EUROGRAPHICS 2005 / M. Alexa and J. Marks

Volume 24 (2005), Number 3

(Guest Editors)
Hierarchical Penumbra Casting
Samuli Laine Timo Aila
Helsinki University of Technology/TML and Hybrid Graphics, Ltd.
Abstract

We present a novel algorithm for rendering physically-based soft shadows in complex scenes. Instead of cast-
ing shadow rays, we place both the points to be shaded and the samples of an area light source into separate
hierarchies, and compute hierarchically the shadows caused by each occluding triangle. This yields an efficient
algorithm with memory requirements independent of the complexity of the scene.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Three-Dimensional Graphics and Realism]:

Shadowing

1. Introduction

This paper describes a new algorithm for computing
physically-based soft shadows from area light sources. Our
technique is a generalization of irregular shadow maps
[ALO4, IMB04], and like most previous methods, represents
arbitrary light sources as a set of light samples. Our algo-
rithm can be seen as a transpose of ray tracing:

RAY TRACING
for each visible shadow-receiving surface sample r
for each light sample ¢
find triangle that blocks ray ¢ — r

OUR APPROACH
for each triangle T
find all £ — r rays that are blocked by T

Ray tracing finds the blocker triangles using a hierarchical
spatial subdivision, and therefore scales well with respect to
the number of triangles. Our method uses two hierarchies si-
multaneously to quickly find the rays that are blocked by a
given triangle, and thus scales well with respect to the output
resolution and the number of light samples. As our algorithm
processes one triangle at a time, there is no need for building
a spatial subdivision for the scene geometry. This is particu-
larly convenient for procedural geometry or for models that
are too large to fit into physical memory.

Irregular shadow maps first determine the visible surfaces
from the point of view of the camera. Then the visible sam-
ples (x,y,7), i.e. the shadow receiver points, are transformed

(© The Eurographics Association and Blackwell Publishing 2005. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

to the image plane of the light source, producing sampling
points (x’,y') and the corresponding light-space depth val-
ues 7. The (x’,y’) correspond exactly to the intersections of
shadow rays and the image plane of the light source. Finally,
the irregularly spaced points (x/,y’) are stored into a BSP
tree and used as sampling points when the scene is rasterized
from the light source. This gives the shadow information ex-
actly at the receiver points, yielding the same result as cast-
ing shadow rays. Reflections and semi-transparent shadow
receivers are handled using a deep frame buffer, i.e., by stor-
ing and processing multiple surfaces per output pixel.

Irregular shadow maps could be directly applied to area
lights by executing the algorithm separately for all light sam-
ples. However, such a method would suffer from several
weaknesses. All operations (projection to the image plane
of a light source, building the BSP, processing the triangles)
would have to be repeated for every light sample. Further-
more, the same pattern of light samples would have to be
used for every pixel, resulting in visible banding.

We build the hierarchy for the receiver points in ob-
ject space, thus avoiding the projection altogether (Sec-
tion 3.1). We follow the naming convention of Chin and
Feiner [CF92]: the penumbra volume of a triangle contains
all regions of space that can be either fully (umbra) or par-
tially (penumbra) in shadow with respect to the triangle and
an area light source. We construct a static three-level hierar-
chy for the light samples, and for each triangle, we traverse
both the light sample hierarchy and the receiver point hier-
archy simultaneously. In practice, this is done by intersect-

Laine and Aila / Hierarchical Penumbra Casting

ing the penumbra volumes of the triangle with the receiver
point hierarchy (Section 3.2). This allows us to quickly re-
ject the receiver points that are not shadowed by the given
triangle. The output-sensitivity of the algorithm can be in-
creased with a number of optimizations (Section 3.3). Ad-
ditionally, the pattern of light samples can be selected sepa-
rately for each pixel, thus converting banding to less visible
noise (Section 3.4).

We analyze the performance and scalability of our algo-
rithm by comparing it against a production-quality ray tracer
in Section 4. Discussion and future work, along with a rough
complexity analysis, are given in Section 5.

2. Previous Work

This section concentrates on algorithms that create
physically-based soft shadows from area light sources. Ad-
ditionally, a vast amount of literature exists for generating
hard shadows from point light sources [WPF90], as well as
for non-physical [RSC87] and real-time approximation of
soft shadows [HLHSO03].

Stochastic ray tracing Stochastic ray tracing algorithms
compute shadows by sampling an area light source using
shadow rays [CPC84]. In order to get smooth and tempo-
rally coherent penumbra regions, hundreds of shadow rays
are often needed for each point to be shaded. The inter-
section tests can be accelerated by employing variants of
shadow cache [HGS86], and the distribution of the samples
can be improved by using importance sampling [SWZ96].
With a hierarchical spatial subdivision, the complexity of ray
tracing is logarithmic with respect the number of triangles.
However, the complexity remains linear with respect to the
output resolution and the number of light samples.

Tracing thick rays Amanatides [Ama84] parameterizes
rays with a spread angle using cones. The technique can
approximate soft shadows by tracing a single cone from a
surface point to an area light source. Amanatides uses a
heuristic approximation for modelling the occlusion inside
a cone. Heckbert and Hanrahan [HH84] describe a related
technique of beam tracing in polygonal environments. Oc-
clusion is correctly taken into account by clipping the beam
with the occluding geometry. In highly tessellated scenes,
the beam geometry quickly becomes prohibitively complex,
and the performance degrades due to lost coherence. Pencil
tracing [STN87] is a similar technique, where a pencil is a
set of rays in the vicinity of a given ray. It handles refractions
more accurately than beam tracing, and also provides error
tolerance analysis in an elegant manner.

Ghazanfarpour and Hasenfratz [GH98] describe a vari-
ant of beam tracing that does not clip the beam geometry,
but instead subdivides the beam recursively until each sub-
beam is either fully lit, fully occluded, or a specified subdi-
vision limit is reached. Conceptually, this technique extends

ray tracing to process the light samples hierarchically (i.e.
sub-linearly), whereas the scalability with respect to output
resolution remains linear.

