
Graphics Hardware (2005)
M. Meissner, B.- O. Schneider (Editors)

Split-Plane Shadow Volumes

Samuli Laine

Helsinki University of Technology / TML
Hybrid Graphics, Ltd.

setup Z-pass with depth bounds Z-fail with depth bounds proposed method

Figure 1: A graphical comparison of stencil shadow volume algorithms with a complex shadow caster. The colors in the three
rightmost figures indicate how many times the pixels are processed. Early culling is used with 8× 8 pixel tiles. In the setup
depicted, the proposed algorithm reduces the number of tiles passing the early culling stage by a factor of 6.5 (6.2) compared
to Z-pass (Z-fail) algorithm. The number of pixels processed is reduced by a factor of 8.2 (7.5) and the number of stencil buffer
updates by a factor of 30.9 (26.7).

Abstract
We present a novel method for rendering shadow volumes. The core idea of the method is to locally choose
between Z-pass and Z-fail algorithms on a per-tile basis. The choice is made by comparing the contents of the
low-resolution depth buffer against an automatically constructed split plane. We show that this reduces the number
of stencil updates substantially without affecting the resulting shadows. We outline a simple and efficient hardware
implementation that enables the early tile culling stages to reject considerably more pixels than with shadow
volume optimizations currently available in the hardware.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism – Shadowing; I.3.1 [Computer Graphics]: Hardware Architecture – Graphics processors

1. Introduction

Shadows enhance the realism of computer-generated images
and also provide information about the spatial relationships
of objects. The two predominant techniques for rendering
hard shadows are shadow maps [Wil78] and shadow vol-
umes [Cro77]. Shadow maps are efficient, but they suffer
from aliasing artifacts caused by their discrete resolution. In
contrast, shadow volumes always generate correct shadows
but are usually less efficient, primarily because of their fill
rate consumption.

In this paper, we present a method for reducing the fill rate
requirements of the shadow volume algorithm. We combine

two well-known algorithms for rendering the shadow vol-
umes, the so-called Z-pass and Z-fail algorithms. Z-pass al-
gorithm is efficient when the majority of the shadow volume
is hidden, while the opposite holds for Z-fail algorithm. The
core observation behind our method is that since both algo-
rithms produce identical shadows, the choice between using
Z-pass or Z-fail can be made locally, as long as it stays con-
sistent while rendering a single shadow volume. If the choice
is made on a per-tile basis, we can cull entire pixel tiles when
it can be concluded that none of the pixels in the tile would
cause stencil updates.

The rest of the paper is organized as follows. We first re-

c© The Eurographics Association 2005.



Laine / Split-Plane Shadow Volumes

view previous work on shadow volumes in Section 2. In Sec-
tion 3, we show that the choice between Z-pass and Z-fail
algorithms can be made efficiently by assigning a suitable
split depth for each surface point and performing a split test
for choosing the algorithm. In Section 4, we consider com-
puting the split depths based on split planes constructed for
the shadow volumes. Two methods for constructing the split
planes are presented, followed by a robust method for per-
forming the split tests without explicitly computing the split
depth. Section 5 outlines a simple hardware extension for
performing the split tests on a per-tile basis, enabling the
hardware to cull multiple pixels at once. In Section 6, we
discuss decomposing the shadow casters into sub-objects,
which benefits our method significantly. Experimental re-
sults are presented in Section 7, followed by discussion and
directions for future work in Section 8.

2. Previous Work

In this section, we focus on real-time methods for ren-
dering shadow volumes using graphics hardware. The
topic of shadow rendering in general is broad, and we
refer the interested reader to the comprehensive sur-
veys by Woo et al. [WPF90] and Haines and Akenine-
Möller [HM01].

The shadow volume algorithm [Cro77] constructs the
three-dimensional volumes that represent the shadowed re-
gions, and tests whether the visible surfaces are inside these
volumes or not. In the hardware-accelerated implementation
of the original algorithm [Hei91], the scene is first rendered
from camera with ambient light only, obtaining screen-space
depths of all visible surfaces. Then, shadow volumes of the
shadow casters are rasterized so that the stencil buffer is up-
dated in the pixels where a fragment of the shadow volume
boundary would be visible to the camera. Finally, a third ren-
dering pass is made where fragments are lit with diffuse and
specular light only in the pixels where stencil buffer indi-
cates that the visible surface is not in shadow. This is com-
monly known as the Z-pass algorithm, since the shadow vol-
ume boundaries must be visible to the camera, i.e. pass the
depth test in the usual sense, to cause stencil buffer update.

The Z-pass algorithm fails to calculate the shadows cor-
rectly when the near plane of the camera is partially or com-
pletely inside the shadow volume. In this case, portions of
the shadow volume boundary are clipped away by the near
plane of the camera. Recently, Hornus et al. [HHLH05] pre-
sented an elegant method called ZP+ for fixing this defect in
the Z-pass algorithm. The idea is to pre-fill the stencil buffer
using the shadow caster triangles that lie inside the pyramid
formed by the light source and the near plane of the camera.
The triangles are projected onto the near plane of the camera
with a carefully constructed projection matrix.

Another robust method for rendering shadow volumes is
the so-called Z-fail algorithm that was independently discov-
ered in slightly different forms by Bilodeau and Songy in

1999 and by Carmack in 2000 [EK02]. In Z-fail algorithm,
the stencil buffer is updated for shadow volume boundary
fragments that are behind the visible surfaces. This removes
the problem of near plane clipping, but produces false re-
sults when the shadow volume is clipped by the far plane.
Far plane clipping can be eliminated by pushing the far plane
distance to infinity, or by clamping the depth values instead
of clipping [EK02].

