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Abstract

Occlusion culling based on precomputed visibility information is a
standard method for accelerating the rendering in real-time graph-
ics applications. In this paper we present a new general algorithm
that performs the visibility precomputation for a group of viewcells
in an output-sensitive fashion. This is achieved by exploiting the
directional coherence of visibility between adjacent viewcells. The
algorithm is independent of the underlying from-region visibility
solver and is therefore applicable to exact, conservative and aggres-
sive visibility solvers in both 2D and 3D.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Visible line/surface algorithms.

Keywords: visibility, occlusion culling, PVS

1 Introduction

Visibility preprocessing is a powerful and commonly used occlu-
sion culling method for accelerating the rendering in real-time
graphics applications such as computer games. Preprocessed vis-
ibility data can be used for culling the objects that are hidden by
stationary occluders with practically zero overhead, thereby mak-
ing the rendering process highly output-sensitive. However, the
precomputation of the visibility data using most current methods
is an input-sensitive process, and it may become a significant bur-
den in the production pipeline for large virtual environments.

The precomputed visibility data typically consists of visibility rela-
tions between viewcells and objects. During rendering, the viewcell
that contains the viewpoint is identified, and only the objects that
are visible from the viewcell are drawn. In other words, the visible
set (VS) of the viewcell is used as a potentially visible set (PVS)
for the viewpoint. In virtual environments that exhibit strong oc-
clusion, the visible set of a viewcell contains only a small fraction
of the objects on the average. If the amount of occlusion is small,
the usefulness of a precomputed visibility solution is diminished as
the average size of the visible set approaches the total number of
objects.

The purpose of our algorithm is to perform the computation of the
visible sets for a group of viewcells in an output-sensitive fashion,
meaning that the computational complexity of the process depends
only on the output, not on the input. This requires that the number
of cell-object visibility tests is proportional to the number of visible
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cell-object relations in the output; a property that is achieved by ex-
ploiting the coherence of visibility between adjacent viewcells. The
algorithm is independent of the underlying from-region visibility
algorithm and can be used on top of any conservative, aggressive or
exact algorithm.

Unlike other methods that exploit the coherence between viewcells,
our algorithm is not hierarchical, and it operates directly on the final
set of viewcells. Therefore, the visibility queries are made from
smaller regions than in hierarchical methods, which benefits many
conservative visibility algorithms.

The rest of this paper is organized as follows. The related work
is briefly reviewed in Section 2. In Section 3, we introduce the
concept of a directed visible set and establish a strong relationship
between the directed visible sets of adjacent viewcells. Section 4
shows how this enables us to schedule the visibility computation so
that the visibility information can be propagated efficiently. In sec-
tion 5 we discuss the implementation of the algorithm with an ag-
gressive rasterization-based visibility solver and an exact visibility
solver. Discussion and experimental results are given in sections 6
and 7. Finally, conclusions and future work are given in Section 8.

2 Related Work

Visibility is one of the most researched fields in computer graphics,
and the amount of published research is overwhelming. Compre-
hensive surveys are given by Cohen-Or et al. [2003] and Bittner
and Wonka [2003].

Computing the visible sets for a set of viewcells requires solving
from-region visibility between the viewcell and the objects. This is
in contrast to a from-point visibility solution that only considers the
visibility of the objects from the current viewpoint.

Conservative Algorithms A conservative visibility algorithm
never judges a visible object to be hidden, but may do the opposite,
placing an actually hidden object into the visible set. This results
in sub-optimal rendering performance. The quality of a conserva-
tive algorithm is largely defined by how much it overestimates the
visible set.

Teller and Séquin [1991] present an algorithm for evaluating the
visibility between arbitrarily shaped cells that are connected by por-
tals. A natural cell-and-portal decomposition can be found mainly
for indoor scenes because it requires that the pathways for visibility,
i.e. the portals between cells, are relatively rare and can be explic-
itly identified.

When the objects in the environment are used as occluders, often a
small subset of all objects is sufficient to represent most of the oc-
clusion. Coorg and Teller [1997] precompute a set of good occlud-
ers for each viewcell and cull the objects in the scene hierarchically
from the current viewpoint. The occluders must be convex, and
occluder fusion occurs only when the combined silhouette of mul-
tiple occluders is convex. A similar approach is taken by Cohen-Or
et al. [1998], who precompute the set of strong occluders as well as
the set of visible objects for each viewcell.