Techniques related to shadow volumes Nishita and Naka-
mae [NN83] use two shadow volumes [Cro77] for identi-
fying the parts of the scene that lie within the penumbra.
Soft shadow computations are performed only for polygons
that intersect the penumbra. Silhouette edges of the shadow
casters are projected onto the light source, and clipped to its
borders. Finally, irradiance is computed using an exact ana-
lytic formula. Shadow casters must be decomposed into sets
of convex polyhedra, which limits the practicality of the ap-
proach.

Chin and Feiner [CF92] construct separate BSP trees for
the scene, for the umbra volume and for the outer penumbra
volume. Shadow receivers are then classified into three re-
gions: fully lit, umbra, and penumbra. An analytic shadow
term is computed by traversing the BSP tree of the scene
and clipping away the occluded parts of the polygonal light
source. Our method bears some similarity to this technique
in the sense that we also utilize penumbra volumes. Tanaka
and Takahashi [TT97] propose culling methods for effi-
ciently determining the set of objects that can affect the shad-
owing of a given point.

View-dependence and discretization The visibility skele-
ton [DDP97] finds and stores all visibility events that cause
discontinuities in visibility or shading. Illumination due
to an area light source can be accurately computed for
any point in the scene, but unfortunately the preprocess-
ing and storage requirements are substantial. Discontinu-
ity meshing [Hec92, LTG92] essentially subdivides receiver
geometry along shadow boundaries. Back projection algo-
rithms [DF94, SG94] track visibility events to build a data
structure for efficiently determining the visible parts of a
light source. These techniques have trouble scaling to com-
plex scenes, and the algorithms are also prone to numerical
inaccuracies.

When computing soft shadows for a particular view-
point instead of the whole scene (e.g. radiosity [CW93]),
it is unnecessary to consider the entire scene geometry as
shadow receivers. Instead, the visible receiver points can
be computed in advance [Cro77, Hei91]; this greatly sim-
plifies the subsequent shadow computations. Furthermore,
the receiver points can be organized hierarchically in or-
der to exploit the coherence in hard shadow computations
[ALO4, IMB04, AAMO04]. We exploit this observation as a
part of our algorithm.

Miscellaneous techniques Soler and Sillion [SS98] ap-
proximate soft shadows using convolution, and present a hi-
erarchical algorithm that drives the approximation error be-
low a threshold value. Agrawala et al. [ARHMOO0] present
an image-based soft shadow algorithm that uses layered

(© The Eurographics Association and Blackwell Publishing 2005.

Laine and Aila / Hierarchical Penumbra Casting

attenuation maps for fast approximations. A coherent ray
tracer is used for generating higher-quality images. Bala
et al. [BWGO3] approximate soft shadows by computing
the shadowed illumination in a sparse set of points, and
then filtering the output image by taking into account im-
portant discontinuities such as shadow boundaries. Parker
et al. [PSS98] render soft shadows at interactive rates in a
parallel ray tracer by using only a single sample per pixel
and “soft-edged” objects. Their algorithm is very fast, but
not physically-based.

Assarsson and Akenine-Moller [AAMO3] describe an ap-
proximate soft shadow volume algorithm, which offers real-
time performance in simple scenes. Two gross approxima-
tions are made: assumption that the silhouette of an object
is constant from all receiver points, and a heuristic occluder
fusion method.

BRDFs Analytic determination of irradiance from an area
light source is possible only in a few special cases. If the vis-
ible parts of the light source are polygons and the emission
function is constant over the source, the area integral may be
converted into an integral over the boundaries of the poly-
gon by using Stokes’ theorem. Nishita and Nakamae [NN85]
compute direct illumination analytically for diffuse BRDFs,
and Arvo [Arv95] describes how to handle receiver BRDFs
consisting of a linear combination of Phong-lobes.

Arbitrary receiver BRDFs can be handled using Monte
Carlo integration. The emission function is sampled in a
number of random points in the visible parts of the light
source, and a weighted average of the samples gives an esti-
mate of the illumination.

3. Algorithm

In this section, we present our shadow computation algo-
rithm in detail. First, we define the terms and symbols in
Section 3.1 and proceed by giving a simplified version of
the algorithm in Section 3.2. Next, we discuss a number of
important optimizations in Section 3.3. Finally, extensions
to the algorithm are presented in Section 3.4.

3.1. Terminology

Let us consider a planar area light source L. We define the
light source using a planar, convex bounding polygon Az, and
a set of light samples {; that lie inside the bounding poly-
gon. For now, we assume that the same set of light samples
is used throughout the computation. In reality, this would
cause banding artifacts, and a solution is presented later in
Section 3.4.

In order to avoid processing each light sample sepa-
rately, we group the light samples spatially into light sam-
ple groups, denoted Gy, each of which contains a number
of light samples ¢;. For each Gy, we also compute a con-
vex bounding polygon Ag, that lies on the plane of the light

(© The Eurographics Association and Blackwell Publishing 2005.

Symbol Meaning

T blocker triangle

L area light source

4 light sample

Gy light sample group

A polygon

Ar bounding polygon of the light source
Ag, bounding polygon of a light sample group
\%3 penumbra volume defined by Ay and T
VG, penumbra volume defined by Ag, and T
Vi, hard shadow volume defined by ¢; and T
rj receiver point

N node in the hierarchy of receiver points
By bounding box of node N

Table 1: List of symbols used in Section 3.

source. This creates a three-level hierarchy for the light sam-
ples: on the top level is the entire light source L, on the mid-
dle level are the light sample groups Gy, and on the bottom
level are the individual light samples ¢;.

Since we process each shadow-casting blocker triangle
separately, we need to consider only a single blocker trian-
gle T at a time. We construct penumbra volumes for the two
top levels of the light sample hierarchy, namely for the en-
tire light source L and for the light sample groups Gy. In
addition, we construct hard shadow volumes for the light
samples ¢;. These volumes are illustrated in Figure 1. The
penumbra volume defined by the blocker triangle 7 and the
bounding polygon Ay, of the light source is denoted Vy. This
penumbra volume encloses all points that may be at least
partially shadowed by T'. The penumbra volumes defined by
T and the bounding polygons Ag, of light sample groups
Gy are denoted Vg, . Thus, penumbra volume Vg, encloses
all points where 7" may cast shadows from light samples in
group Gy. Finally, the hard shadow volumes defined by T
and a light sample ¢; are denoted Vy,. A hard shadow volume
Vy, thus encloses exactly the points that are in shadow from
light sample /;.

