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Abstract

Ambient occlusion has proven to be a useful tool for producing realistic images, both in offline rendering and
interactive applications. In production rendering, ambient occlusion is typically computed by casting a large
number of short shadow rays from each visible point, yielding unparalleled quality but long rendering times.
Interactive applications typically use screen-space approximations which are fast but suffer from systematic errors
due to missing information behind the nearest depth layer.
In this paper, we present two efficient methods for calculating ambient occlusion so that the results match those
produced by a ray tracer. The first method is targeted for rasterization-based engines, and it leverages the GPU
graphics pipeline for finding occlusion relations between scene triangles and the visible points. The second method
is a drop-in replacement for ambient occlusion computation in offline renderers, allowing the querying of ambient
occlusion for any point in the scene. Both methods are based on the principle of simultaneously computing the
result of all shadow rays for a single receiver point.

1. Introduction

Ambient occlusion has become one of the standard tools
used in high-quality production rendering. It was introduced
by Zhukov et al. [ZIK98] and soon picked up by the ren-
dering community [Lan02]. Today it is easy to find numer-
ous tutorials and examples on how to improve the realism of
rendered images by rendering an ambient occlusion pass and
using it in the final composition phase.

The amount of ambient occlusion for a point is most often
defined as the cosine-weighted fraction of the hemisphere
where incoming ambient light cannot reach the surface. This
simple definition is, however, unsatisfactory. For example,
the rendering situation determines how far we want to look
for occlusion. For indoor scenes, light from the sky never
reaches the surfaces, so a shorter distance is appropriate,
whereas outdoor scenes may use a longer distance. Also, the
simple definition does not tell how the occlusion tapers off
with distance.

A practical and flexible definition is obtained by utilizing
a falloff function that defines how the distance to occlud-
ing surfaces affects the amount of incoming light. Following

Zhukov et al., we define the amount of ambient occlusion as

W (p,n) =
1

�

∫
Ω

�(D(p,!))(! ⋅n) d!. (1)

Here, W is the amount of occlusion, and p and n are the
surface point receiving the occlusion and its normal, respec-
tively. The integral is taken over the hemisphere oriented to-
wards n. D(p,!) measures the distance to nearest occluder
from p towards direction !, and � is the falloff function that
converts this distance to an occlusion factor between 0 and
1. The choice of � depends on rendering needs, so a generic
ambient occlusion algorithm should be able to support any
such function. We may, however, assume that there is some
distance r after which � is zero. This allows us to consider
a bounded region in space instead of the entire scene when
computing ambient occlusion for a single point.

Usually the integral is approximated by sampling the do-
main in a number of points. By distributing the points ac-
cording to cosine weighting, we may dispose of the normal-
ization factor and the dot product in the end. This yields

W (p,n)≈ 1

N

N∑
i=1

�(D(p,!i)). (2)

The traditional method to evaluate this formula is to cast N
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rays from point p, mapping the first-hit distances through �
and taking the average. The expensive part is the casting of
the rays, but limiting their length to r makes them faster than
generic rays. In production rendering, N may be set as high
as 1024 for obtaining noise-free results.

For our purposes, we need that the rays that are cast are
shadow rays, i.e., ones that only report if the ray was oc-
cluded or not, and therefore we cannot evaluate the distance
function D. However, we can reformulate the above equa-
tion in terms of shadow rays by incorporating the falloff
function into the sampling points by stochastically distribut-
ing the shadow ray lengths li according to �. This gives our
final formula

W (p,n)≈ 1

N

N∑
i=1

O(p,!i, li), (3)

whereO(p,!i, li) is a binary occlusion function that returns
one if the ray between points p and p+ li!i is blocked, and
zero otherwise. We define the ambient occlusion radius r as
the length of the longest ray.

For interactive applications, high-quality sampling would
be prohibitively slow, and a screen-space approximation is
commonly used instead. The principle is to use the depth
buffer information to infer enough of the 3D structure of the
scene to be able to render convincing ambient occlusion. The
problem with this approach is that there are cases which ap-
pear similar in the depth buffer but should produce different
results, leading to systematic errors. We will briefly touch
screen-space ambient occlusion methods at the end of Sec-
tion 2, but they are otherwise outside the scope of this paper.