Bittner et al. [1998] precompute a set of potential occluders for each
viewcell. At run-time, the occluders are selected dynamically from
this set and their aggregate occlusion is computed using an occlu-
sion tree that is built according to the current viewpoint. Koltun
et al. [2000] observe that the occluders need not be actual objects
in the scene, but may be constructed artificially to represent the ag-
gregate occlusion of multiple objects. These virtual occluders are
precomputed for each viewcell and used for culling objects at run-
time. Bernardini et al. [2000] present a method for constructing
simplified view-dependent occluders for complex objects.

Leyvand et al. [2003] present a spectacularly fast hardware-
accelerated conservative method for computing a reasonably tight
from-region PVS in 2.5D+ε scenes, where horizontal and vertical
coherence of occluders is assumed. A method based on voxeliza-
tion of watertight objects is given by Schaufler et al. [2000]. In
practice, the requirement of watertight objects severely restricts the
applicability of the method. Durand et al. [2000] give a conserva-
tive method for performing visibility precomputation from a view-
cell based on extended projections. Their preprocessing algorithm
evaluates the visibility to each initial viewcell separately, and sub-
divides a viewcell recursively if the number of visible objects is too
large.

A method for parallelizing rendering and PVS computation from a
small region around the current viewpoint is presented by Wonka
et al. [2001]. A recent method by Bittner et al. [2004] maintains the
PVS of a moving viewpoint using hardware occlusion queries. The
algorithm benefits from spatial and temporal coherence of visibility.
The performance is reported to be slightly inferior when compared
to a precomputed viewcell-based PVS. An advantage of the method
is that it is able to handle dynamic occluders.

Aggressive Algorithms An aggressive visibility algorithm
produces a visible set that may lack some of the actually visible
objects but never contains hidden objects. This results in optimal
rendering performance, but gives rise to possible artifacts due to
missing objects.

Gotsman et al. [1999] perform statistical visibility sampling by
ray casting. Their method constructs a five-dimensional BSP tree
that bounds the possible ray origins and directions. Subdividing
the BSP nodes corresponds to either subdividing the 3D cell that
bounds the origin of the ray or constraining the directional bounds
of the ray, depending on the split axis. A recent aggressive sam-
pling method is presented by Nirenstein and Blake [2004], where
hardware-accelerated rasterization is used in place of ray casts. The
viewcells are constructed during the PVS computation by subdivid-
ing a three-dimensional kD-tree whose root node encloses the entire
scene.

Exact Algorithms An exact visibility algorithm always deter-
mines the visibility of an object correctly, never omitting a visible
object or placing a hidden object in the visible set. The rendering
performance is optimal and no artifacts can occur. Unfortunately,
exact visibility algorithms are computationally much more expen-
sive than conservative or aggressive algorithms.

Exact from-region visibility algorithms have been presented for 2D,
2.5D and 3D cases. A thorough treatise on the subject is given by
Bittner [2002]. Nirenstein et al. [2002] apply exact from-region vis-
ibility in the context of PVS precomputation. Their method utilizes
virtual occluders that are built during the processing but does not
exploit the coherence of visibility between viewcells.

Exploiting Coherence Of the methods listed above, only
four [Gotsman et al. 1999; Nirenstein and Blake 2004; Cohen-Or
et al. 1998; Durand et al. 2000] benefit from the coherence of oc-
clusion between viewcells. In these, the visibility information is
built in top-down fashion by subdividing a viewcell and comput-
ing the visible sets of the children by taking into account only the
objects that are visible to the parent. The subdivision process can
begin with a single viewcell covering the whole environment [Gots-
man et al. 1999; Nirenstein and Blake 2004] or with a grid of initial
viewcells [Cohen-Or et al. 1998; Durand et al. 2000].

Bittner et al. [2004] and Wonka et al. [2001] exploit the coherence
of occlusion in a different way while computing the PVS according
to the current viewpoint. In the algorithm of Bittner et al. [2004],
a slowly moving viewpoint leads to most of the visibility data
from previous frame remaining valid. In the approach of Wonka
et al. [2001] the PVS is computed from a region that surrounds the
current viewpoint. This ensures that the PVS remains valid for a
predictable amount of time, assuming that the movement speed of
the viewpoint is bounded.

3 Directed Visible Sets

A viewcell.

In this section we define the concept of a
directed visible set and establish a neigh-
borhood relationship between the directed
visible sets of adjacent viewcells. This re-
lationship is used in the derivation of the
algorithm in Section 4. Throughout the pa-
per, we assume the part of the surface of any
viewcell that can be seen through lies on the
surface of an axis-aligned box, as illustrated in the inset figure. In
the figure, the interior of the viewcell is shown as gray, the thick line
represents an opaque surface and the dashed line corresponds to the
unobstructed surface of the viewcell. From now on, when speaking
of the surface of the viewcell, we refer to this unobstructed part of
the surface.