The points in the scene that need shadow information are
called receiver points, and denoted r;. Thus, the purpose of
the algorithm is to determine which ¢; — r; relations are
blocked by blocker triangles. The receiver points are placed
into a bounding volume hierarchy, where axis-aligned boxes
are used as the bounding volumes. A node in the hierarchy
is denoted N, and its bounding box By.

The symbols are summarized in Table 1.

3.2. Basic Algorithm

Rendering the scene with shadows computed using our al-
gorithm consists of the following steps:

Laine and Aila / Hierarchical Penumbra Casting

©

Figure 1: The volumes associated with the three levels of the light sample hierarchy. In this illustration, the light source consists
of 16 light samples grouped into four light sample groups. (a) The main penumbra volume Vi, is defined by the bounding polygon
Ay of the light source and the blocker triangle T. (b) For each light sample group Gy, a penumbra volume Vg, is constructed
based on the bounding polygon Ag, of the light sample group and the blocker triangle T. (c) For each light sample (;, a hard
shadow volume Vy, is constructed, based on the location of {; and the blocker triangle T.

Rasterize the scene, store depth values of visible surfaces
Using the depth values, construct receiver points r;
Construct the receiver point hierarchy

Construct the light sample groups Gy

Process all blocker triangles

Perform shading

First, the scene is rasterized from the viewpoint of the
camera, and the depth values of visible surfaces are stored
into a deep depth buffer. The visible samples are then trans-
formed into world space producing receiver points ;.

A bounding volume hierarchy is constructed for the re-
ceiver points 7;, and a bit mask is allocated for each r;. These
bit masks are used for storing the visibility status of every
£; — rj relation. The bit masks are initialized to all zeros, in-
dicating that all £; — r; relations are initially unblocked. We
build the bounding volume hierarchy by recursively dividing
the receiver points in two groups. As long as there are more
than 1K points in a node, we simply split the bounding box
of the node in two equal halves. When there are less than
1K points, we find the split position that minimizes the total
surface area of the resulting child nodes.

Next, the light sample groups Gy, are constructed so that
each Gy contains a number of nearby light samples. Con-
structing the groups is trivial if the light samples are posi-
tioned according to a jittered grid distribution. Otherwise,
a heuristic grouping algorithm may be applied. After the
groups are constructed, a convex bounding polygon Ag, is
determined for each group Gy.

The next step is processing all blocker triangles in order
to find the blocked ¢; — r; relations. A pseudocode version
of the basic algorithm is given in Figure 2. We now examine
the algorithm in detail.

Processing a blocker triangle T begins by constructing the
penumbra volume V;, defined by 7' and the bounding poly-

procedure PROCESS-BLOCKER(triangle 7')

1 V, « MAKE-PENUMBRA-VOLUME(Ag, T)
for each Gy do Vi, < MAKE-PENUMBRA-VOLUME(Ag,, T)
for each ¢; do V;, <~ MAKE-SHADOW-VOLUME((;, T)
active-groups «— every Gy
PROCESS-RECURSIVE(root-node, active-groups)

b w N

procedure PROCESS-RECURSIVE(N, active-groups)
6 if not INTERSECTS(By, V;) then return
7 active-groups' «— 0
8 for each Gy, in active-groups do
9 if INTERSECTS(By, Vg,) then add Gy into active-groups’
10 end for
11 if active-groups’ = 0 then return
12 if N is not a leaf node then
13 PROCESS-RECURSIVE(N.left, active-groups')
14 PROCESS-RECURSIVE(N.right, active-groups')
15 else
16 foreachr;in N do

17 if not POINT-IN-VOLUME(r;, V) then continue
18 for each Gy in active-groups’ do

19 if not POINT-IN-VOLUME(r;}, Vi,) then continue
20 for each /; in G, do

21 if rj.mask[i] = 1 then continue

22 if POINT-IN-VOLUME(r;, V;,) then

23 rj.mask|i] < 1

24 end if

25 end for

26 end for

27 end for

28 end if

Figure 2: Pseudocode of the basic algorithm. A detailed
explanation of the algorithm is given in Section 3.2. The
continue keyword is borrowed from C language and it
causes the next iteration in the nearest enclosing for loop
to be started immediately.

(© The Eurographics Association and Blackwell Publishing 2005.

Laine and Aila / Hierarchical Penumbra Casting

gon Ay of the entire light source (Line 1), as well as the
penumbra volumes Vg, defined by T and the bounding poly-
gons Ag, of the light sample groups (Line 2). A penumbra
volume consists of the separating planes between the defin-
ing polygon A and the blocker triangle 7. These planes are
found by enumerating every vertex-edge pair between A and
T, and selecting the planes that have all vertices of A on
one side and all vertices of T on the other side. The number
of separating planes is at most equal to the total number of
edges in A and T'. In addition, if the plane of T does not inter-
sect A, the plane of 7 is added to cap the penumbra volume.
The hard shadow volumes Vj, are then constructed for each
light sample ¢; (Line 3). These always consist of four planes:
three defined by ¢; and the edges of T, and the plane of 7.
The volumes are illustrated in Figure 1 and used extensively
in the following discussion.

During the recursive hierarchy traversal, we maintain a
list of active light sample groups. A light sample group Gy is
active at node N if triangle 7' may block at least some of the
relations ¢; — r;, where {; € Gy and r; is under node N. This
is possible only if the penumbra volume Vg, intersects the
bounding box By at least partially. Initially, all light sample
groups are active (Line 4).

Traversing the hierarchy begins from the root node
(Line 5). When entering hierarchy node N, we first test if the
bounding box By of the node intersects penumbra volume
V. If not, the traversal is terminated (Line 6) since triangle
T cannot cast shadows to any receiver point under node N.
Otherwise, we construct a tighter list of active light sample
groups so that only the groups G; whose penumbra volume
VG, intersects By are included (Lines 7-10). Again, if there
is no intersection, triangle 7' cannot cast shadows from light
sample group G; to any receiver point under node N. If no
active groups remain, the traversal is terminated (Line 11).