1.1. Contributions

In this paper, we present two methods for efficient compu-
tation of ambient occlusion according to Equation 3. Both
methods are based on storing the status of individual shadow
rays in bit masks and updating the masks using precom-
puted bit patterns stored in look-up tables. This process is
explained in Section 3.

The first of our methods is targeted for rasterization-based
engines. It exploits fixed-function hardware rasterization and
depth test to find pixels where a given triangle may con-
tribute to ambient occlusion. This is similar to a previous
method by McGuire [McG10], but instead of flattening the
ambient occlusion into a scalar value, we maintain accurate
per-ray occlusion information. To improve performance, we
support one-sided triangles, i.e., ones that occlude shadow
rays from one direction only. This optimization is possible
with most real-time content, as it has usually been designed
to support backface culling. The rasterization-based method
is detailed in Section 4.

The second method is designed to be a drop-in replace-
ment for ambient occlusion computation in ray tracers. It
is based on traversing a bounding volume hierarchy of the

scene triangles, as such a hierarchy can be assumed to be
present in a ray tracing system. Unlike the rasterization-
based method, this method can provide ambient occlusion
information for any point in the scene. This makes it suit-
able for handling the shading of secondary rays as well. The
traversal-based method is described in Section 5.

2. Previous work

In this section, we will focus on methods that are directly
related to our work or are equivalent to ray tracing-based
ambient occlusion calculation. For a recent and compre-
hensive survey of exact and approximative ambient occlu-
sion techniques, we refer the reader to Méndez-Feliu and
Sbert [MFS09]. In addition, quality comparisons between a
few approximative methods can be found in [McG10].

Both of our methods are based on storing the status of
individual shadow rays in bit masks. The same approach has
been previously used for area light sources and environment
light sources (e.g. [KLA04, LA05, SS07]).

The hemispherical rasterization technique of Kautz et
al. [KLA04] uses precomputed bit mask look-up tables for
rapidly identifying which shadow rays are occluded by a tri-
angle. However, they compute shadowing from distant envi-
ronment maps and hence only need to support infinitely long
rays. Handling limited-length rays for ambient occlusion re-
quires a more versatile look-up table.

Our rasterization-based method rasterizes volumes that
bound the influence of individual triangles. Compared to am-
bient occlusion volumes presented by McGuire [McG10],
our bounding volumes are more compact. We also avoid the
construction and rendering of a bounding volume when am-
bient occlusion radius is large compared to triangle size, and
instead render a polygonal approximation of the influence
hemisphere, which produces tighter bounds.

Our hierarchy traversal-based method bears resemblance
to the BVH packet tracing algorithm of Wald et al. [WBS07].
They traverse the hierarchy once for a packet of rays and
keep track of closest hit for each ray. We optimize this by us-
ing bit operations to handle multiple rays at once, and by or-
dering the traversal according to estimated occlusion power.

As we are focusing on the evaluation of Equation 3, tech-
niques that require further approximations are outside the
scope of this paper. For a recent screen-space ambient oc-
clusion method, see e.g. the horizon-based method of Bavoil
and Sainz [BS08] that has been extended to utilize mul-
tiple depth layers [BS09] to battle artifacts caused by the
single-depth approximation. The results are still far from ray
casting, albeit obtained orders of magnitude faster. Besides
screen-space ambient occlusion, it is possible to propagate
occlusion in a hierarchy of surface elements [Bun05, HJ07].
This approach is more computationally intensive and works
only for models for which a satisfactory surface element ap-
proximation can be constructed.
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(a) (b)

(c) (d)

Figure 1: Occluding the shadow rays. Colored dots on
the hemisphere indicate sampling points that correspond to
shadow rays between the receiver point and the sampling
point. Note that some samples are on the far side of the
hemisphere. Our method allows the sampling points to re-
side anywhere in space, but in this example all points are on
the surface of a hemisphere for clarity. (a)–(c) Each edge of
the triangle forms a plane with the receiver point. Sampling
points on the negative side of the plane (red) are rejected. (d)
Sampling points on the negative side of the triangle plane
are also rejected. The samples that are accepted by all four
planes are blocked by the triangle.