The visible set of a viewcell is the set of objects that are visible
from some point inside the viewcell. Given a viewcell Ci, the cor-
responding visible set Vi is equal to the union of the set of objects
intersected by Ci and the set of objects that are visible from the sur-
face of Ci. This is because every sightline that originates from the
interior of Ci must either terminate at an object inside Ci or pass
through the surface of Ci. We can therefore reduce the problem of
determining Vi into determining the set of objects intersected by Ci
and determining the visible set of the surface of Ci.

Let us consider the division of the direction space of the sightlines
into separate partitions. In a dim-dimensional space, we divide the
direction space of the sightlines into 2dim partitions so that in each
partition the signs of the components of the direction vector are
fixed. This gives four quadrants in 2D and eight octants in 3D.
The approach is similar to the one of Gotsman et al. [1999], ex-
cept that we always perform the direction space division exactly
into 2dim directional partitions, and no further subdivision is done.
We note that the directional partitions are non-overlapping and that
their union equals the entire direction space.

The directed visible set Vid of cell Ci for a single directional parti-
tion, denoted d, is now defined as the set of objects that are visible
from some point inside Ci when only the sightlines whose direc-
tion vectors satisfy the sign constraints of d are allowed. As with
unconstrained direction vectors, this equals the union of the set of
objects intersected by Ci and the set of objects that are visible from
the surface of Ci, but now with directionally constrained sightlines.
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Figure 1: Direction space division and directed visible sets. (a)
Visible set Vi of cell Ci consists of the marked elliptical objects, the
arrows representing possible sightlines. (b) Directional partitioning
in 2D yields four quadrants that are here numbered from 1 to 4. (c)
Directed visible set Vi1 of Ci corresponding to quadrant 1. Note that
the directionally constrained sightlines can penetrate only two faces
of Ci.

Furthermore, only the parts of the surface of Ci that face towards
the directions specified by d can contribute. Figure 1 illustrates the
direction space division and a directed visible set in comparison to
a traditional visible set.

Finally, we observe that the union of directed visible sets Vid gives
the visible set Vi of cell Ci, since the union of the directional parti-
tions equals the entire direction space. Consequently, we can solve
the directed visible sets separately and combine them to arrive at
the final visible set Vi.

3.1 Neighborhood Relationship

When a sightline exits viewcell Ci through any of its faces, it simul-
taneously enters a neighboring viewcell if there is one. Thus, if Ci is
surrounded by neighbors from all sides, it follows that all sightlines
must traverse through the neighboring cells. Now, assume that a
sightline S originates from the interior of cell Ci, penetrates the sur-
face of Ci at point P, and finally terminates at object O. Object O is
now visible from any point along sightline S. Consequently, object
O must belong into the visible set of all the cells intersected by S,
and particularly into the visible set of the immediate neighbor of Ci
at P.

From this, we obtain a neighborhood relationship for the visible
sets. Assuming that cell Ci is completely surrounded by neighbor-
ing viewcells, we denote the set of neighbors of Ci by Ni, and the
set of objects intersected by Ci by Oi. It now follows that

Vi ⊆ Oi∪
⋃

j∈Ni

V j. (1)

This can be extended to directed visible sets as well. We observe
that for each directional partition d it is possible to prune the neigh-
borhood set Ni because only a subset of neighbors of Ci can be
entered by directionally constrained sightlines originating from the
interior of Ci. Denoting the directed neighborhood set of cell Ci by
Nid , we obtain a similar relationship.

Vid ⊆ Oi∪
⋃

j∈Nid

V jd . (2)

Thus, when computing the directed visible set Vid of cell Ci, we
need to consider only the objects in the set formed by the right
hand side of Equation 2. This set gives us a conservative estimate
of Vid , and consequently also a conservative estimate of the set of
occluders that may affect Vid .

Ci

(a) (b)

Figure 2: Directed neighborhood relationship. When the directions
of the sightlines are constrained to the quadrant shown in (a), the
directed visible set of Ci in (b) is a subset of the directed visible
sets of the three neighbors shown plus the objects intersected by
Ci. Furthermore, the directed visible set of a single face of Ci is
bounded by the directed visible sets of the neighbors of Ci behind
that particular face.

In practice, the relationship can be made even tighter by considering
the directed visible sets of the separate faces of Ci, namely by ob-
serving that the directed visible set of a face of Ci is a subset of the
union of the directed visible sets of the neighbors behind that par-
ticular face. The directed neighborhood relationship is illustrated in
Figure 2.