If node N is not a leaf node, the traversal continues
with the tighter list of active light sample groups (Lines 13
and 14). Otherwise, the receiver points r; in the node are
tested for potential shadowing by triangle 7. We immedi-
ately skip the further processing of r; that are outside penum-
bra volume V7, (Line 17). Then, the light sample groups G
whose corresponding penumbra volume Vg, does not con-
tain r; are skipped (Line 19). Also, the relations that are al-
ready blocked by the earlier triangles need no further consid-
eration (Line 21). For the remaining light samples ¢;, we test
if triangle T' blocks relation £; — r; by testing if r; is inside
the hard shadow volume V;, (Line 22). Since V;, always has
four planes, this test involves four dot products and these can
be executed in parallel with Intel SSE SIMD instructions, as
is done in our implementation. If the test indicates that r; is
inside V;,, the relation is marked as blocked in the bit mask
associated with r; (Line 23).

After all blocker triangles have been processed, the bit
masks of the receiver points tell which light samples ¢; are
visible to which receiver points r;. The final step is to per-

(© The Eurographics Association and Blackwell Publishing 2005.

form shading using the computed shadow information. One
way of accomplishing this is to rasterize the scene again
from the viewpoint of the camera, and fetch the shadow in-
formation that corresponds to the visible samples. An alter-
native implementation might store all the data needed for
shading into a deep frame buffer during the first pass.

3.3. Optimizations

There are a number of straightforward optimizations that fit
naturally into the basic algorithm discussed above. The aim
of these optimizations is to make the algorithm behave in a
more output-sensitive fashion both in terms of computation
time and memory consumption. There are five main ways for
accomplishing this. First, redundant processing of already
blocked ¢; — r; relations can often be terminated early in the
traversal. Second, the number of bounding box vs. penum-
bra volume plane tests can be reduced so that, e.g., when the
traversal has proceeded to a node that is completely inside
a penumbra volume, further tests can be safely omitted in
child nodes. Third, constructing the penumbra volumes Vg,
for the light groups and the hard shadow volumes V;, can
be postponed until they are needed, and omitted altogether
in many situations. Fourth, the memory consumption can be
reduced by on-demand allocation of the bit masks for r;. Fi-
nally, the efficiency of the aforementioned optimizations can
be further enhanced by coarsely sorting the blocker triangles
according to their occlusion power. In this section, we ex-
plain each of these optimizations in detail.

A pseudocode version of the optimized algorithm is given
in Figure 3. In the pseudocode, each added line is tagged
with the respective optimization by letter A—D. To save
space, only a single pseudocode with all the optimizations
is given, rather than showing the evolution of the algorithm
after each optimization. We recommend investigating the en-
tire pseudocode as a whole only after all optimizations have
been covered.

A. Umbra bits The most important optimization involves
storing aggregate shadow information into hierarchy nodes
and receiver points. We add group-umbra and full-umbra
bits to each hierarchy node N as well as to every receiver
point r;. Whenever all relations ¢; — r;, where /; € Gy, be-
come blocked for some r;, the group-umbra bit k of r; is
set (Line 72 in Figure 3). In addition, when all group-umbra
bits are set in 7;, we set the full-umbra bit of r; (Line 74).
The umbra bits of a leaf node are computed by performing
a Boolean AND operation over the corresponding bits of all
receiver points 7; in the node (Lines 77-80), and the umbra
bits of an internal node are computed similarly by perform-
ing a Boolean AND operation over the corresponding bits of
its two child nodes (Lines 50-54).

The umbra bits are used for terminating the traversal and
for pruning the list of active light sample groups. If node

Laine and Aila / Hierarchical Penumbra Casting

procedure PROCESS-BLOCKER-OPTIMIZED(triangle 7')

29 A if umbra-point-count > limit then REBUILD-HIERARCHY()
30 Vi« MAKE-PENUMBRA-VOLUME(A;, T)

31 C volumes-computed «— false

32 B active-groups — (Gy, ALL) for every Gy

33B P+ ALL

34 B PROCESS-RECURSIVE(root-node, Pr, active-groups)

procedure PROCESS-RECURSIVE(N, Py, active-groups)
35 A if N full-umbra then return

36 B if not INTERSECTS(By, Vi, P, Pi') then return
37 active-groups' «— 0

388 for each (Gy, Pg,) in active-groups do

39A if N.group-umbralk] then continue

40c if volumes-computed then

41B if INTERSECTS(BN, Vg, PG, . Pg,’) then
42B add (Gy, Pg,”) into active-groups’

43 end if

44 BC else add (Gy, ALL) into active-groups’

45 end for

46 if active-groups’ = 0 then return

47 if N is not a leaf node then

48B PROCESS-RECURSIVE(N.left, P;/, active-groups’)
49B PROCESS-RECURSIVE(N.right, P', active-groups”)
50A for each k do

51A N.group-umbralk] — N .left.group-umbralk] A

52 A N.right.group-umbralk)
53A end for

54 A N full-umbra < N.left.full-umbra N\ N.right.full-umbra
55 else

56 for each r; in N do

57 A if r;.full-umbra then continue

58 B if not POINT-IN-VOLUME(r}, Vi, P,/) then continue
59D if not r;.has-mask then r;.mask < NEW-MASK()

60C if not volumes-computed then

61cC volumes-computed «— true

62C for each Gy do Vg, < MAKE-PENUMBRA-VOL.(Ag,, T)
63C for each /; do V;, «+— MAKE-SHADOW-VOLUME(Y;, T)
64C end if

65B for each (Gy, Pg,”) in active-groups’ do

66 A if rj.group-umbra(k] then continue

67B if not POINT-IN-VOLUME(r}, Vg, , Pg,’) then continue
68 for each /; in G, do

69 if rj.mask[i] = 1 then continue

70 if POINT-IN-VOLUME(r;, V,) then r;.maskli] « 1
71 end for

72 A rj.group-umbralk] — A rj.mask[i], ; € Gy

73 end for

74 A rj full-umbra «— A rj.group-umbralk], Vk

75D if r;.full-umbra then RELEASE-MASK(r;.mask)

76 end for

77A for each k do

78 A N.group-umbralk] — A rj.group-umbralk], rj € N
79A end for

80 A N full-umbra < A rj.full-umbra, rj € N

81 endif

Figure 3: Pseudocode of the optimized algorithm. A detailed
explanation of the algorithm is given in Section 3.3. Letters
A-D after the line numbers refer to the corresponding opti-
mizations in Section 3.3.