3. Occlusion computation

Both of our methods compute ambient occlusion in a number
of receiver points by determining which shadow rays from
each point are blocked. To be able to use precalculated oc-
clusion masks, we use the same pattern of shadow rays for
every receiver point. This pattern is centered at the receiver
point and oriented towards its normal.

However, producing a coordinate basis based on the nor-
mal of the receiver point alone is not enough, because the
orientation would be constant on flat surfaces. This kind of
coherent sampling pattern would cause banding, so we jit-
ter the orientation in two ways. Firstly, we rotate the basis
around the receiver point normal by a random amount. To re-
tain some amount of coherence which speeds up processing,
we keep the rotations relatively small. Rotation jitter alone
is not enough to remove all banding, so we also randomly
perturb the normal slightly. We make sure that the normal
perturbation is small enough not to cause any rays to cross
below the original tangent plane.

3.1. Occlusion masks

Our methods are based on storing the status of individual
shadow rays in bit masks, and updating their status using
bitwise operations and look-up tables. Figure 1 illustrates

the process of finding the shadow rays blocked by a trian-
gle after it has been transformed to the coordinate system
of the receiver point. First, the three edges of a triangle are
used for finding shadow rays that point towards the triangle.
Then, the plane of the triangle is used for ignoring rays that
are too short to reach the triangle.

The handling of triangle edges is similar to the hemispher-
ical rasterization method of Kautz et al. [KLA04]. They also
construct planes that pass through the origin for the edges
of a triangle, and look up precalculated bit masks based
on the plane normal. However, we need to handle generic
planes, and not only those that pass through the origin, to
take the plane of the triangle into account. Therefore, the
two-dimensional cube map look-up used by Kautz et al. is
not sufficient for our purposes.

We express a generic plane facing towards origin (i.e., re-
ceiver point) using its normal vector np and distance d from
the origin. Given the maximum ray length r, we only need
to consider planes where 0≤ d≤ r, because triangles whose
plane is farther away cannot occlude any of the rays.

The bit masks for our look-up table are stored into a cube-
shaped 3D table. To address the table, we take the plane nor-
mal np and multiply it by suitably scaled distance dnorm to
produce a 3D coordinate with components in range [−1,1].
The trivial choice would be to take dnorm = d/r, but this
has two drawbacks. First, the resolution is bad when d is
close to zero, because there are few available locations near
the center of the table. In particular, the planes with d = 0
that are needed for triangle edges end up in the same table
entry. Second, the regions near the corners remain unused,
because np is on a sphere.

To avoid the loss of resolution near the center of the ta-
ble, we take dnorm = 1− 7

8 (d/r). This way, the center of
the table is left unused, but this only wastes a tiny fraction of
space and greatly alleviates the resolution problem near the
center. The angular resolution is best for planes with d close
to zero, because they are stored near the outermost layer of
the table. We have found the factor of 7

8 to offer a good trade-
off between loss of angular resolution for planes with large d
and loss of distance resolution in general. Finally, we stretch
the utilized region to reach the corners of the cube by further
dividing dnorm by the largest absolute component of np.

With this arrangement, the outermost cells of the 3D table
correspond to planes with d= 0, which are used for triangle
edge tests (Figure 1a–c). The outermost layer of our table
therefore corresponds to the cube map of Kautz et al. The
interior cells are used for handling the plane of the triangle
(Figure 1d).