4 Optimal Scheduling of Computation

In this section we show how the direction space partitioning allows
us to schedule the computation of the visible sets so that the sets
V jd on the right hand side of Equation 2 are always available when
determining the set Vid on the left hand side.

4.1 Directed Dependence Graph

From Equation 2 we see that obtaining a conservative estimate for
Vid requires that V jd , j ∈ Nid are already known. This gives us a
set of dependence relations, from which we construct a dependence
graph for directional partition d, as illustrated in Figure 3. In the
dependence graph we have a node for each cell, and an edge from
cell Ci to cell C j if and only if j ∈ Nid , meaning that Ci depends on
C j. Determining the edges of the dependence graph is trivial, since
Nid contains the neighboring cells of Ci that are behind the faces of
Ci defined by the directional partition d.

The dependence graph for a directional partition d contains no cy-
cles if the set of viewcells has been constructed by a recursive axis-
aligned splitting process, after which some of the cells may have
been removed. This can be seen by considering the modifications
made to the dependence graph caused by splitting. When a node is
split, the newly formed dependence edges connected to the children
retain their direction as illustrated in Figure 4, and no cycles exter-
nal to the node can emerge. Furthermore, since the split is axis-
aligned, both children cannot depend on each other. This ensures
that the resulting set of viewcells cannot have cyclic dependence
graphs.

It is worth noticing that it is possible to construct viewcell config-
urations that generate cyclic dependence graphs, as illustrated in
Figure 5. These kind of configurations are not producible by a re-
cursive splitting process, and apparently occur only in 3D. In these
cases, it is always possible to split the nodes that contribute to the
cycles until all cycles are broken. However, from now on we con-
centrate only on viewcell configurations without dependence cy-
cles, such as those produced by recursive splitting.
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Figure 3: A set of viewcells and the corresponding dependence
graph. (a) The directional partition for which the dependencies are
computed. (b) A set of viewcells with dependencies drawn as ar-
rows. (c) The corresponding dependence graph ordered so that all
dependencies go from right to left. Processing the cells in left-to-
right order ensures that the directed visible sets V jd on the right hand
side of Equation 2 are known when computing the corresponding
Vid on the left hand side.

After the dependence graph has been constructed, the computation
can be optimally scheduled by sorting the graph so that all depen-
dence edges go from future to past. Such an ordering is illustrated
in Figure 3c. The sorting can be done in linear time with respect to
the number of nodes and edges in the graph. Furthermore, it is not
necessary to sort the graph prior to the actual computation, since
the graph can easily be traversed in a sorted order.

4.2 The Multipass Algorithm

We are now equipped with the tools needed to derive the algorithm
for computing the visible sets of all viewcells. The complete vis-
ibility solution algorithm loops through all 2dim directional parti-
tions, and for each partition, constructs the directed dependence
graph and traverses it in a sorted order. In practice, maintaining
a dependence counter for each cell is sufficient for traversing the
dependence graph in the correct order.

Our multipass algorithm for visibility precomputation is given in
Algorithm 1. We now examine the algorithm in some detail. At
line 3, the dependence counter for each cell is initialized according
to the number of neighbors it has to the direction of current d. If
there are no neighbors, the cell is added to the set S of cells that are
ready to be processed. During the execution of a single directional
pass, set S contains the cells Ci whose dependence counter depi is
zero. The loop at lines 6–13 runs until all cells have been processed.
At line 7, a cell Ci with depi = 0 is selected from set S. Since
depi = 0, all neighbors of Ci to the direction of d, i.e., all cells
that cell Ci depends upon have already been processed. Therefore,
in the call to COMPUTE-DIRECTED-VS at line 8, all sets V jd on
the right hand side of Equation 2 have been solved. At lines 9–
12 the dependence counters of the cells that depend on cell Ci are
decremented, and the cells whose dependence counter reaches zero
are added to S. Finally, after all directional passes are made, the
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Figure 4: A set of viewcells produced by a recursive splitting pro-
cess cannot have cyclic dependence graphs. To see this, we consider
splitting the nodes while updating the dependence graph. (a) Cell A
has a set of cells S that depend on it, and a set of cells T it depends
upon. If the graph is initially acyclic, sets S and T must be disjoint.
(b) Node A is split into a pair of nodes B and C, which inherit some
or all dependence relations of A. Since B and C are spatial subsets
of A, a dependence edge may either remain or disappear for a child,
but cannot change its direction. Regardless of whether B depends
on C or vice versa, no cycles can emerge.
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Figure 5: A particularly wicked configuration of viewcells in 3D
may generate a cyclic dependence graph. Left: a configuration that
generates a cycle and the corresponding dependence graph. Right:
splitting cell C results in an acyclic dependence graph. The direc-
tional partition for which the graphs are drawn is shown in the lower
left.

directed visible sets are combined to yield the final visible sets at
line 15.