N has its full-umbra bit set, the traversal can be immedi-
ately terminated (Line 35), since all receiver points under
it are already in shadow. Similarly, if node N has group-
umbra bit k set, the light sample group G; needs no fur-
ther consideration in the child nodes of N, as all relations
¢; — rj, where {; € Gy and r; is under N, are known to be
blocked (Line 39). The same observations apply for avoid-
ing the processing of receiver points r; (Lines 57 and 66).
Since the light samples with full-umbra bits set need no fur-
ther processing, we rebuild the receiver point hierarchy from
scratch when a large enough fraction of receiver points are
in umbra (Line 29). This ensures that the hierarchy stays rel-
atively balanced throughout the computation, and also de-
creases the average height of the hierarchy, i.e., number of
traversal steps from the root node to child nodes.

B. Active plane sets The basic algorithm performs many
redundant box-vs-plane tests when traversing the hierarchy.
Recalling that all penumbra volumes consist of a set of
planes, we can skip the majority of these tests by associ-
ating active plane sets to the penumbra volumes. This is a
commonly used technique in e.g. hierarchical view frustum
culling [BEW*98]. If bounding box By is completely on the
positive side, i.e. “inside”, of a plane, so are the bounding
boxes of all nodes under it. In this case, the plane can be
marked inactive and safely ignored while traversing the sub-
tree under N. In particular, when By is completely inside a
penumbra volume, the associated active plane set becomes
empty.

Active plane sets P, and Pg, are associated with penum-
bra volumes V;, and V,, respectively. The special token
ALL refers to a set where all planes are active (Lines 32,
33 and 44). Pp is passed as a parameter in recursion calls
(Lines 34, 48 and 49), and Pg, are coupled with the cor-
responding groups Gy in the active-groups list (Lines 32,
38, 42, 44 and 65). We modify the box-vs-plane intersec-
tion test (function INTERSECTS in the pseudocode) so that
it takes the active plane set of the penumbra volume as in-
put and produces a new plane set as its output (Line 36:
P, = P, Line 41: P, = Pg,’). The POINT-IN-VOLUME
tests (Lines 58 and 67) are also modified to consider only
the active planes.

C. Lazy penumbra volume and hard shadow volume con-
struction With the above optimizations, the processing of
redundant blocker triangles that cast shadows to already
shadowed areas is very efficient. With such triangles, most
of the time is spent in the construction of penumbra vol-
umes Vg, and hard shadow volumes Vy,. This can be avoided
by postponing the construction of these volumes until they
are actually needed. Therefore, instead of constructing these
volumes before traversing the hierarchy, we merely note that
they have not been constructed yet (Line 31). As long as the
volumes are not available, we do not prune the list of ac-
tive light sample groups by box-vs-volume tests (Lines 40

(© The Eurographics Association and Blackwell Publishing 2005.

Laine and Aila / Hierarchical Penumbra Casting

and 44). If we encounter a receiver point where a previously
unblocked ¢; — r; relation may become blocked, we con-
struct the volumes (Lines 60-64).

D. On-demand bit mask allocation It is quite uncommon
that all receiver points r; are simultaneously in penumbra. In
most situations, it is possible to conserve memory by allo-
cating the bit mask for r; only when one is needed. Initially
all receiver points are fully lit and thus need no bit masks to
store the status of the blocked ¢; — r; relations. When the
hierarchy traversal finds an r; that is potentially occluded by
a blocker triangle, an empty bit mask is allocated if the re-
ceiver point does not already have one (Line 59). In addition,
since we store the full-umbra bits to r; (Line 74), we may
deallocate the bit mask if the receiver point has all £; — r;
relations blocked (Line 75).

Coarse blocker sorting The overall efficiency of the above
optimizations can be increased by sorting the blockers
coarsely according to their estimated occlusion power. This
is beneficial, since it is favorable to find large shadow regions
early in the process, thus eliminating the need for process-
ing the affected receiver points later. Especially with receiver
point hierarchy rebuilding (Line 29), finding large shadowed
regions early reduces the size of the entire problem for the
remaining blocker triangles. We perform the sorting by buck-
eting the blocker triangles according to their surface areas.
Other criteria might yield more efficient ordering, but we
did not investigate this further. Bucketing is a linear-time
operation that can be executed entirely out-of-core by using
separate files for storing the sorted triangles. We first loop
through all blocker triangles and construct a histogram of
their areas. We then assign an area range to each bucket and
create an empty file for each bucket. Next, we loop through
the blocker triangles again, streaming the blocker triangles
into the bucket files. By processing the bucket files in order
from largest to smallest triangles, we obtain a coarse sorting
for the blocker triangles in linear time.

3.4. Extensions

In this section, we consider four extensions to the algorithm.
These include a method for suppressing the banding artifacts
caused by using the same set of light samples for every re-
ceiver point, support for alpha matte textures, adaptive an-
tialiasing, and support for volumetric light sources.

Multiple sets of light samples The most important exten-
sion involves using multiple sets of light samples for sup-
pressing the banding artifacts. The optimal solution would
be using a different light sample set for every receiver point,
as is done by a stochastic ray tracer. This can be approx-
imated by using a limited number of distinct light sample
sets. In our test scenes, eight light sample sets were enough
for suppressing the banding artifacts. Supporting multiple

(© The Eurographics Association and Blackwell Publishing 2005.

light sample sets is straightforward and requires only three
modifications to the algorithm.

First, the bounding polygons Ag, of the light sample sets
must be constructed so that they bound the light samples of
the respective group in all light sample sets. This ensures that
the penumbra volumes Vg, , defined by Ag, and T, contain
all points that may be shadowed by T regardless of which
light sample set is used. Second, the hard shadow volumes
Vi, must be constructed separately for each light sample set.
Finally, the same light sample set must always be used for
the same receiver point r;. This is accomplished by assigning
a light sample set to each r; and using it consistently in the
POINT-IN-VOLUME test (Line 70).