We produce the look-up table based on a given sampling
pattern as a pre-process on the GPU before starting the ambi-
ent occlusion computation. With 128 sampling points, a typ-
ical 1283 table consumes 32MB of GPU memory and takes
a few milliseconds to generate.
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Figure 2: Construction of the base of the hexagonal prism
bounds for a triangle. The original triangle is at the cen-
ter. First, we construct lines A,B,C that are parallel to the
edges of the triangle at distance of r. Then, we intersect
these lines with each other to produce points a,b,c. It would
be possible to construct a triangular prism using these points
as the base [McG10], but sharp corners would produce vol-
umes that cover many superfluous pixels when rasterized. In-
stead, we take the lines between triangle vertices and points
a,b,c and construct perpendicular lines P,Q,R at distance
r from each vertex. These are intersected with lines A,B,C
to produce the final base hexagon.

4. Method 1: Rasterization

Our first method is based on rasterizing the region of influ-
ence of each triangle in the scene, and accumulating the re-
sults into a set of occlusion buffers. The occlusion buffers
store the status of each shadow ray in one bit that is initially
zero, corresponding to the ray being unblocked. With four-
component 32-bit integer buffers, we can store up to 128 bits
per pixel in a single buffer. For larger sample counts, we use
multiple buffers.

The outline of our algorithm is as follows:

1. Render the scene, producing depth and normal for each
pixel (i.e. receiver point).

2. Clear the occlusion buffers to zero.
3. For each triangle in the scene:

a. Construct a shape that covers the triangle’s region of
influence.

b. Rasterize far side of the shape with backface culling.
c. Use an inverted depth test to cull fragments that lie in

front of the receiving geometry.
d. For each rasterized fragment:

– Compute occlusion between the triangle and the
receiver point.

– Accumulate occlusion bits into the occlusion buffers.
– Do not perform depth writes.

4. For each receiver point, evaluate Equation 3 using the
occlusion bits and perform deferred shading.

We implemented the algorithm in OpenGL, performing step
3.a in the geometry shader and step 3.d in the fragment
shader. We maintain the occlusion buffers in GL_RGBA32UI

textures, and update them simultaneously in step 3 using gl-
DrawBuffers and glLogicOp. For 128 samples per pixel

in 1024×768 resolution, the total memory footprint of the
occlusion buffers is 12MB.

4.1. Bounding the region of influence

For each triangle in the scene, we construct a shape in the
geometry shader that covers all the receiver points whose
shadow rays are potentially occluded by the triangle. De-
pending on the case, we use either a hexagonal prism that
acts as a bounding volume for the triangle’s region of influ-
ence, or a screen-space hemispherical billboard. The choice
between the two is made based on the ratio between the ra-
dius of the triangle’s bounding sphere R and ambient oc-
clusion radius r. We use a threshold parameter � that de-
termines the point where the switch happens. When triangle
radius is large, i.e., R/r > �, the region of influence is gov-
erned mainly by the shape of the triangle, and a hexagonal
prism yields a tight bounding volume. When R/r < �, the
region of influence is closer to a hemispherical shape, so we
construct a billboard for obtaining more efficient bounds. In
our tests, � = 0.2 produced consistently good results, and
this value has been used in the benchmarks.

Figure 2 shows how the base of the hexagonal prism-
shaped bounding volume is constructed for a triangle. The
cover of the prism is formed by simply lifting the vertices
of the base to distance of r towards the direction of trian-
gle normal. For one-sided triangles, we offset the base of
the prism slightly inside the surface to avoid precision issues
during rasterization. This ensures that surface points on con-
cave edges will be inside the bounding volumes of adjacent
triangles. For two-sided triangles, we offset the base to dis-
tance of r away from the triangle normal, producing twice
as large volume.

The resulting bounding volume is composed of 20 trian-
gles organized into 2 triangle strips. We use backface culling
to rasterize only the triangles that are on the far side of the
prism, and perform the depth test in an inverted fashion. This
avoids difficulties with clipping when the camera is inside
the prism.

When the triangle is small compared to r, the region of
influence for an one-sided triangle is approximately hemi-
spherical, making the hexagonal prism a bad fit. In these
cases, we construct a billboard, i.e., a flat polygonal shape
that covers the region of influence in screen space. For two-
sided triangles, a simple circular polygon is sufficient. For
one-sided triangles, the shape consists of two polygons as
illustrated in Figure 3. Each polygon has 12 vertices, and is
organized into a strip of 10 triangles.