2.1. Shadow Volume Optimizations

A shadow volume is, by definition, a closed polyhedral vol-
ume that consists of light cap, dark cap and side quads.
The light cap is formed by the triangles of a shadow caster
that are back-facing to the light source, and the side quads
are extruded from the silhouette edges of the shadow caster.
The dark cap closes the shadow volume and is commonly a
replica of the light cap at the extrusion distance.

The Z-pass algorithm does not need to rasterize the light
cap, since the shadow-casting object obscures the light cap
by coinciding with it. In addition, the dark cap does not need
to be rasterized if the shadow volume is extruded far enough
to make the dark cap hidden. Because of this, the Z-pass al-
gorithm is often favorable over Z-fail algorithm, and hence
the ZP+ algorithm [HHLH05] that enables the Z-pass algo-
rithm to be used in all situations may provide speedup over
Z-fail. Everitt and Kilgard [EK02] suggest selecting dynami-
cally between Z-pass and Z-fail algorithms, using Z-fail only
when necessary.

Reducing Rasterization Work Attempts have been made
to reduce the number of pixels processed while rendering
the shadow volumes. Lengyel [Len02] shows that the scis-
sor test can be used for limiting the rasterization area when
an attenuated light source is used. The depth bounds hard-
ware extension [NVI03] is similar to scissor test but the test
is made against the depth values stored in the depth buffer.
When depth bounds dbmin and dbmax are set, the hardware
culls the pixels where the depth value stored in the depth
buffer is outside range [dbmin,dbmax]. Therefore, if the depth
bounds are set so that they contain the entire shadow vol-
ume, processing the pixels that are outside the depth bounds
can be avoided. Tight depth bounds are obtained when the
shadow volume is nearly perpendicular to the viewing direc-
tion, but in many cases the depth bounds become very con-
servative. When an attenuated light source is used, the depth
bounds can be clamped according to the attenuation range.

Combining scissor test [Len02] and depth
bounds [NVI03] is suggested by McGuire et al. [MHE∗03],
who also give an algorithm for constructing a simple dark
cap based on the silhouette edges of a shadow caster. A
method for constructing the shadow volume entirely on
graphics hardware is given by Brabec and Seidel [BS03].
Lengyel [Len05] considers a number of stencil shadow op-
timizations as well as rendering soft shadows. By applying

c© The Eurographics Association 2005.



Laine / Split-Plane Shadow Volumes

geometry scissors, the shadow volume rendering work can
be significantly reduced in common cases by taking into
account the geometry of the shadow receivers. Interestingly,
in the context of penumbra wedge rendering, Lengyel
applies a method that is similar to the one presented in
this paper. However, the method is used only for penumbra
wedge rendering, and does not enable the hardware to
perform early pixel tile culling as efficiently as the hardware
extensions proposed in this paper.

Lloyd et al. [LWGM04] cull shadow volumes that are
themselves in shadow or do not contribute to the final image.
They also geometrically clamp the shadow volumes coarsely
to regions that contain shadow receivers. Chan and Du-
rand [CD04] use a shadow map [Wil78] for identifying the
pixels in the image that lie near shadow discontinuities and
then process these pixels using shadow volumes. Artifacts
may occur when the resolution of the shadow map is not
high enough to capture all the relevant features of the shadow
casters. Unlike in the method of Lloyd et al. [LWGM04],
the shadow volumes are sent to the graphics hardware in
entirety, and the reduction in pixel processing is obtained
by exploiting early culling hardware. McCool [McC00] first
renders a shadow map with all shadow casters, and then con-
structs a shadow volume based on the shadow map. Unlike
geometry-based shadow volume construction, the side quads
are generated only at the outermost silhouettes of the shadow
casters, potentially simplifying the shadow volume geome-
try substantially. However, because of the limited resolution
of the shadow map, artifact-free result cannot be guaranteed.

Aila and Akenine-Möller [AAM04] propose a two-stage
hierarchical method for rendering shadow volumes in hard-
ware. In the first stage, a low-resolution shadow volume is
rasterized and pixel tiles that may contain shadow volume
boundaries are detected. In the second stage, the shadow
volume is rasterized on pixel level only inside the boundary
tiles. They also introduce a hierarchical stencil buffer for re-
ducing the memory bandwidth requirements of stencil buffer
updates.

3. Theory

The Z-pass algorithm counts the number of shadow volume
enter/exit events along a ray from eye to a fragment. This is
achieved by rendering the shadow volume boundary trian-
gles so that whenever the depth value zfrag of the boundary
triangle fragment at a pixel is smaller than the depth zpixel
of the pixel stored in depth buffer, the stencil buffer is up-
dated. The adjustment is positive for front-facing boundary
triangles (enter event), and negative for back-facing bound-
ary triangles (exit event). Formally, we can express this with
the following equation for stencil buffer adjustment ∆S:

∆S(ZP) =


+1 if zfrag < zpixel , facing = front
−1 if zfrag < zpixel , facing = back

0 otherwise
(1)

The Z-fail algorithm counts the number of events along a
ray from infinite distance to a fragment. The criterion for
determining whether the stencil buffer should be updated or
not is inverted, as is the sign of the adjustment based on the
facing of the triangle. Thus, the equation for stencil buffer
adjustment ∆S is as follows:

∆S(ZF) =


−1 if zfrag ≥ zpixel , facing = front
+1 if zfrag ≥ zpixel , facing = back

0 otherwise
(2)

If depth bounds are used, both Equations 1 and 2 should be
augmented with a criterion that ∆S is zero whenever zpixel is
outside range [dbmin,dbmax].