Alpha matte textures In order to support textures with al-
pha matte, i.e. with both opaque and transparent texels, a
texture fetch needs to be performed in addition to the POINT-
IN-VOLUME test on Line 70. We have not implemented this
in our prototype implementation, and all polygons are con-
sidered opaque in our test scenes. The texture must be sam-
pled at the intersection of the ¢; — r; ray and the blocker tri-
angle. Because of the additional cost of computing the tex-
ture sampling location and performing the texture fetch, it
is probably best to process the alpha matte textured blocker
triangles only after all opaque blocker triangles have been
processed. This can be achieved by placing the alpha matte
textured triangles in separate buckets during the coarse sort-
ing of the blocker triangles.

Adaptive antialiasing Since our algorithm requires that all
receiver points r; are known before processing the blocker
triangles, adaptive antialiasing cannot be performed in a sin-
gle pass. Instead, a feasible approach is to first render the
image with one sample per pixel, then determine the pixels
that need antialiasing, and perform a second pass with mul-
tiple samples taken at these pixels.

Volumetric light sources Our approach is not limited to
planar light sources. Volumetric light sources can be sup-
ported simply by replacing the bounding polygons of the
light source and the light sample groups with convex bound-
ing volumes. The planes of the penumbra volumes can then
be computed exactly as with bounding polygons, since the
same method works for convex polygonal volumes as well.

4. Results

We compared our algorithm against a commercial ray tracer
(Mental Ray 3.2) in three test scenes shown in Figure 4.
The simple GRIDS scene has relatively few triangles, but
the penumbra regions are very large. The FLOWERS scene
features procedurally generated foliage consisting of a large
number of triangles. In SPONZA, a low-polygon mesh is
combined with dense procedural grass and two relatively
low-polygon trees. All test scenes are illuminated with a sin-
gle rectangular area light.

Laine and Aila / Hierarchical Penumbra Casting

S

GRIDS, 73K triangles SPONZA, 1.27M triangles

FLOWERS, 903K triangles

Figure 4: The test scenes used for measuring the shadow computation speed.

scene output sort hierarchy penumbra | samples hierarchy mask total comp. | performance
resolution time build time cast time mem mem mem time time ratio
640x480 0.3 1.6 50.4 5 3 7 52.3 470.9 9.0
GRIDS 1280960 0.3 6.8 1314 19 12 27 138.5 | 1863.9 13.5
2560% 1920 0.3 33.1 4432 75 47 106 476.6 | 7938.1 16.7
1K smp 1280x960 0.3 6.8 275.1 19 12 108 282.2 | 7360.5 26.1
4x light 1280%960 0.3 6.8 382.1 19 12 29 389.2 | 1949.1 5.0
640x480 13.4 3.1 390.4 5 2 3 406.9 580.3 1.4
FLOWERS 1280x960 13.4 12.8 580.1 19 9 11 606.3 | 2118.2 35
2560%x1920 | 13.4 57.7 993.6 75 36 43 | 1064.7 | 8315.9 7.8
1K smp 1280%960 13.4 12.8 1947.5 19 9 44 |1 1973.7 | 8245.4 4.2
4x light 1280x960 134 12.8 1080.9 19 9 15 1107.1 | 2293.6 2.1
640x480 6.5 4.8 107.7 5 3 8 119.0 534.4 4.5
SPONZA 1280x960 6.5 21.1 218.2 19 12 31 245.8 | 2014.6 8.2
2560% 1920 6.5 120.0 572.5 75 47 122 699.0 | 7970.7 114
1K smp 1280960 6.5 21.1 650.9 19 12 124 678.5 | 7890.6 11.6
4x light 1280%960 6.5 17.5 1125.0 19 12 33 | 1149.0 | 2249.1 2.0

Table 2: The results of the benchmark renderings made for the three test scenes. For each scene, five renderings were made
with our prototype implementation and the comparison method. All times are in seconds and memory consumption figures are
in megabytes. Columns sort time, hierarchy build time and penumbra cast time refer to the total time taken by coarse blocker
sorting, building the receiver point hierarchy (potentially multiple times) and performing the penumbra casting, respectively.
Columns samples mem, hierarchy mem and mask mem refer to the memory usage of the buffer used for storing the receiver
points, the peak memory usage of the receiver point hierarchy and the peak memory usage of the bit masks for the receiver points,
respectively. The total time column tells the total shadow rendering time of our algorithm, and the comp. time column tells the
shadow rendering time taken by the comparison method. The performance ratio is the ratio between the shadow rendering time
of the comparison method and the total shadow rendering time of our algorithm. All renderings used 256 samples for sampling
the area light source, except those on rows marked with 1K smp that used 1024 light samples. In the renderings on rows marked
with 4x light, the surface area of the light source was quadrupled.

We performed five renderings for all test scenes. Three
of the renderings used 256 light samples at resolutions
640 x 480, 1280 x 960 and 2560 x 1920. In order to measure
the scalability of our method with respect to the number of
light samples, a 1280 x 960 rendering was made with 1024
light samples. Finally, the sensitivity of our algorithm with
respect to the size of the area light source was measured by
performing a 1280 x 960 rendering with the surface area of
the light source quadrupled, using 256 light samples.

Only the time taken by shadow computation was ac-
counted for. For the comparison method, this was accom-
plished by performing the renderings both with and with-
out shadows, and calculating the difference in the rendering
times. Based on initial tests, we chose to use 32 light sam-
ples per light sample group and 16 receiver points in the leaf
nodes of the receiver point hierarchy. The light samples were
distributed according to a jittered grid distribution, which en-
abled straightforward grouping. In addition, we used 8 dis-
tinct light sample sets for suppressing the banding artifacts.

(© The Eurographics Association and Blackwell Publishing 2005.