To handle perspective projection, we generate the poly-
gons in object space and then correct their depth so that the
billboard appears to be located just behind the sphere of in-
fluence. This way, projection and clipping are handled au-
tomatically by the rasterization hardware, while all points
inside the region of influence are still guaranteed to pass the
inverted depth test.
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Figure 3: Construction of hemisphere billboard for a one-
sided triangle. Left: Triangle, as seen from the camera, sur-
rounded by its bounding sphere with radiusR. Adding ambi-
ent occlusion radius r gives a sphere that bounds the region
of influence. The shaded region that needs to be rasterized
is defined by the circle which is the silhouette of the sphere
as seen by the camera, and the circle which is the intersec-
tion between triangle plane and the sphere (projected to an
ellipse). Right: We approximate these circles with regular
polygons placed on suitably enlarged circles (dashed). One
polygon is drawn for each circle. Vertices on the wrong side
of the separating line are replaced by the intersection points
between circles (yellow dots), yielding no overlap between
the rasterized polygons.

4.2. Fragment processing

After the prism or billboard is constructed, it is rasterized
to produce a set of fragments corresponding to points on
its surface. Fragments that pass the inverted depth test are
processed in the fragment shader to accumulate occlusion
caused by the triangle into the occlusion buffers. To deter-
mine the receiver point p where the ambient occlusion is
to be computed, we consult the previously rendered depth
buffer. We also fetch the normal for the point and construct
a coordinate basis that defines the orientation of the sam-
pling pattern. The triangle is transformed to this basis so that
subsequent calculations can be performed with the receiver
point at the origin and the z-axis pointing towards its normal.

To reduce the number of mask lookups, the fragment
shader performs a number of additional culling tests to ter-
minate processing if the receiver point p cannot be influ-
enced by the triangle we are processing. The culling tests, in
the order they are processed, terminate the shader if:

1. Depth of the fragment is greater than depth of receiver
point plus ambient occlusion radius.

2. p is outside the bounding sphere of triangle’s region of
influence.

3. The triangle is one-sided and faces away from p.
4. Distance between p and triangle plane is greater than r.
5. All vertices of the triangle are below the horizon of p.

The effectiveness of each of the tests is analyzed in Sec-
tion 6. For points that survive all of the culling tests, we
construct the occlusion mask as described in Section 3. This

mask is blended to the occlusion buffers using logical OR
blending mode.

4.3. Level of detail

It is easy to notice that small geometric details do not cause
discernible features in ambient occlusion except near the sur-
face itself, and ambient occlusion to distant surfaces could
be just as well calculated using simplified geometry. How-
ever, the occlusion between nearby surfaces always needs to
be calculated using the original geometry, because otherwise
artifacts can appear.

Based on this observation, we developed an approxima-
tion scheme where ambient occlusion is calculated using
simplified geometry depending on the distance from the re-
ceiver point. We start with the original geometry and then
construct a series of simplified approximations with an in-
creasing amount of allowed approximation error �i. The
original geometry corresponds to distance range [0,k ⋅ �1],
while each simplified level corresponds to range [k ⋅ �i,k ⋅
�i+1]. k is an arbitrary scaling factor, usually between 2 and
5, selected to prevent visible artifacts due to the approxima-
tion.

We process all depth ranges in a single rendering pass
using an additional attribute array to store [rmin, rmax]
for each triangle. When constructing bounding volumes and
evaluating occlusion masks, we simply use rmax in place of
r. To account for rmin, we need to perform an additional
mask lookup in the fragment shader, similar to the one in
Figure 1d. This prevents coarse simplification levels from
influencing the occlusion of nearby surfaces.

