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Abstract

Guidance is a crucial technique for extracting the best performance out of image-
generating diffusion models. Traditionally, a constant guidance weight has been
applied throughout the sampling chain of an image. We show that guidance is
clearly harmful toward the beginning of the chain (high noise levels), largely
unnecessary toward the end (low noise levels), and only beneficial in the middle.
We thus restrict it to a specific range of noise levels, improving both the inference
speed and result quality. This limited guidance interval improves the record FID in
ImageNet-512 significantly, from 1.81 to 1.40. We show that it is quantitatively and
qualitatively beneficial across different sampler parameters, network architectures,
and datasets, including the large-scale setting of Stable Diffusion XL. We thus
suggest exposing the guidance interval as a hyperparameter in all diffusion models
that use guidance.

1 Introduction

Denoising diffusion models [17, 28, 38, 39, 40, 41, 43, 20] have enabled rapid advances in high-
quality image synthesis based on text prompts and other forms of input [13, 35, 44]. They scale
effortlessly to large-scale datasets [4, 5, 34], and also to other modalities such as video [8, 7, 16, 19],
3D shapes [26, 31, 33, 37], and audio [24, 32].

Diffusion models convert an initial image of pure noise to a novel generated image through repeated
application of image denoising. This sampling chain typically contains dozens of steps, and in each
step a little bit of the denoised result is blended into the noisy image. The sampling process first
gravitates towards the mean of the training data, followed by the determination of image features in
an approximate coarse-to-fine manner based on the remaining noise. This iterative process, where the
image is formed little by little, offers considerable flexibility in terms of encouraging or discouraging
certain kinds of behavior at each step.

Negative prompts [3] are a widely used concept, where the sampling process is given an additional
anti-goal that is to be avoided. For example, “nudity” might be a common negative prompt in
text-based image generators. At every sampling step, the denoiser is executed twice: once for
the positive and once for the negative prompt, and the positive result is then extrapolated further
away from the negative one based on a weight parameter. This works remarkably well in practice.
Classifier-free guidance (CFG) [18] builds on this general concept. It uses an unconditional model
(no class information or text prompts) as a negative prompt, causing the result image to align more
strongly with the conditioning signal.

In practice, all large-scale image generators rely heavily on CFG. It allows a mathematically justified
way of truncating the distribution of generated images [12, 18], basically trading variation for
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Figure 1: Visualizing the effect of guidance. (a) The unconditional (orange) and conditional (green)
PDFs. In (b) through (e), the orange unconditional density is visualized in the background. (b) Sample
trajectories for the unconditional distribution. (¢) Trajectories for the conditional distribution. (d)
Trajectories for the guided distribution with w = 6. (e) The tangent vectors dx/do at the intersection
point of the three marked trajectories. The difference of the unconditional (red) and conditional
(green) vectors is magnified as per Equation 4, causing the unexpected detour in low-probability areas
and a mode drop. See Figure 2 for details and comparison to our approach.

perceptually higher image quality. By convention, the same guidance weight is used in all sampling
steps. We observe that this is sub-optimal because CFG behaves very differently on high, middle,
and low noise levels. On high noise levels, it drastically reduces the variation in the results, basically
leading them towards a handful of “template images” per prompt. On middle levels, it causes the
sampling to more decisively choose some set of features, leading to crisper and perceptually more
pleasing results. On low levels, it is largely unnecessary. Similar observations have been made in the
Stable Diffusion community [1, 2, 21], and Muse [10] and Masked DiT v2 [14] observe that making
guidance weight noise level-dependent improves the results. In the context of prompt inversion,
Mahajan et al. [27] notice that limiting the inversion to specific noise levels leads to improved result
quality. However, these works do not quantify the effect on distribution metrics with the exception of
Sadat et al. [36], whose “dynamic CFG” limits a linearly varying guidance weight to an interval of
noise levels. Interestingly, they conclude that dynamic CFG leads to rather poor results, while a more
complicated condition annealing scheme is required for good quantitative results.