5 Implementing the Algorithm

In this section we consider some possible implementations of sub-
routine COMPUTE-DIRECTED-VS that is called at line 8 of Algo-
rithm 1. The purpose of this subroutine is to compute the directed
visible set Vid for cell Ci, given the directional partition d and as-
suming that the directed visible sets V jd , j ∈ Nid are available. We
focus entirely on the 3D case (dim = 3), but the methods discussed
are equally applicable to 2D.

The visibility solver in our context refers to the algorithm that
determines the set of objects that is visible from the surface of
viewcell Ci with directionally constrained sightlines. In the fol-
lowing, we consider how the directional constraints for the sight-
lines can be enforced in the exact visibility solvers presented by
Bittner [2002] and Nirenstein and Blake [2004], as well as in the
aggressive rasterization-based solver of Nirenstein et al. [2004].

It should be noted that it is not mandatory to enforce the directional
constraints in the visibility solver in order to use the multipass algo-
rithm, since the visibility solver may be conservative. Even in this
case, the multipass algorithm remains output-sensitive. The only
drawback is that the directed visible sets on the right hand side of
Equation 2 would be overly conservative and thus the computation
would be slower.



COMPUTE-VS(C,dim)
1 for each d ∈ [1,2dim] do
2 for each Ci do
3 depi← number of neighbors of Ci in direction of d
4 if depi = 0 then add Ci into S
5 end for
6 while S is nonempty do
7 pick any Ci from S and remove it from S
8 Vid ← COMPUTE-DIRECTED-VS(Ci,d,dim)
9 for each neighbor C j of Ci in direction reverse to d do

10 dep j← dep j−1
11 if dep j = 0 then add C j into S
12 end for
13 end while
14 end for
15 for each Ci do Vi←

⋃
d∈[1,2dim]Vid

Algorithm 1: The multipass visible set computation algorithm in
pseudocode. Detailed explanation of the algorithm is given in Sec-
tion 4.2.

5.1 Exact Visibility Solver

The exact visibility solver algorithm of Bittner [2002] is based
on a six-dimensional dual representation of the line space in 3D.
The same approach is taken by Nirenstein et al. [2002]. The six-
dimensional dual space is called the Plücker space. A thorough
treatise on the subject is beyond the scope of this paper, and we re-
fer the interested reader to the comprehensive presentation by Bit-
tner [2002].

The six Plücker coordinates of a directed line l are denoted
π0 . . .π5. The Plücker coordinates of a line from point u to point
v are given by the following formulas (from [Bittner 2002]).

π0 = vx−ux π1 = vy−uy π2 = vz−uz
π3 = uyvz−uzvy π4 = uzvx−uxvz π5 = uxvy−uyvx

(3)

A simple permutation of the Plücker coordinates of a line defines
a six-dimensional Plücker hyperplane with components ω0 . . .ω5.
Taking the sign of the dot product between a dual-space represen-
tation of line l1 and the Plücker hyperplane of line l2 tells whether
line l1 passes line l2 in a clockwise or a counter-clockwise man-
ner. Now, the set of lines that pass through a planar polygon cor-
responds to a convex six-dimensional polytope that is the inter-
section of the half-spaces defined by the Plücker hyperplanes of
the edges of the polygon. The exact visibility algorithms of Bit-
tner [2002] and Nirenstein et al. [2002] are based on constructing
the six-dimensional polytope that represents the possible lines be-
tween two polygons, and recursively removing the parts that corre-
spond to lines passing through occluder polygons. If the polytope
vanishes1, the polygons cannot see each other.

Our directional constraints for the sightlines fix the signs of the
components of direction vector of the sightline. These constraints
are easily converted into Plücker hyperplanes. From Equation 3 we
see that coordinates π0 . . .π2 are equal to the components of a three-
dimensional vector from point u to v. Now, a constraint on the sign
of x component of the direction vector of the sightline is realized
in six-dimensional dual space by a hyperplane corresponding to a
line with nonzero π0 and zero π1 . . .π5. Similarly, for y and z com-
ponents, two more hyperplanes are needed. Therefore, enforcing
the directional constraints for the sightlines only requires adding

1Actually, it is only required that the remaining parts of the polytope do
not intersect a second-order surface called the Grassman manifold in the
Plücker space.
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Figure 6: Two-dimensional illustration of hemicubical sampling.
The directional constraints of the sightlines are enforced by raster-
izing only one fourth of a hemicube (one half of the hemisquare
in 2D). Combining the results from multiple directional partitions
yields the same result as rendering full hemicubes, with exactly the
same number of rasterized fragments in total. The numbering of the
directional partitions is the same as in Figure 1.

three additional Plücker hyperplanes into the initial six-dimensional
polytope that defines the lines between the two polygons between
which the visibility is being solved.