By using simplified geometry, we cannot anymore claim
that the results are consistent with a ray tracer. However,
the perceptual difference to using original geometry all the
way is tolerable, as long as the distance ranges and allowed
simplification error are chosen appropriately. With a consid-
erable amount of hand-waving, one could argue that using
simplified geometry corresponds to having the ambient oc-
clusion rays wiggle around by at most the amount of simpli-
fication error. It seems that this kind of approximation error,
occurring far away from the receiver point, is less likely to
cause noticeable artifacts than some other approximations
such as flattening the intermediate results to a scalar value,
or attempting to cope with a single depth layer. Nonetheless,
our main benchmarks are run without any geometry simpli-
fication, and its effectiveness is analyzed in a separate test.

5. Method 2: BVH traversal

Our second method is targeted to offline ray tracers where
ambient occlusion would otherwise be computed using ray
casts. We assume that a bounding volume hierarchy of scene
geometry is available, and exploit it for efficiently finding tri-
angles that may contribute to ambient occlusion for a given
receiver point.
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We process each receiver point p independently. During
the processing of a receiver point, we maintain a cumula-
tive occlusion mask that is initially zero, corresponding to
all shadow rays being unblocked. After initialization, we ex-
ecute a BVH traversal to find nodes that intersect the hemi-
sphere defined by receiver point p, its normal, and ambi-
ent occlusion radius r. The BVH traversal algorithm fol-
lows the speculative while-while structure [AL09] which we
found to give best performance. The idea is to organize the
traversal loop so that all SIMD lanes always transition be-
tween traversing nodes and processing triangles together.
The traversal phase continues until all lanes have found at
least one triangle to process. Lanes that have already found
triangles will continue visiting nodes speculatively while
waiting for the transition.

When traversing an internal node, we first check the
bounding boxes of its children against the hemisphere. If the
distance between a box and p is greater than r or the box
is entirely below the horizon of p, we know that it cannot
intersect the hemisphere and cull the corresponding nodes.

Next, we use the lookup tables to calculate a conservative
node occlusion mask for each remaining child. We are pri-
marily interested in the amount of additional occlusion that
we can observe by processing the corresponding subtree. To
estimate this, we count the number of rays that are still un-
blocked (zero in the cumulative mask) but may potentially
be blocked by the subtree (one in the node mask). We cull
any nodes for which this estimate is zero, since processing
them would have no effect on the result. In case both child
nodes are still eligible for traversal, we choose to first visit
the one with a higher estimate. This leads to a traversal order
that tends to build up occlusion quickly in the beginning and
then use the built-up occlusion to cull most of the nodes later
on.

We have experimented with two techniques for calculat-
ing the occlusion mask for a node. The first is to find the
silhouette edges of the node bounding box, as seen from p,
fetch bit masks for these edges from the look-up table, and
combine them using AND operation to form the occlusion
mask for the bounding box. Since there are usually six sil-
houette edges, the mask lookups become fairly expensive,
but the resulting occlusion mask is as tight as possible. If p
is inside the node bounding box, we can avoid the lookups
and simply output a mask with all bits set.

The second technique produces an approximate occlusion
mask by constructing a bounding sphere for the node and
calculating the corresponding apex angle and direction from
p. Figure 4 illustrates two cases that need to be considered.
If all shadow rays are of equal length, we can use the plane
look-up table described in Section 3 directly. Otherwise, we
need to have a separate lookup table with normalized rays
for the projection case (Figure 4 right). Similarly to the first
technique, we can avoid the lookups if p is inside the bound-
ing sphere.

Figure 4: Calculation of circular occlusion mask for a node.
We construct a bounding sphere for the node and use one
or two plane lookups to determine the rays blocked by the
sphere. Left: if the sphere intersects the hemisphere surface,
we can find rays pointing towards the intersection using a
separating plane. Right: if the sphere is near the origin, we
also consider a plane corresponding to its projection on the
hemisphere surface.

When a leaf node is reached, we first perform culling tests
for each triangle before constructing occlusion masks for
them and accumulating the occlusion as described in Sec-
tion 3. In the order of execution, the triangle is ignored if:

1. All vertices of the triangle are below the horizon of p.
2. The triangle is one-sided and faces away from p.
3. Distance between p and triangle plane is greater than r.
4. p is outside the bounding sphere of triangle’s region of

influence.