3.1. Split Test

The key idea of our method is to apply one more criterion
for determining the stencil buffer adjustment ∆S. We take
into accout a pixel-dependent split depth, denoted zsplit, and
compare it against the depth stored in the depth buffer, de-
noted zpixel . We refer to this test as the split test, and the
result of the test determines whether Z-pass or Z-fail stencil
update rules are to be used. The split depth does not need
to be same for every pixel (unlike depth bounds dbmin and
dbmax are), but we require that zsplit remains same for any
given pixel as long as we are processing a single shadow
volume. This ensures that the result of the split test is con-
sistent while processing a single shadow volume.

If zpixel is smaller than zsplit, we apply Z-pass stencil up-
date rules, and otherwise we apply Z-fail rules. We thus have
the following equation for stencil buffer adjustment ∆S:

∆S(SPSV) =


+1 if zfrag < zpixel < zsplit , facing = front
−1 if zfrag < zpixel < zsplit , facing = back
−1 if zfrag ≥ zpixel ≥ zsplit , facing = front
+1 if zfrag ≥ zpixel ≥ zsplit , facing = back

0 otherwise
(3)

From now on, we refer to this set of rules as the split-plane
shadow volume algorithm (SPSV), for reasons that will be-
come apparent later in this paper. Since it is required that
zsplit remains same for any given pixel while rendering a sin-
gle shadow volume, the stencil update rules stay consistent
for a given fragment. Therefore, we effectively perform a
per-pixel choice between Z-pass and Z-fail algorithms, and
since both methods provide correct shadows, so does the
proposed method.

The motivation for adding the split test is that no stencil
buffer update is required unless zpixel is between zfrag and
zsplit, as can be seen from Equation 3. This generally yields
a reduction in the number of stencil buffer updates, provided
that the split depth zsplit is chosen wisely. We show in Sec-
tion 4 that good split depths can be obtained efficiently by
assigning a suitable split plane for every individual shadow
volume, and calculating the split depths based on the plane
equation of the split plane.

c© The Eurographics Association 2005.



Laine / Split-Plane Shadow Volumes

4
3
2
1
0

 zpixel

dbmin

4
3
2
1
0

4
3
2
1
0

zsplit

dbmax

dbmin dbmax
z-pass

z-fail

SPSV

stencil updates

stencil updates

stencil updates

(a)

(b)

(c)

zf1 zf2 zf3 zf4

zf1 zf2 zf3 zf4

zf1 zf2 zf3 zf4

 zpixel

 zpixel

Figure 2: Comparing the number of stencil updates. Let us
consider the cost of processing a single pixel with unknown
zpixel. Depth bounds are indicated by dbmin and dbmax. Four
shadow volume boundary fragments f1 · · · f4 with depths
z f1 · · ·z f4 are processed at the pixel. The graphs show the
number of stencil updates as a function of zpixel. (a) Z-
pass algorithm updates the stencil for every shadow volume
boundary fragment with z f < zpixel, except for zpixel > dbmax,
where no updates are made. (b) Z-fail algorithm updates the
stencil for every shadow volume boundary fragment with
z f ≥ zpixel, except for zpixel < dbmin, where no updates are
made. (c) The split-plane shadow volume algorithm updates
the stencil for every shadow volume boundary fragment
where zpixel is between zsplit and z f , i.e. z f < zpixel < zsplit
or z f ≥ zpixel ≥ zsplit. Using depth bounds gives additional
benefit only if zsplit is outside dbmin and dbmax. The shaded
area under the curve is proportional to the expected num-
ber of stencil updates. The optimal split position zsplit is such
that there are equally many boundary triangles on both sides
of zsplit, since this minimizes both the area under the curve
and the worst-case update count. As long as zsplit is between
dbmin and dbmax, the area under the curve is always smaller
than with Z-pass or Z-fail.

3.2. Comparison of Different Algorithms

In Figure 2, we compare Z-pass and Z-fail algorithms against
the proposed split-plane algorithm in the context of process-
ing a single fragment with unknown depth. With Z-pass
(Figure 2a) and Z-fail (Figure 2b) algorithms, the number

of stencil buffer updates is in worst case equal to the number
of shadow volume boundary triangles that overlap the frag-
ment. In contrast, with an appropriate split distance zsplit, the
split-plane shadow volume algorithm (Figure 2c) never per-
forms more than two updates in the case depicted. Note that
the depth bounds would provide no additional benefit with
the split-plane shadow volume algorithm.

What is especially important is that the split-plane
algorithm reduces the number of stencil updates
to zero whenever pixel depth zpixel is outside range
[min{zfrag1

, . . . ,zfragN
,zsplit},max{zfrag1

, . . . ,zfragN
,zsplit}].

Therefore, when the shadow volume lies entirely behind
or in front of visible geometry, no stencil updates are
performed if the split depth is chosen suitably. Using depth
bounds dbmin and dbmax may achieve the same result, but
since the depth bounds are set globally, they are generally
much more conservative. Therefore, the worst case of zpixel
being inside depth bounds but outside the shadow volume is
quite common.

3.3. Shadow Rendering Algorithm

The basic Z-pass algorithm has well-known problems when
the near plane of the camera is located inside the shadow vol-
ume. These problems concern our algorithm as well in pix-
els where Z-pass rules are used. As mentioned in Section 2,
the recently presented ZP+ algorithm [HHLH05] corrects
these problems with Z-pass algorithm. In our method, the
ZP+ correction must be applied exactly in the pixels where
Z-pass rules are used. In pixels that use Z-fail rules, the cor-
rection must not be applied, since incorrect results would be
obtained from mixing the two algorithms.