5.2 Sampling Visibility Solver

Next we consider the point sampling-based visibility solver pre-
sented by Nirenstein and Blake [2004]. In this method, the visible
set of a viewcell is determined by sampling the visibility from mul-
tiple points located on the surface of the viewcell. The sampling
is performed by rasterizing hemicubical maps centered at the sam-
pling points.

With this algorithm, the directional constraints for the sightlines
can be enforced by limiting the view frusta of the images that are
rasterized from a sampling point. Instead of rasterizing a complete
hemicube it suffices to rasterize only a fourth of the hemicube that
corresponds to the octant specified by the current directional parti-
tion, as illustrated in Figure 6. When eight directional passes are
made, the number of rasterized fragments is equal to sampling the
same number of whole hemicubes once. The cost of additional ge-
ometry processing can be practically removed by per-object view-
frustum culling. With the point-based sampling method, we can
utilize the directed visible sets of the neighboring cells very effi-
ciently by rasterizing only the objects in the directed visible set of a
single neighbor cell; instead of taking the union in Equation 2, we
can directly use the V jd of the neighbor at the sampling point.

6 Discussion

In this section we contrast our multipass algorithm for exploiting
the coherence of visibility with the previously presented methods.
In addition, we discuss the limitations of the algorithm and give a
proof of the output-sensitivity of the algorithm.

6.1 Comparison to Related Methods

Of the methods surveyed in Section 2, four [Gotsman et al. 1999;
Nirenstein and Blake 2004; Cohen-Or et al. 1998; Durand et al.
2000] exploit the coherence of visibility between viewcells by solv-
ing the sets of visible objects hierarchically. This has several draw-
backs. If the visibility algorithm performs little or no occluder fu-
sion, the occlusion power of single occluders becomes very small
for large viewcells. In addition, the first splits in the hierarchy are
generally expensive, since the visible set to be refined is large.
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Figure 7: A comparison of a visibility computation algorithm that processes viewcells hierarchically [Cohen-Or et al. 1998; Durand et al.
2000] and our multipass algorithm. Exact visibility queries are assumed. The ellipse represents a target for a visibility query, and may be an
object or a node in a bounding volume hierarchy for objects. The curved line is an occluder. For each hierarchy level or directional pass, the
number of queries returning visible (V) and hidden (H) as a result is shown. (a) The hierarchical algorithm does not evaluate the visibility of
the target for the children of a node in the viewcell hierarchy when the target is hidden from the parent node. However, many unnecessary
visible queries are made. (b) Our multipass algorithm operates directly on the finest-level viewcells. The number of visible queries is smaller
than in the hierarchical algorithm. More hidden queries are made, but they are made from significantly smaller regions than in the previous
cases, which would benefit conservative visibility solvers.

Figure 7 compares the number of visible and hidden occlusion
queries made by a hierarchical algorithm and our multipass algo-
rithm. The hierarchical algorithm is used by Cohen-Or et al. [1998]
and Durand et al. [2000]. Note that here we refer to using a hi-
erarchical technique for the viewcells, as opposed to placing the
occludees into a hierarchy. Indeed, the only feature we focus on
is how the algorithms exploit the coherence of visibility between
viewcells. The target for the visibility query may be a single object
or a node in an object hierarchy.

In the simple 2D scene of Figure 7, our algorithm performs fewer
visible queries and somewhat more hidden queries. However, it
must be noted that the hidden queries are made from much smaller
regions than in the hierarchical method. If a conservative visibility
solver was used in the example, the hierarchical methods could have
behaved worse, since many conservative visibility solvers overesti-
mate the visibility more for large regions than small regions.

In most hierarchical algorithms the progressive top-down refine-
ment of the visibility data requires multiple evaluations of the same
visibility relationships. For example, if an object is visible from ev-
ery viewcell, its visibility is separately proven for every node in the
viewcell hierarchy. The superset simplification method of Niren-
stein and Blake [2004] avoids this multiple evaluation by caching
the visibility information of distinct sampling points so that they
can be re-used when a viewcell is split. The first splits, however, re-
main relatively expensive, and especially if the entire scene cannot
be accommodated in main memory, the sampling of the first levels
of the hierarchy may become prohibitively expensive. With high
sample counts, the cache may become very large even when com-
pressed, which may also limit the applicability of the cache-based
method. In addition, the method can only be used with point-based
sampling.

