdirx + cdiry + cdirz);
float tavg = tx_center * cdirx + ty_center * cdiry + tz_center * cdirz + cpos;
float tdiff = cthick * tcoef;

t_min = fmaxf(t_min, tcoef * tavg - fabsf(tdiff)); // Override t_min with tv_min.
tv_max = fminf(tv_max, tcoef * tavg + fabsf(tdiff));

}

// Descend to the first child if the resulting t-span is non-empty.

if (t_min <= tv_max)
{

// Terminate if the corresponding bit in the non-leaf mask is not set.

if ((child_masks & 0x0080) == 0)
break; // at t_min (overridden with tv_min).

// PUSH
// Write current parent to the stack.

if (tc_max < h)
stack[scale] = make_int2((int)parent, __float_as_int(t_max));

h = tc_max;

// Find child descriptor corresponding to the current voxel.

int ofs = (unsigned int)child_descriptor.x >> 17; // child pointer
if ((child_descriptor.x & 0x10000) != 0) // far

ofs = parent[ofs * 2]; // far pointer
ofs += popc8(child_masks & 0x7F);
parent += ofs * 2;

// Select child voxel that the ray enters first.

idx = 0;
scale--;
scale_exp2 = half;

if (tx_center > t_min) idx ˆ= 1, pos.x += scale_exp2;
if (ty_center > t_min) idx ˆ= 2, pos.y += scale_exp2;
if (tz_center > t_min) idx ˆ= 4, pos.z += scale_exp2;

// Update active t-span and invalidate cached child descriptor.

t_max = tv_max;
child_descriptor.x = 0;
continue;

}
}

29

// ADVANCE
// Step along the ray.

int step_mask = 0;
if (tx_corner <= tc_max) step_mask ˆ= 1, pos.x -= scale_exp2;
if (ty_corner <= tc_max) step_mask ˆ= 2, pos.y -= scale_exp2;
if (tz_corner <= tc_max) step_mask ˆ= 4, pos.z -= scale_exp2;

// Update active t-span and flip bits of the child slot index.

t_min = tc_max;
idx ˆ= step_mask;

// Proceed with pop if the bit flips disagree with the ray direction.

if ((idx & step_mask) != 0)
{

// POP
// Find the highest differing bit between the two positions.

unsigned int differing_bits = 0;
if ((step_mask & 1) != 0) differing_bits |= __float_as_int(pos.x) ˆ __float_as_int(pos.x + scale_exp2);
if ((step_mask & 2) != 0) differing_bits |= __float_as_int(pos.y) ˆ __float_as_int(pos.y + scale_exp2);
if ((step_mask & 4) != 0) differing_bits |= __float_as_int(pos.z) ˆ __float_as_int(pos.z + scale_exp2);
scale = (__float_as_int((float)differing_bits) >> 23) - 127; // position of the highest bit
scale_exp2 = __int_as_float((scale - s_max + 127) << 23); // exp2f(scale - s_max)

// Restore parent voxel from the stack.

int2 stackEntry = stack[scale];
parent = (int*)stackEntry.x;
t_max = __int_as_float(stackEntry.y);

// Round cube position and extract child slot index.

int shx = __float_as_int(pos.x) >> scale;
int shy = __float_as_int(pos.y) >> scale;
int shz = __float_as_int(pos.z) >> scale;
pos.x = __int_as_float(shx << scale);
pos.y = __int_as_float(shy << scale);
pos.z = __int_as_float(shz << scale);
idx = (shx & 1) | ((shy & 1) << 1) | ((shz & 1) << 2);

// Prevent same parent from being stored again and invalidate cached child descriptor.

h = 0.0f;
child_descriptor.x = 0;

}
}

// Indicate miss if we are outside the octree.

if (scale >= s_max)
t_min = 2.0f;

// Undo mirroring of the coordinate system.

if ((octant_mask & 1) == 0) pos.x = 3.0f - scale_exp2 - pos.x;
if ((octant_mask & 2) == 0) pos.y = 3.0f - scale_exp2 - pos.y;
if ((octant_mask & 4) == 0) pos.z = 3.0f - scale_exp2 - pos.z;

// Output results.

hit_t = t_min;
hit_pos.x = fminf(fmaxf(p.x + t_min * d.x, pos.x + epsilon), pos.x + scale_exp2 - epsilon);
hit_pos.y = fminf(fmaxf(p.y + t_min * d.y, pos.y + epsilon), pos.y + scale_exp2 - epsilon);
hit_pos.z = fminf(fmaxf(p.z + t_min * d.z, pos.z + epsilon), pos.z + scale_exp2 - epsilon);
hit_parent = parent;
hit_idx = idx ˆ octant_mask ˆ 7;
hit_scale = scale;

}

30