The Z-fail algorithm needs the caps of the shadow vol-
ume to be drawn, whereas the Z-pass algorithm never needs
to draw the light cap. The dark cap is required by Z-pass
algorithm only when the extrusion distance of the shadow
volume is not enough to guarantee that the dark cap is not
in sight. In our algorithm, we can thus always limit the ren-
dering of the light cap to those pixels that use Z-fail rules.
For dark cap, the same applies depending on the extrusion
distance.

We can thus formulate the full shadow rendering algo-
rithm for a single shadow volume as follows:

1. render ZP+ correction geometry in Z-pass pixels
2. render light cap in Z-fail pixels
3. if dark cap may be visible, render dark cap in all pixels,

otherwise render dark cap only in Z-fail pixels
4. render side quads with split-plane shadow volume algo-

rithm (Equation 3)

All the steps above can be performed in a straightforward
fashion if the graphics API allows selecting the stencil up-
date operation based on the results of the depth test, split test
and polygon facing.

c© The Eurographics Association 2005.



Laine / Split-Plane Shadow Volumes

4. Split Plane

In this section, we consider computing the split depths based
on automatically constructed split planes. We first present
two heuristic methods for determining split planes for a
given object. The first method spans the plane according to a
single pre-selected point associated with the object, the light
position and the camera position. The second method is tar-
geted for thin objects and it spans the plane according to
the light position and two pre-selected points associated with
the object. After this, we present two methods for perform-
ing the actual split test against the split plane, followed by a
short discussion on the robustness of the split test and plane
construction methods.

4.1. Plane Construction Method 1: Point-Camera-Light

The split plane should split the shadow volume efficiently in
two halves, as seen from the camera. We can thus formulate
our goal as maximizing the screen-space area of the portion
of the split plane that lies inside the shadow volume. Consid-
ering that the shape of the object is not taken into account,
we pursue this goal by positioning the plane so that it con-
tains the approximated centerline of the shadow volume and
is maximally orthogonal to the view rays from camera to the
approximated centerline. The centerline of the shadow vol-
ume is approximated by selecting a single point p inside the
object, and spanning a line through light position l and p.
In our tests, placing p simply at the center of the bounding
box of the object worked well. The orthogonality require-
ment is fulfilled by orienting the plane so that the split plane
is orthogonal to the plane formed by camera position c, light
position l and the selected point p.

We write the homogeneous plane equation Ax+By+Cz+
Dw = 0 as a dot product between two four-vectors P and x
so that P ·x = 0, where x is the homogeneous point [x,y,z,w]
to be classified, and P contains the plane constants A,B,C
and D. For convenience, we further decompose P into plane
normal Pn = [Px,Py,Pz] = [A,B,C] and plane offset Pw = D.

Plane P can be computed according to the aforementioned
constraints subject to points p, c and l as follows:

Pn = [(c− l)× (p− l)]× (p− l)
Pw = −Pn · l

(4)

The facing of the plane, i.e. whether the camera is on the
positive or on the negative side of the plane, does not con-
cern us here. Figure 3 shows two examples of split planes
constructed with Point-Camera-Light method.

4.2. Plane Construction Method 2: Point-Point-Light

In cases where the shadow-casting object is long and thin, it
is not useful to align the split plane so that it is maximally or-
thogonal with the view rays. The orthogonality requirement
may tilt the plane so that the overlap with the shadow vol-
ume becomes small. Consider a thin, cylindrical object with

Figure 3: Split planes constructed with Point-Camera-Light
method (Section 4.1). Top row: The split plane (shown in
transparent red) constructed with point p at the center of the
bounding box of the teapot, and the resulting pixel process-
ing counts when the shadow volume is rendered with split-
plane shadow volume algorithm. Bottom row: A different
viewpoint produces a different split plane, because the loca-
tion of the camera is taken into account. The blocky features
in the pixel processing count images on the right are due to
per-tile culling (to be explained in Section 5).

two points p1 and p2 placed at the endpoints of the cylinder.
Spanning the plane through points p1, p2 and light position
l is now a good choice, since it ensures that the split plane is
properly aligned inside the flat shadow volume generated by
the thin cylinder. Plane P is therefore constructed as follows:

Pn = (p1− l)× (p2− l)
Pw = −Pn · l

(5)

Figure 4 shows a comparison of Point-Camera-Light and
Point-Point-Light methods with a shadow-casting pole.

4.3. Split Test Against a Split Plane

There are essentially two ways for performing the split test
against a split plane. The first approach is to explicitly com-
pute zsplit and then compare zpixel against it. The second ap-
proach is to construct point x that represents the location of
the surface in the pixel, and then evaluate the sign of dot
product P · x. For the sake of completeness, we assume that
the comparison operator in the split test can be freely se-
lected by the application. This comparison operator is de-
noted�, and the split test is therefore written as zpixel�zsplit.

The split test is most conveniently performed in nor-
malized device coordinate (NDC) space. This is the space
to which points are transformed by multiplying them with
modelview and projection matrices and performing the per-
spective divide by w. In NDC, all coordinates of a point in-
side the view frustum are between −1 and +1. After com-
puting the split plane P in world space, it can be transformed
to NDC space by multiplying P with the inverse transpose

c© The Eurographics Association 2005.