Our multipass algorithm is not hierarchical and thus needs no su-
perset simplification algorithm. Furthermore, if used in conjunction
with a point-based sampling method, it always provides the sampler
a tighter visible set to refine than the superset simplification algo-
rithm of Nirenstein and Blake [2004]. The difference in the visible
set to be refined is illustrated in Figure 8.
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Figure 8: Comparison to the cache-based superset simplifica-
tion method of Nirenstein and Blake [2004]. (a) When a view-
cell is split, the superset simplification method of Nirenstein and
Blake [2004] performs visibility sampling for the splitting plane
using the visible set of the whole viewcell (shown in gray). (b) In
the same situation, our algorithm needs to consider only the visi-
ble set of the half of the cell when sampling from the plane. The
difference is even larger if the viewcell is eventually split further.
(c) Assuming that a viewcell is eventually split into 4×4 viewcells,
the superset simplification method of Nirenstein and Blake [2004]
considers the visible set of the whole original cell for the first split
(dotted line). (d) With our algorithm, the visibility sampling for the
shown portion of the dotted line needs to consider only the visible
set of cell B when determining the visible set of cell A. No caching
of the results of distinct sampling points is required.

6.2 Limitations

Our algorithm requires that the final set of viewcells is determined
prior to the visibility computation. This is in contrast to the hi-
erarchical methods that are able to terminate the splitting of the
viewcells adaptively based on the evaluated visible sets. However,
it is possible to first determine the set of viewcells using e.g. the
sampling-based method of Nirenstein and Blake [2004] with very
coarse sampling, and then perform the final visibility computation
with our algorithm.

If the viewcells do not span the entire environment, there may be
sightlines that pass through the boundary of the entire viewcell com-
pound, as illustrated in Figure 9. This may occur with e.g. a hole in
a wall if view cells are placed on one side only. When solving the
directed visible sets from the boundary of the viewcell compound,



Figure 9: In this simplified 2D environment there are sightlines
between the viewcells (gray squares) and objects (ellipses) that do
not lie completely within the set of viewcells. Solving the directed
visible sets from the boundary of the viewcell compound (dotted
lines) requires that all objects are taken into account, since there is
no neighbor information to benefit from.

no neighbor information is available, and therefore all objects in
the environment must be taken into account. The problem becomes
severe only if the boundary of the viewcell compound is relatively
large. In this case, it may become beneficial to evaluate the visi-
bility from the boundary with a hierarchical algorithm, while using
the multipass algorithm for the viewcell faces inside the compound.

6.3 Output-sensitivity

We now show that the multipass algorithm is output-sensitive under
certain conditions. First, we assume that all sightlines are contained
inside the viewcell compound. Second, the proof relies on the as-
sumption that the number of cells that may directly depend on any
viewcell is bounded by some constant K. In a regular grid, for
example, K = dim. Finally, we require that the running time of a
visibility query between a single viewcell and a set of objects de-
pends only on the number of objects in the query, the same objects
acting both as occluders and occludees.

To prove that the multipass algorithm is output-sensitive, we may
focus on a single directional pass, since if processing a single di-
rectional partition is output-sensitive, so is processing a constant
number of partitions. From now on, we consider only a single pass
and define the size of the output as the number of visible cell-object
relations within the directional partition d of the pass.

Consider a situation where the directed visible set Vid has been
determined for viewcell Ci. No assumptions about the conserva-
tiveness or exactness of the visibility solver used for determining
this set are needed. Now assume that Vid contains n objects, which
causes an increase of n to the size of the output. To prove the output-
sensitivity of the algorithm, we now show that the increase in the
computational workload for the remaining cells is at most propor-
tional to n.

Let us consider a cell C j that is one of cells that depend directly
on Ci. When we are to solve the directed visible set of cell C j, we
must take into account the objects that are in the directed visible
sets of the cells it depends on. Let us denote the union of these sets
S. Now, if the directed visible set Vid of Ci turned out to contain
n objects, this can cause an increase of at most n in the size of S.
Observing that there are at most K cells that depend on Ci, we see
that the total increase in the sizes of all sets S that are affected by
Ci is at most Kn. Therefore the total increase in workload caused
by having n visible objects in Ci is at most proportional to n. This
completes the proof.