These are a subset of tests done in the rasterization method.
The ordering is not the same because the cost-effectiveness
of the tests is different in rasterization and traversal-based
methods.

We implemented the BVH traversal method in CUDA, as-
signing one receiver point for each computation thread. The
receiver points are sorted in Morton order to increase coher-
ence between nearby threads. As in the rasterization-based
method, the look-up tables are accessed through textures to
take advantage of texture caches, whereas the bounding vol-
ume hierarchy is accessed using ordinary memory loads that
utilize the L1 and L2 caches of the GPU. We found that cir-
cular node occlusion masks gave better overall performance
than box-shaped ones, so we chose to use them in the bench-
marks.

6. Results

We compared the performance of our methods against the
state-of-the art GPU ray caster of Aila and Laine [AL09].
The comparison ray caster was optimized for shadow rays
and for the GPU used. All tests were run on an NVIDIA
GTX 480 GPU with 1.5 GB of RAM installed in a PC with
2.5 GHz Q9300 Intel Core2 Quad CPU and 4 GB of RAM.
The operating system was 32-bit Windows XP Professional.

The shadow ray sampling pattern is generated by con-
structing a low-discrepancy distribution on unit disc and lift-
ing it onto the surface of hemisphere to produce a cosine-
weighted direction distribution. We generate the distribution
on disc by first randomly placing N samples and perform-
ing a large number of Lloyd relaxation steps to reach a semi-
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Sibenik, 77K tris City, 879K tris Hairball, 2.88M tris
Method N r = 0.75 r = 2.25 r = 75 r = 225 r = 0.1 r = 0.3

Rasterization 128 1874 323 670 339 128 32
1024 2149 328 2076 493 112 36

BVH traversal 128 2251 649 3007 1285 795 145
1024 2498 585 4181 1467 1320 156

Ray caster 128 323 261 272 241 52 27
(comparison) 1024 323 260 273 242 43 23

Table 1: Performance results of our methods and a ray caster used as a comparison method. Performance figures are given in
millions of rays per second. N is the number of ambient occlusion samples per pixel. The results for two ambient occlusion
radii are shown for each scene. The renderings above the table show the results using these radii, and were rendered using 128
ambient occlusion rays per pixel.

regular pattern. We then reintroduce randomness by replac-
ing each point with a random point within its Voronoi cell,
and finally perform a few more relaxation passes. This two-
step procedure ensures uniform overall density with suitable
local randomness.

We chose to use equal-length shadow rays for all tests.
This requires the smallest r for obtaining a desired apparent
ambient occlusion radius, and is therefore the most efficient
choice for algorithms whose execution time depends on r.
Especially the rasterization method would suffer from hav-
ing to compensate long falloff with larger radius. The set of
shadow rays is the same for all methods, including the com-
parison ray caster.

The bounding volume hierarchy for our traversal-based
method and the comparison ray caster is constructed us-
ing an ordinary top-down builder with greedy surface area
heuristic. Each leaf node contains between 1 and 8 triangles.
The same BVH is used for our method and the comparison
ray caster.

All test renderings were performed in 1024×768 resolu-
tion, and every result is an average over multiple represen-
tative viewpoints for each scene. In the test scenes used, all
triangles were treated as one-sided.

Table 1 shows the performance of our methods and the
comparison ray caster in the three test scenes. The figures
are in millions of ambient occlusion rays per second. The
traversal-based method is the most efficient in all test cases,
and for some cases substantially faster than the comparison
ray caster. The rasterization-based method is faster than the
ray caster in this test setup, but not as fast as the traversal-
based method. On the other hand, it does not require a

bounding volume hierarchy of the scene like the other meth-
ods.

The ray casting performance of the comparison ray caster
is only slightly affected by the number of ambient occlu-
sion rays cast per receiver point. Our methods mostly benefit
from the increased number of rays, as most of the computa-
tion is shared between rays.