Laine / Split-Plane Shadow Volumes

Figure 4: Difference between Point-Camera-Light (Sec-
tion 4.1) and Point-Point-Light (Section 4.2) split plane con-
struction methods. Top row: The split plane for the pole is
constructed with Point-Camera-Light method, and the re-
sulting pixel processing counts are shown on the right. The
split plane is obviously far from optimal. Bottom row: The
split plane is constructed with Point-Point-Light method,
with points p1 and p2 positioned at the bottom and top of
the pole. The long and thin structure of the shadow caster
allows this method to perform clearly better.

of the combined modelview and projection matrix. In the
following, we assume that P has been transformed to NDC
space. Furthermore, zpixel is assumed to be in NDC coordi-
nates as well.

We first examine the approach of explicitly computing
zsplit at a given pixel. Computing zsplit in NDC space requires
solving the following equation:

P · [x,y,zsplit,1] = 0, (6)

giving

zsplit =−(Px x +Py y+Pw)/Pz, (7)

where x and y are the NDC x and y coordinates of the pixel
being processed. After solving zsplit, we can perform the
comparison operation zpixel � zsplit. A nice property of this
solution is that, at least in theory, zsplit can be interpolated
across pixels just like ordinary z values. In practice, this
may be impossible because of numerical imprecision and the
strict requirement that zsplit stays constant for a given pixel
as long as P remains constant.

Another method for performing the split test is to con-
struct point x that represents the NDC position of the sur-
face present in the pixel, and then classify it against the split
plane P by performing dot product P · x. However, we must
conditionally flip the sign of the dot product depending on
whether the camera is on the positive or on the negative side
of the split plane. In NDC space, the camera is conveniently
located at [0,0,−1,0] and the facing of the plane is therefore
defined by the sign of Pz. Hence, the result of the split test

zpixel� zsplit can be computed as follows:

zpixel� zsplit ≡ sign(Pz)(P · [x,y,zpixel,1])�0, (8)

where x and y are again the NDC coordinates of the pixel
being processed. In this approach, no division operation is
required.

4.4. Robustness

Both approaches for performing the split test run into a sin-
gularity condition when Pz = 0, which occurs when the cam-
era lies exactly on the split plane. Computing zsplit in Equa-
tion 7 results in an attempt to divide by zero. In Equation 8,
the situation is degenerate in the sense that the result of the
split test depends only on whether the comparison operator
� includes equality or not. However, no invalid arithmetical
operations are performed.

Because the only purpose of the split test is to choose be-
tween Z-pass and Z-fail stencil update rules, the result of
the split test does not affect the appearance of the shadows.
Therefore, as long as the split test produces consistently the
same result for a given pixel and a given split plane, the
shadow rendering process is inherently robust. Because of
the same reason, there is no need to explicitly handle de-
generate situations when computing the split planes (Equa-
tions 4 and 5).

5. Hardware Implementation

Reducing the number of stencil updates is of no great help
in itself, unless we are also able to reduce the number of
pixels processed. In addition, the cost of performing the split
test for every pixel may well surpass the benefit gained from
reducing the number of stencil updates. In this section, we
discuss an efficient hardware implementation that makes it
possible to cull multiple pixels at once and thereby reduce
the number of pixels processed.

5.1. Per-Tile Depth Test

Modern GPUs have the ability to cull multiple pixels at once
by performing a tile-based depth test. This is accomplished
by maintaining a low-resolution depth buffer where aggre-
gate depth information is stored for groups of pixels. In the
following, we assume that the pixels are grouped in tiles,
and for each tile, zmin [AMS03] and zmax [Mor00] values are
maintained. These values contain the minimum and maxi-
mum depth values of the pixels in the tile, respectively. The
low-resolution depth buffer is typically stored on-chip for
fast access, whereas the per-pixel depth buffer resides in
video memory and is accessed through a tile cache.

The per-tile depth test involves computing minimum and
maximum depth values of the render primitive inside the
area of the tile. This depth interval is compared against the
[zmin,zmax] interval fetched from the low-resolution depth

c© The Eurographics Association 2005.



Laine / Split-Plane Shadow Volumes

buffer. If the intervals do not overlap, the result of the depth
test is the same for all pixels in the tile. In this case, the
depth values of the per-pixel depth buffer do not need to
be accessed, which saves memory bandwidth. In addition,
if the active render state is such that no color, depth or sten-
cil writes can occur for any of the pixels in the tile, the pixels
can be safely culled altogether [Mor00].

5.2. Per-Tile Split Test

We propose performing the split test in the per-tile stage as
well. The result of the per-tile split test can be used for all
pixels in a tile, eliminating the need to perform the split test
for every pixel separately. Remembering that the result of
the split test only chooses between Z-fail and Z-pass stencil
update rules, it is perfectly safe to perform this selection on
a per-tile basis.

In the tile-based split test, we compare the split depth zsplit
at the center of the tile against zmin or zmax value stored in the
low-resolution depth buffer. The choice between comparing
zsplit against zmin or zmax is rather arbitrary and only affects
the choice between Z-pass and Z-fail in the cases where zsplit
is in interval [zmin,zmax]. In our software implementation,
we compare zsplit against zmax, and thus favor Z-fail over
Z-pass in these situations. The alternative choice of compar-
ing zsplit against zmin produced similar results in the bench-
marks. Computing zsplit explicitly for the comparison can be
avoided by performing the split test according to Equation 8.
No additional memory bandwidth is needed, since the zmin
or zmax value required for performing the split test is needed
anyway for the tile-based depth test. We also notice that the
split test can be executed in parallel with the tile-based depth
test.

Combining the results of tile-based depth test and tile-
based split test gives us the possibility to cull entire tiles.
If it can be concluded that no stencil updates are to be made
according to Equation 3, the tile can be rejected. In the pixel
processing stages, the split test must not be performed for
each pixel individually. Instead, the result of the correspond-
ing per-tile split test must be used for choosing the stencil
update rules.