Laine and Aila / Hierarchical Penumbra Casting

Our prototype implementation considers only the geome-
try of the scene, and thus cannot handle materials with alpha
matte texture. Therefore, we changed the materials of all test
scenes to opaque white for the renderings with the compari-
son method, thereby making the results comparable. Of our
test scenes, only FLOWERS features a small number of alpha
matte textured surfaces. The images in Figure 4 are rendered
with original materials that show the structure of the scenes
better than the black-and-white renderings produced by the
benchmark renderings.

All tests were run on a laptop with 1.6 GHz Intel Pen-
tium M processor and 1.5 GB of memory. The results of
the benchmark renderings are shown in Table 2. We see
that our algorithm scales much better than the comparison
method with respect to the output resolution. This can be
expected because of the hierarchical processing of the re-
ceiver points r;. The scalability with respect to the number
of samples used for sampling the light source is also good.
The performance of our algorithm degrades when the size
of the area light source is increased, due to the enlarged size
of the penumbra volumes and consequently diminished effi-
ciency of hierarchical culling. Since we effectively compute
the shadows analytically until processing the receiver points
rj, the amount of redundant work grows when the light sam-
ples ¢; are located sparsely. The memory usage of our al-
gorithm is observed to remain at an acceptable level, even
though the storage cost of the receiver points is quite high
especially with the highest output resolutions.

5. Discussion and Future Work

We have shown in several tests that the performance of our
algorithm compared favorably to tracing shadow rays, estab-
lishing that tracing shadow rays is not the only realistic op-
tion for computing physically-based soft shadows. The pro-
posed method scales well with respect to the number of light
samples and the output resolution. Because the entire scene
geometry does not need to be considered at any point dur-
ing the rendering, the method is particularly well suited for
rendering soft shadows from procedural geometry or very
complex scenes. Since no spatial hierarchy is needed for
the scene geometry, our algorithm is able to handle dynamic
scenes without the overhead of rebuilding such hierarchy for
every frame in an animation sequence. In this section we dis-
cuss the algorithm’s limitations, potential improvements and
extensions, as well as some thoughts on future work.

The computational complexity of our algorithm differs
fundamentally from ray tracing. Denoting the number of re-
ceiver points, light samples and triangles as R, L and T, re-
spectively, we may consider the computational complexity
of both ray tracing and our algorithm. With the very crude
assumption that every £; — r; relation is blocked by a sep-
arate triangle, ray tracing has execution time of complexity
O(RLlogT), whereas the respective complexity for our al-
gorithm is O(TlogRlogL), assuming a light sample hier-
archy with logL levels. It is however uncertain whether a

(© The Eurographics Association and Blackwell Publishing 2005.

full light sample hierarchy (instead of a three-level hierar-
chy) would be beneficial in practice. Shadow caching for ray
tracing and the optimizations for our algorithm (Section 3.3)
affect the output-sensitivity of both algorithms substantially,
making theoretical analysis more complicated. In addition,
it is usually the case that most triangles block more than one
£; — r; relation, and not all relations become blocked. Both
of these benefit our algorithm more than ray tracing. In par-
ticular, our algorithm performs practically no work for com-
pletely lit receiver points. The memory consumption com-
plexity for ray tracing with a hierarchical acceleration struc-
ture is O(T), while for our algorithm it is O(RL), again ex-
hibiting the exact transpose of ray tracing. Because of the
different execution time and memory consumption complex-
ities, it is always possible to construct cases where one algo-
rithm performs better than the other.

The algorithm could be directly extended to handle semi-
transparent shadow casters, but that would unfortunately re-
quire 24 times more mask memory, i.e., an RGB value in-
stead of a single bit for each ¢; — r; relation. We plan
to attack this problem by augmenting each relation with a
bit that indicates whether or not the relation is blocked by
semi-transparent blockers. The relations blocked only by
semi-transparent blockers can then be treated in a second
shadow rendering pass, e.g., by processing a certain maxi-
mum number of semi-transparent relations at a time or by
using shadow rays.

As observed in Section 4, increasing the size of the area
light source decreases the performance of our algorithm.
This undesirable phenomenon could perhaps be tackled by
extending the method of maintaining active light sample
groups during the hierarchy traversal to individual light sam-
ples, and choosing the appropriate granularity adaptively.
The good scalability of our algorithm with respect to the
number of light samples partially alleviates the problem al-
ready, since more samples are generally needed for larger
area light sources [ARBJ03].

It is possible to extend the algorithm to process multi-
ple blocker triangles simultaneously. This would complicate
the geometry of the penumbra volumes, but also reduce the
number of hierarchy traversals and the number of receiver
points that are temporarily classified to be in penumbra. This
might improve the performance in many scenes.

The algorithm has two desirable characteristics that might
make it feasible for hardware implementation in the future:
the processing is performed one triangle at a time and no
spatial hierarchy of the scene is required.

Acknowledgements We thank Jaakko Lehtinen, Janne
Kontkanen and Lauri Savioja for fruitful discussions. The
original Sponza Atrium model by Marko Dabrovic, RNA
studio, www.rna.hr. This research was funded by the Na-
tional Technology Agency of Finland, Bitboys, Hybrid
Graphics, Nokia and Remedy Entertainment. Timo Aila was
partially supported by ATI.

Laine and Aila / Hierarchical Penumbra Casting

References

[AAMO3]

[AAMO04]

[ALO4]

[Ama84]

[ARBJO3]

[ARHMO0]

[Arv9s]

[BEW*98]

[BWGO03]

[CF92]

[CPC84]

[Cro77]

[CWI3]

[DDP97]

[DF94]

[GH98]

[Hec92]

ASSARSSON U., AKENINE-MOLLER T.: A
Geometry-Based Soft Shadow Volume Algorithm us-
ing Graphics Hardware. ACM Transactions on Graph-
ics, 22,3 (2003), 511-520.

AILA T., AKENINE-MOLLER T.:
Shadow Volume Algorithm.
2004 (2004), pp. 15-23.

AILA T., LAINE S.: Alias-Free Shadow Maps. In
Proceedings of Eurographics Symposium on Render-
ing (2004), pp. 161-166.

AMANATIDES J.: Ray Tracing with Cones. In Com-
puter Graphics (Proceedings of ACM SIGGRAPH 84)
(1984), pp. 129-135.