7 Experimental Results

We compared our method against a simple brute-force algorithm
and the cache-based viewcell hierarchy algorithm of Nirenstein and
Blake [2004] in a set of visibility preprocessing tasks. For solving
the visibility, rasterization was used with uniform sampling density
and no sample positioning heuristics. Since none of the algorithms
solves the visibility from same area multiple times, all algorithms
took exactly the same number of samples in a given test case.

The most important figures in the results are the average sizes of
the refine sets that the algorithms give to the visibility solver as the
conservative approximations of the visible sets. Before from-point
rasterization, the refine sets are pruned by object-level view frus-
tum culling, and the refine set sizes in the results are measured after
view frustum culling done per sampling point. In order to get com-
parable results, the hemicubes of the two comparison algorithms
were rasterized in multiple parts as is done by the multipass algo-
rithm. The additional cost of rasterizing the hemicubes in parts is
limited to performing geometry transformations multiple times for
objects on the boundary of the view frustum.

Evaluating the output-sensitivity of the algorithms requires that the
amount of visibility can be adjusted while keeping all other parame-
ters as constant as possible. To accomplish this, we used four proce-
durally generated test scenes, two of which are shown in Figure 10.
The scenes are split into objects by simple spatial subdivision. All
scenes have ∼350K triangles and ∼1800 objects. The visibility
precomputation was performed for three viewcell resolutions, 23,
43 and 83 viewcells. In total, twelve test runs were thus made for
each of the three algorithms.

The tests were run on Pentium Mobile 1.6GHz with ATI Mobility
Radeon 9200. The results are shown in Table 1. It can be seen
that the multipass algorithm performs better than the comparison
algorithms both in terms of refine set sizes and rasterization times.
Figure 11 shows the improvement in the sizes of the refine sets
compared against the cache-based viewcell hierarchy algorithm of
Nirenstein and Blake [2004]. It is seen that the relative efficiency
of the multipass algorithm increases when the PVS size is reduced
either due to added occlusion or increased viewcell resolution.

8 Conclusions and Future Work

We have presented a new general algorithm for precomputing static
visibility into a set of viewcells in an output-sensitive fashion. In
contrast to the previous algorithms that exploit the coherence of vis-
ibility, our algorithm is not hierarchical but operates directly on the
finest-grain viewcells. This is beneficial when using conservative
from-region visibility solvers that perform limited occluder fusion
and consequently tend to overestimate the visibility from large re-
gions. We have shown that using our algorithm requires only small
changes into existing exact from-region visibility solvers to enforce
the directional constraints for the sightlines.

A chief advantage of our algorithm, when compared to hierarchical
algorithms, is that the full set of objects in the environment does
not need to be considered at any point of visibility precomputation,
provided that the viewcells span the entire environment. This is
especially important for very large environments that cannot be ac-
commodated in main memory. In addition, multiple evaluation of
the visibility relationships is completely avoided.



TUNNELS-10 TUNNELS-100

Figure 10: Four procedurally generated test scenes were used for performance measurements. The tunnel network is the same for all scenes,
but the number of open tunnels is varied in order to control the amount of visibility. The model on the left (TUNNELS-10) has 10% of the
tunnels opened, and consequently the visible set (dark green) of the viewcell shown is small. The model on the right (TUNNELS-100) has
100% of the tunnels open, which makes the visible set larger. In addition to these models, two intermediate variants with 40% and 70% of
open tunnels were used (TUNNELS-40 and TUNNELS-70, respectively). All models have ∼350K triangles and ∼1800 objects.
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Figure 11: Ratio between the average sizes of the refine sets pro-
duced by the cache-based viewcell hierarchy algorithm of Niren-
stein and Blake [2004] (VH) and the multipass algorithm (MP). On
the horizontal axis is the average size of the PVS. Each four-point
series corresponds to the results for the four test scenes with the
same viewcell resolution. In each series, the relative efficiency of
the multipass algorithm increases as the amount of visibility dimin-
ishes due to added occlusion. The relative efficiency of the multi-
pass algorithm increases also when the size of the PVS is reduced
by increasing the viewcell resolution.

8.1 Future Work

Efficient processing of the boundary of the viewcell compound may
require hierarchical or other techniques if the boundary is large. An
algorithm that combines the multipass algorithm with other tech-
niques for dealing with the boundary remains to be developed.

The multipass algorithm requires that the set of viewcells is known
a priori. However, it might be possible to develop a hybrid algo-
rithm that constructs the viewcells adaptively based on the visi-
bility, while retaining the output-sensitivity of the multipass algo-
rithm.
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