6. Shadow Caster Decomposition

In this section, we show that decomposing the shadow cast-
ing objects into smaller sub-objects and assigning sepa-
rate split planes for each sub-object can further reduce the
pixel processing work in the split-plane shadow volume
algorithm. Shadow caster decomposition is also used by
Lloyd et al. [LWGM04] for better spatial resolution in the
culling of shadow volumes.

We assume that the shadow caster is a closed, non-self-
intersecting mesh, or composed of a number of such meshes.
Bergeron [Ber86] shows that the original shadow volume al-
gorithm can be extended to handle non-closed meshes. The

solution requires that both±1 and±2 stencil updates can be
performed, depending on the number of triangles a silhou-
ette edge is connected to. Currently, only ±1 stencil updates
are supported in hardware, making this method inapplicable
in practice.

We observe that if a mesh is originally closed, it can be
decomposed into sub-objects that are non-closed, and the
shadow volumes of these sub-objects can be rendered sep-
arately with ±1 stencil updates. This is achieved simply by
ignoring the silhouette edges that are connected to a single
triangle that is front-facing to the light source. With this
method, the shadow volume of each sub-object becomes
closed. More side quads are rendered when processing the
shadow volumes, since all edges whose neighboring trian-
gles belong to different sub-objects become silhouette edges.

By decomposing the shadow casters into sub-objects, we
are able to assign each sub-object a separate split plane. This
is illustrated in Figure 5, where a complex shadow caster is
decomposed into four parts. The tree of Figure 1 was de-
composed into 49 sub-objects, and the split plane for each
branch was constructed with Point-Point-Light method (Sec-
tion 4.2). The significance of performing the decomposition
is examined in Section 7.

7. Experimental Results

We compared the split-plane shadow volume algorithm
against Z-pass and Z-fail algorithms with depth bounds op-
timization. The benchmarks were performed with a software
rasterizer equipped with per-tile depth and split tests. We
measured the number of tiles processed, the number of tiles
that survived the per-tile culling stage, the number of pix-
els processed in those tiles, and the number of actual stencil
updates performed.

The benchmarks were measured by rendering anima-
tion sequences of four test scenes. In all scenes, the light
source and the viewpoint are moving, and in KNIGHT and
16KNIGHTS scenes, the objects are also moving. The sim-
plest KNIGHT scene features a single shadow-casting object
with 634 triangles. In 16KNIGHTS scene there are 16 simi-
lar objects, giving a total of 10144 triangles. The TREE scene
contains a single shadow-casting object with 2173 triangles.
The TREE-DECOMPOSED scene is exactly the same, but the
shadow caster is decomposed into 49 sub-objects so that
each branch of the tree is a separate sub-object. In the orig-
inal tree model, all branches were separately constructed as
closed surfaces, and therefore no additional silhouette edges
were introduced by the decomposition.

In scenes KNIGHT, 16KNIGHTS and TREE, the split
planes were constructed with Point-Camera-Light method
(Section 4.1), with p placed at the center of the bounding
box of each object. In TREE-DECOMPOSED scene, the split
plane was computed for each branch with Point-Point-Light

c© The Eurographics Association 2005.



Laine / Split-Plane Shadow Volumes

(a) (b) (c)

(d) (e) (f)

Figure 5: Shadow caster decomposition. Top row: (a) A shadow caster is presented as a single object. (b) The split plane
computed with Point-Camera-Light method (Section 4.1) with p at the center of the bounding box of the object. (c) The resulting
pixel processing counts. Bottom row: (d) The same object is decomposed into four sub-objects for shadow volume rendering.
(e) The split planes for the curved parts are computed with Point-Camera-Light method (Section 4.1), and the split planes for
the straight parts are computed with Point-Point-Light method (Section 4.2) with p1 and p2 placed at the ends of the cylinders.
For clarity, the shadows and split planes are shown for two sub-objects only. (f) The resulting pixel processing counts when
all four sub-objects are processed. Compared to the upper row, the number of tiles processed by the low-resolution rasterizer
is increased by 42% because of the additional silhouette edges. However, the number of pixels processed is decreased by 36%
and the number of stencil updates by 40%. The resolution of all images is 1024×640 pixels, and early culling is performed in
8×8 pixel tiles.

method (Section 4.2), with p1 and p2 placed approximately
at the endpoints of the branch.

In the comparison methods, the depth bounds for an ob-
ject are initialized with the bounding box of the object. Then,
the shadow volume of the bounding box is constructed, and
the depth bounds are extended to contain the intersection be-
tween this volume and the view frustum. The extrusion dis-
tances of the shadow volumes are computed according to the
diameter of the scene. The Z-pass comparison method was
augmented with the ZP+ correction algorithm [HHLH05]
for correct results.

The results are summarized in Table 1. The proposed
split-plane shadow volume algorithm outperformed both Z-
pass and Z-fail algorithms with depth bounds optimization
in all scenes. The number of non-culled tiles was reduced
by a factor of 1.83 – 3.78. The number of pixels processed
was decreased by a factor of 1.87 – 5.26, and the number of
stencil updates by a factor of 2.07 – 14.09. The smallest im-
provements in all respects were obtained in TREE scene, and
the largest in TREE-DECOMPOSED. This highlights the use-
fulness of shadow caster decomposition. Interestingly, the
comparison methods also benefited notably from the decom-
position due to tightened depth bounds. The results in scenes
KNIGHT, 16KNIGHTS and TREE indicate that even without
shadow caster decomposition, the proposed algorithm per-
forms better than the comparison methods.