AGARWAL S., RAMAMOORTHI R., BELONGIE S.,
JENSEN H. W.: Structured importance sampling of en-
vironment maps. ACM Transactions on Graphics 22,
3(2003), 605-612.

AGRAWALA M., RAMAMOORTHI R., HEIRICH A.,
MoLL L.: Efficient Image-Based Methods for Render-
ing Soft Shadows. In Proceedings of ACM SIGGRAPH
2000 (2000), pp. 375-384.

ARVO J.: Applications of Irradiance Tensors to the
Simulation of Non-Lambertian Phenomena. In Pro-
ceedings of ACM SIGGRAPH 95 (1995), pp. 335-342.

BisHoP L., EBERLY D., WHITTED T., FINCH M.,
SHANTZ M.: Designing a PC Game Engine. IEEE
Comput. Graph. Appl. 18, 1 (1998), 46-53.

BALA K., WALTER B., GREENBERG D. P.: Combin-
ing Edges and Points for Interactive High-Quality Ren-
dering. ACM Transactions on Graphics 22, 3 (2003),
631-640.

CHIN N., FEINER S.: Fast Object-Precision Shadow
Generation for Area Light Source using BSP Trees.
In Symposium on Interactive 3D Graphics archive
(1992), pp. 21-30.

CooK R. L., PORTER T., CARPENTER L.: Distrib-
uted Ray Tracing. In Computer Graphics (Proceedings
of ACM SIGGRAPH 84) (1984), pp. 137-145.

CrOW F.: Shadow Algorithms for Computer Graph-
ics. In Computer Graphics (Proceedings of ACM SIG-
GRAPH 77) (1977), pp. 242-248.

COHEN M. F., WALLACE J. R.: Radiosity and Re-
alistic Image Synthesis. Academic Press Professional,
1993.

DURAND F., DRETTAKIS G., PUECH C.: The Visibil-
ity Skeleton: A Powerful and Efficient Multi-Purpose
Global Visibility Tool. In Proceedings of ACM SIG-
GRAPH 97 (1997), pp. 89-100.

DRETTAKIS G., FIUME E.: A Fast Shadow Algorithm
for Area Light Sources Using Back Projection. In Pro-
ceedings of ACM SIGGRAPH 94 (1994), pp. 223-230.

GHAZANFARPOUR D., HASENFRATZ J.-M.: A
Beam Tracing with Precise Antialiasing for Polyhedral
Scenes. Computer Graphics 22, 1 (1998), 103-115.

HECKBERT P.: Discontinuity Meshing for Radiosity.

A Hierarchical
In Graphics Hardware

[Heid1]

[HG86]

[HH84]

[HLHS03]

[JMB04]

[LTG92]

[NN83]

[NNB85]

[PSS98]

[RSC87]

[SG94]

[SS98]

[STN87]

[SWZ96]

[TT97]

[WPF90]

In Third Eurographics Workshop on Rendering (1992),
pp. 203-215.

HEIDMANN T.: Real shadows, real time. Iris Universe
18 (1991), 28-31.

HAINES E. A., GREENBERG D. P.: The Light Buffer:
A Ray Tracer Shadow Testing Accelerator. I[EEE Com-
put. Graph. Appl. 6,9 (1986), 6-16.

HECKBERT P., HANRAHAN P.: Beam Tracing Polyg-
onal Objects. In Computer Graphics (Proceedings of
ACM SIGGRAPH 84) (1984), pp. 119-127.

HASENFRATZ J.-M., LAPIERRE M., HOLZSCHUCH
N., SILLION F.: A Survey of Real-Time Soft Shadows
Algorithms. Computer Graphics Forum, 22, 4 (2003),
753-774.

JOHNSON G. S., MARK W. R., BURNS C. A.: The Ir-
regular Z-Buffer and its Application to Shadow Map-
ping. Tech. rep., The University of Texas at Austin,
Department of Computer Sciences, April 2004.
LISCHINSKI D., TAMPIERI F., GREENBERG D. P.:
Discontinuity Meshing for Accurate Radiosity. /EEE
Comput. Graph. Appl. 12, 6 (1992), 25-39.

NISHITA T., NAKAMAE E.: Half-Tone Representation
of 3-D Objects Illuminated by Area Sources or Poly-
hedron Sources. In IEEE Computer Software and Ap-
plication Conference (1983), pp. 237-242.

NiISHITA T., NAKAMAE E.: Continuous Tone Rep-
resentation of Three-Dimensional Objects Taking Ac-
count of Shadows and Interreflection. In Com-
puter Graphics (Proceedings of ACM SIGGRAPH 85)
(1985), pp. 23-30.

PARKER S., SHIRLEY P., SMITS B.: Single Sample
Soft Shadows. Tech. rep., University of Utah, UUCS-
98-019, 1998.

REEVES W. T., SALESIN D. H., Cook R. L.: Ren-
dering Antialiased Shadows with Depth Maps. In
Computer Graphics (Proceedings of ACM SIGGRAPH
87) (1987), pp. 283-291.

STEWART A. J., GHALI S.: Fast Computation
of Shadow Boundaries using Spatial Coherence and
Backprojections. In Proceedings of ACM SIGGRAPH
94 (1994), pp. 231-238.

SOLER C., SILLION F. X.: Fast Calculation of Soft
Shadow Textures Using Convolution. In Proceedings
of ACM SIGGRAPH 98 (1998), pp. 321-332.

SHINYA M., TAKAHASHI T., NAITO S.: Princi-
ples and Applications of Pencil Tracing. In Com-
puter Graphics (Proceedings of ACM SIGGRAPH 87)
(1987), pp. 45-54.

SHIRLEY P., WANG C., ZIMMERMAN K.: Monte
Carlo Techniques for Direct Lighting Calculations.
ACM Transactions on Graphics, 15, 1 (1996), 1-36.
TANAKA T., TAKAHASHI T.: Fast Analytic Shading
and Shadowing for Area Light Sources. Computer
Graphics Forum, 16, 3 (1997), 231-240.

W00 A., POULIN P.,, FOURNIER A.: A Survey of
Shadow Algorithms. IEEE Comput. Graph. Appl. 10,
6 (1990), 13-32.

(© The Eurographics Association and Blackwell Publishing 2005.