We suggest that guidance should be simply limited to an interval of sampling steps in the middle,
where the net effect is positive, without otherwise changing the guidance weight. This avoids
most of the detrimental effects of guidance, while also reducing computational cost. We show that
an optimal guidance interval improves the state-of-the-art FID [23] in ImageNet-512 from 1.81
to 1.40 and also leads to an improved visual quality. The benefits are consistent across sampler
parameters, network architectures, and datasets, including Stable Diffusion XL. Code is available at
https://github.com/kynkaat/guidance-interval

2 Background

The concepts in this and the following section are illustrated in Figure 1 using a synthetic 1D example.
In this example, generation is performed by ideal analytic denoisers, avoiding all approximations that
a learned denoiser might cause. While this renders classifier-free guidance strictly harmful in the
scenario, the example allows us to intuitively visualize the kinds of harm it causes.

The goal of a denoising diffusion model is to draw samples from a data distribution pga,(x). Let
us define a series of smoothed distributions p(x; o), so that each individual distribution is the
convolution between pg,t, and a Gaussian noise distribution with standard deviation o. Following the
EDM formulation [22], the evolution of a sample x ~ p(x; o) w.r.t. a change in o is described by the
ordinary differential equation (ODE):

dx/do = —(Dy(x;0) — x) /o, e

where Dy is a denoiser model with parameters 6, optimized to minimize the expected L, denoising
error:

9 = argmine EyNPdala70Nplrain1n~N(01021) ||D0 (y + n; O-) o yH%' (2)

Here, pain(0) is the training distribution of noise levels, which we consider to be an implementation
detail of Dy. To generate a sample from the data distribution, we first draw an initial sample
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Figure 2: Tllustration of the detrimental effects of guidance at high ¢ in a synthetic 1D scenario. (a)
PDFs of the unconditional (orange) and conditional (green) data distributions used in this example. (b)
Activating guidance (weight w = 6) everywhere leads to a catastrophic mode drop. The zoomed-out
inset shows how guidance pushes the sampling trajectories outside the distribution during early
sampling. (c¢) Disabling guidance at high o resolves the issue and restores both modes. (d) Disabling
guidance at low ¢ has little effect and can be done to reduce computational cost.

Xg ~ P(X; Omax ), Where o is chosen to be large enough so that p(X; omax ) is approximately equal
to pure Gaussian distribution and thus trivial to sample from. We then follow the ODE of Equation 1
to evolve x( towards o = 0, i.e., the data distribution. Figure 1a illustrates the target distribution
(orange). Figure 1b depicts the diffused target distribution over the o axis and a set of sample
trajectories computed by solving Equation 1 from several different initial conditions.

We can think of classifier-free guidance [18] as constructing a modified ODE where dx/do is defined
as a linear combination between a conditional ODE and an unconditional ODE:

dx/do = w[—(Dy(x|c;0) — %) /o] + (1 —w)[— (Do (x;0) — x) /0] 3)
= — (wDg(x|c;0) + (1 — w)Dy(x;0) — %) /o, €))

where w is the guidance weight and c is the condition information given to the denoiser Dy (cf. Fig-
ure 1c). Setting w > 1 results in extrapolating the effect of the condition with respect to the
unconditional result, i.e., the sample is effectively pushed away from the unconditional result. This
extrapolation can be seen [12, 18] as raising the conditional likelihood p(c|x; o) to a power greater
than one, which, intuitively, aims to concentrate the probability mass to the regions that most agree
with the condition. However, as illustrated in Figure 1(d, ) and the next section, this “oversteering”
may direct the trajectories away from the data distribution and cause mode drops.

Most commonly, a single denoiser model Dy is trained to accept either conditional or unconditional
input by dropping the conditioning information 10-20% of the time during training. Alternatively,
we can train two separate models Dy,,,q (x|c; o) and Dpyyconq (X; o). This makes it possible to reduce
the capacity of the unconditional model considerably to improve the overall sampling speed [23].