Figure 6 shows the pixel processing counts in the
animation sequences of scenes 16KNIGHTS and TREE-
DECOMPOSED. In all animation frames, the proposed
method processed fewer pixels than either of the compar-
ison methods. The large variance in the number of pix-
els processed is caused by rapidly moving light source and
viewpoint.

8. Discussion and Future Work

In the closing section of the ZP+ paper [HHLH05], the au-
thors pose the following question: is it possible to efficiently
decide (in a given situation) whether Z-pass or Z-fail is
more efficient in terms of fill rate? In this paper, we have
answered this question by presenting a method for making
good choices locally.

When compared against the hierarchical shadow vol-
ume algorithm by Aila and Akenine-Möller [AAM04], our
method does not reduce the fill requirements inside shad-
owed areas. We conjecture that such an optimization al-
ways requires a multi-stage algorithm, which in turn does
not fit entirely naturally in the stream processing paradigm
of current GPUs. Our split-plane shadow volume algorithm
does not require partitioning the shadow volume rendering
process into a number of distinct stages, and therefore does
not hinder the flow of primitives and fragments inside the
GPU in any way.

c© The Eurographics Association 2005.



Laine / Split-Plane Shadow Volumes

KNIGHT 16KNIGHTS TREE TREE-DECOMPOSED

Algorithm ZP+DB ZF+DB SPSV ZP+DB ZF+DB SPSV ZP+DB ZF+DB SPSV ZP+DB ZF+DB SPSV

Tiles processed 75.7 75.7 75.7 997.2 997.2 997.2 243.3 243.3 243.3 243.3 243.3 243.3
Non-culled tiles 22.2 20.8 7.7 326.5 286.1 131.1 128.8 96.6 52.8 71.8 70.8 19.0
Pixels processed 512.3 490.8 170.4 8016.1 6425.5 2738.7 4008.8 2724.6 1454.9 2170.4 1976.9 412.5
Pixels updated 452.7 441.4 129.1 6744.7 5167.6 1966.5 3881.4 2456.3 1187.5 1925.5 1681.0 136.6

Rel. non-culled tiles 2.87 2.70 1.00 2.49 2.18 1.00 2.44 1.83 1.00 3.78 3.73 1.00
Rel. pixels processed 3.00 2.88 1.00 2.93 2.35 1.00 2.76 1.87 1.00 5.26 4.79 1.00
Rel. pixels updated 3.51 3.42 1.00 3.43 2.35 1.00 3.27 2.07 1.00 14.09 12.30 1.00

Table 1: Comparison between Z-pass with depth bounds (ZP+DB), Z-fail with depth bounds (ZF+DB) and split-plane shadow
volume (SPSV) algorithms. All counts are in thousands. The relative counts in the lower part of the table are normalized so that
SPSV algorithm has value 1. The results are averages over animation sequences with moving light source and viewpoint. In
KNIGHT and 16KNIGHTS scenes, the objects were also moving. All frames were rendered in 1024×768 resolution and per-tile
culling was performed in 8×8 pixel tiles.

16KNIGHTS

0
2
4
6
8

10
12
14
16

0 20 40 60 80 100 120

ZP+DB
ZF+DB
SPSV

M
pi

xe
ls

 p
ro

ce
ss

ed

TREE-DECOMPOSED

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0 20 40 60 80 100 120

ZP+DB
ZF+DB
SPSV

0.5
0

M
pi

xe
ls

 p
ro

ce
ss

ed

Figure 6: Plots of per-frame pixel processing counts in
the animation sequences of scenes 16KNIGHTS and TREE-
DECOMPOSED. In every frame, the split-plane shadow vol-
ume algorithm processed fewer pixels than either of the com-
parison methods.

We feel that the hardware requirements for using our
method are quite small compared to the reduction in pixel
processing work. Assuming that per-tile depth test is already
performed by the hardware, the only major additional com-
ponent is the per-tile split test unit that computes one dot
product per pixel tile (Equation 8). In the pixel processing
stages, a tiny bit of additional logic is also needed for choos-
ing the stencil operation.

In our method, the shadow volumes are submitted to the
graphics hardware in entirety, as in the hybrid shadow vol-
ume algorithm of Chan and Durand [CD04]. As with their
method, the reduction in the rasterization work comes from
enhanced early tile culling. Compared to the Z-pass and Z-
fail algorithms with depth bounds, our method is able to cull
far more tiles in the early culling stage. This poses addi-
tional requirements for the efficiency of the per-tile process-
ing stage, since enough non-culled tiles must be fed to the
pixel processing stages to keep them busy.

It should be noted that computing the split planes is actu-
ally easier than computing the depth bounds for the shadow
volumes. Our method can also be used for accelerating the
rendering of penumbra wedges in soft shadow volume algo-
rithms [AAM03].

8.1. Where to Construct the Split Planes?

There are a number of possible places for constructing the
split plane. The most obvious choice is to construct the split
planes for each shadow caster on the CPU, after which they

c© The Eurographics Association 2005.



Laine / Split-Plane Shadow Volumes

can be passed to the GPU via render state constants or aux-
iliary vertex streams. This is the easiest and potentially most
efficient approach, especially if the shadow volumes are also
constructed on the CPU.

Another option is to construct the split plane in the pro-
grammable vertex processing unit of the GPU. This might be
the most feasible choice if the shadow volume is also con-
structed on GPU. The drawback is that the same split plane
equation is redundantly computed multiple times. How-
ever, if the shadow caster is decomposed into multiple sub-
objects, separate split planes may be constructed for each
sub-object as shown in Section 6. In this situation, construct-
ing the split planes on the GPU may become feasible, since
the amount of redundant computation is decreased.