Figure 6 shows the frame rendering times for our meth-
ods and the comparison ray caster as a function of ambient
occlusion radius r. We see that the the rasterization-based
method scales worse than the other two, but the scalability
of the traversal-based method is fairly good compared to the
ray caster. We expect the ray tracer to ultimately win for long
enough rays due to lost coherence between ambient occlu-
sion rays, but the traversal-based method remains faster for
a wide range of practically interesting values of r. It should
be noted that the longest rays used in the plots are already
fairly long, and the breakeven point between BVH traversal
and ray caster is still far from being reached.

Table 2 details the effectiveness of the fragment culling
tests in the rasterization method described in Section 4.2. Us-
ing all culling tests decreases the number of occlusion mask
computations by a factor of about 6–7 in the test scene used,
and more than triples the overall performance.

Figure 5 illustrates the rendering quality of our methods
and the ambient occlusion volumes of McGuire [McG10]. A
reference image was calculated with ray tracer using 1024
ambient occlusion rays per pixel, and the results of each
method was compared to that. In both BVH traversal and
rasterization methods, the majority of pixels are correct af-
ter quantizing the results to 8 bits, and the average error is
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BVH traversal, 1024 samples Rasterization, 1024 samples Rasterization with LOD AOV [McG10]

error×16 error×16 error×4 error×4

avg. error = 0.0024 avg. error = 0.0024 avg. error = 0.028 avg. error = 0.078

Figure 5: Illustration of quality produced by our methods and the ambient occlusion volumes method of McGuire [McG10]
in City scene with r = 225. For each method, the top image shows the rendering result, and the bottom image shows the
approximation error, i.e., magnitude of deviation from ray-traced reference. In the error images, white indicates correct result,
and black indicates absolute error of 1/16 (two leftmost images) or 1/4 (two rightmost images). Note that the two leftmost error
images have been boosted four times more than the two rightmost ones to bring the errors visible.

Culling tests
r = 0.75 r = 2.25

#frag perf #frag perf
Depth test only 7.06 0.30 5.79 0.30
+ 1. Far depth 3.78 0.47 3.90 0.40
+ 2. Bounding sphere 3.22 0.52 3.11 0.47
+ 3. Triangle facing 2.11 0.73 1.95 0.70
+ 4. Plane distance 2.03 0.74 1.92 0.70
+ 5. Hemisphere facing 1.00 1.00 1.00 1.00

Table 2: Effect of fragment culling tests in the rasterization-
based method. The relative effect on fragment count (#frag)
and performance (perf) is shown for two ambient occlusion
ray lengths in Sibenik scene using 128 ambient occlusion
rays per pixel. The first row shows the situation where oc-
clusion computations are performed for all fragments that
pass the hardware depth test, relative to all tests enabled.
One additional culling test is enabled on each row. The row
numbers refer to the list in Section 4.2.

comparable to the quantization error. However, by boosting
the error images significantly we can discern some system-
atic errors, which we suspect to be caused by discretization
of the occlusion mask look-up tables. The level of detail op-
timization for the rasterization method incurs moderate esti-
mation errors, but without comparison to ground truth these
are quite hard to detect. The result of ambient occlusion vol-
umes exhibits visible artifacts and has overall larger error
than our methods.

Figure 7 shows the effect of using multiple levels of de-
tail for the rasterization-based method as discussed in Sec-

tion 4.3. As evidenced by the images, the rendering perfor-
mance can be increased with tolerable loss of quality. The
overall brightening is caused by loss of occlusion from thin,
distant occluders. This effect is most visible in Hairball,
where even the slightest amount of simplification changes
the occlusion properties of the mesh considerably.

7. Future work

In addition to ambient occlusion, both of our methods
are almost directly applicable to rendering soft shadows
from spherical and disc-shaped area light sources. We have
not ventured in this direction, but expect that significant
speedups could be achieved.

Acknowledgements. Sibenik model courtesy of Marko
Dabrovic.
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