8.2. Avoiding Render State Changes

In order to enable the hardware to process data in large
batches, it is necessary to avoid unnecessary render state
changes. This is especially important when the shadow cast-
ers are decomposed into multiple sub-objects, yielding a
number of different split planes to be used per shadow caster.

We propose making it possible to route the split plane
equation to the per-tile split test unit from the vertex shader
outputs instead of render state constants. This would enable
the split planes to be transferred to the hardware via an aux-
iliary vertex stream and eliminate the need for state changes
when changing the split plane. In addition, constructing the
split planes on the GPU would be possible.

8.3. Future Work

In our test scenes, the split plane construction methods for
the shadow casters were chosen based on intuition, and with
the Point-Point-Light method (Section 4.2), points p1 and
p2 were placed manually. The tree model in Figure 1 and
the shadow caster in Figure 5 were also decomposed into
sub-objects by hand. We feel that it should be possible to de-
velop algorithms for performing all of these tasks automat-
ically, most probably yielding in better results than manual
pre-processing.

It might be feasible to decompose the shadow casting
objects dynamically, depending on the relative positions of
the camera, light and the shadow caster. Finally, it seems
rather obvious that the two split plane construction methods
presented in Section 4 are not the only possible ones, and
more sophisticated split plane construction methods could
certainly be developed.

Acknowledgements The author would like to thank Timo
Aila and the 3Dr team at HUT for comments and dis-
cussions. Perilith knight model courtesy of James Green,
www.perilith.com/pknight. This work has been partially
funded by the National Technology Agency of Finland, Bit-
boys, Hybrid Graphics, Nokia and Remedy Entertainment.

References
[AAM03] ASSARSSON U., AKENINE-MÖLLER T.: A

Geometry-based Soft Shadow Volume Algorithm using
Graphics Hardware. ACM Transactions on Graphics, 22, 3
(2003), 511–520.

[AAM04] AILA T., AKENINE-MÖLLER T.: A Hierarchical
Shadow Volume Algorithm. In Graphics Hardware (2004),
pp. 15–23.

[AMS03] AKENINE-MÖLLER T., STRÖM J.: Graphics for
the Masses: A Hardware Rasterization Architecture for Mobile
Phones. ACM Transactions on Graphics, 22, 3 (2003), 801–808.

[Ber86] BERGERON P.: A General Version of Crow’s Shadow
Volumes. IEEE Computer Graphics and Applications 6, 9
(1986), 17–28.

[BS03] BRABEC S., SEIDEL H.-P.: Shadow volumes on pro-
grammable graphics hardware. In Proceedings of Eurographics
(2003), vol. 22, pp. 433–440.

[CD04] CHAN E., DURAND F.: An efficient hybrid shadow ren-
dering algorithm. In Proceedings of the Eurographics Symposium
on Rendering (2004), Eurographics Association, pp. 185–195.

[Cro77] CROW F.: Shadow Algorithms for Computer Graphics.
In Computer Graphics (Proceedings of ACM SIGGRAPH 77)
(July 1977), ACM, pp. 242–248.

[EK02] EVERITT C., KILGARD M.: Practical and Robust Sten-
ciled Shadow Volumes for Hardware-Accelerated Rendering.
http://developer.nvidia.com (2002).

[Hei91] HEIDMANN T.: Real Shadows, Real Time. Iris Universe,
18 (November 1991), 28–31.

[HHLH05] HORNUS S., HOBEROCK J., LEFEBVRE S., HART J.:
ZP+: correct z-pass stencil shadows. In SI3D ’05: Proceedings
of the 2005 symposium on Interactive 3D graphics and games
(2005), ACM Press, pp. 195–202.

[HM01] HAINES E., MÖLLER T.: Real-Time Shadows. In Pro-
ceeding of Game Developers Conference (March 2001), pp. 335–
352.

[Len02] LENGYEL E.: The Mechanics of Robust Stencil Shad-
ows. http://www.gamasutra.com (October 2002).

[Len05] LENGYEL E.: Advanced Stencil Shadow and Penumbral
Wedge Rendering. Presentation at Game Developers Conference
2005, http://www.terathon.com/gdc_lengyel.ppt (2005).

[LWGM04] LLOYD B., WENDT J., GOVINDARAJU N. K.,
MANOCHA D.: CC Shadow Volumes. In Proceedings of the
Eurographics Symposium on Rendering (2004).

[McC00] MCCOOL M. D.: Shadow Volume Reconstruction from
Depth Maps. ACM Transactions on Graphics, 19, 1 (2000), 1–26.

[MHE∗03] MCGUIRE M., HUGUES J. F., EGAN K. T., KIL-
GARD M., EVERITT C.: Fast, Practical and Robust Shadows.
Tech. Rep. CS03-19, Brown University, October 2003.

[Mor00] MOREIN S.: ATI Radeon HyperZ Technology. In Work-
shop on Graphics Hardware, Hot3D Proceedings (August 2000),
ACM SIGGRAPH/Eurographics.

[NVI03] NVIDIA: NVIDIA GeForceFX 5900, 5700 and
Go5700 GPUs: UltraShadow Technology. Tech. rep.,
http://www.nvidia.com, 2003.

[Wil78] WILLIAMS L.: Casting Curved Shadows on Curved Sur-
faces. In Computer Graphics (Proceedings of ACM SIGGRAPH
78) (August 1978), ACM, pp. 270–274.

[WPF90] WOO A., POULIN P., FOURNIER A.: A Survey of
Shadow Algorithms. IEEE Computer Graphics and Applications
10, 6 (November 1990), 13–32.

c© The Eurographics Association 2005.