Sampling the ODE is done by taking a number of discrete steps that bring the noise level from oy,
to zero, giving rise to a sequence of images X, X1, - - -, Xy, each with its corresponding noise level
0. Various discretization schemes and solvers have been proposed [22]. Regardless of the specifics,
the computational cost is directly proportional to the number of sampling steps /V.

3 Our method

In Figure 2, we continue to probe the downsides of CFG using the previous toy example. We observe
that applying guidance at all noise levels —as is typical — causes the sampling trajectories to drift
quite far from the the smoothed data distribution (Figure 2b). This is caused by the unconditional
trajectories effectively repelling the guided trajectories, as discussed above, yielding badly skewed
intermediate distributions. As a result, the sampler drops one of the modes (almost) entirely.

As most of the drift seems to be caused at high noise levels, we disable CFG in those sampling steps
(Figure 2c¢). This correctly recovers both modes of the conditional distribution. In addition, disabling
guidance at low noise levels (Figure 2d) has only a small effect on the resulting distribution, providing
a simple way to reduce the sampling cost with minimal effect on outputs.

Although this toy example is grossly simplified, we hypothesize that broadly similar effects occur
in full-scale diffusion models as well. In Section 4 we can see, e.g., image compositions becoming



ImageNet-512 Quality metric Model size Guidance interval Guidance weight
FID | FDpmov2 4 | Mparams Gflops FID FDpNov2 FID FDpinov2
EDM2-S [23] w/ CFG [18] 2.23 52.32 280 102 Full Full 1.4 1.9
EDM2-S [23] w/ guidance interval | 1.68 46.25 280 102 | (0.28,2.90] (0.60,5.00] 2.1 32
EDM2-XXL [23] w/ CFG [18] 1.81 33.09 1523 552 Full Full 1.2 1.7
EDM2-XXL [23] w/ guidance interval | 1.40 29.16 1523 552 (0.19,1.61] (0.60, 5.00] 2.0 29
DiT-XL/2  [29] w/ CFG [18] 3.04 51.97 675 525 Full Full 1.5 2.0
DiT-XL/2 [29] w/ guidance interval | 2.40 43.94 675 525 (0.34,1.02] (0.45,1.23] 2.5 4.0

Table 1: Quantitative results on ImageNet-512. Limiting the classifier-free guidance (CFG) to an
interval improves both FID and FDpnoy; significantly, without altering the model complexity. The
sampling cost is a bit lower due to fewer guidance evaluations. This holds for a small (S) and large
(XXL) variants of the state-of-the-art EDM2 model [23], as well as diffusion transformers [29]. The
model complexity numbers are copied from the EDM2 paper.

less varied due to guidance, somewhat akin to the mode dropping observed in the toy example. That
behaviour is difficult to explain by local sharpening of probability distributions alone (Section 2).

3.1 Practice

Motivated by the above observations, we propose to only apply guidance in a continuous interval of
noise levels in the middle of the sampling chain and disable it elsewhere. Concretely, we redefine the
ODE of Equation 4 by replacing w with a piecewise constant function:

dx/de = — (w(U)Dg(X|c; o)+ (1 —w(0))Dy(x;0) — x) /o, Q)

w if o € (010, oni

where w(o) = {1 (6)

otherwise.

Here, oy,; denotes the point in the sampling chain where we enable guidance and oy, is the point where
we turn it off. In our formulation, traditional CFG is recovered by setting 0y, = 0 and oy,; = 0.

Virtually all existing deterministic samplers can be seen as numerical Runge—Kutta solutions to the
ODE of Equation 4, obtained through a number of discrete steps. While the correspondence might
not be obvious in all cases, we can nevertheless characterize the steps with respect to o as detailed in
Appendix A. For example, in the case of Stable Diffusion XL [30], we have 32 steps corresponding
to the transitions o9 — 01, 01 — 03,..., 031 — 032, Where o9 = 14.61, o7 = 13.41, o9 =
].2.28, .y, 031 = 003, and 039 — 0.

The underlying assumption common to all Runge—Kutta methods is that dx/do should be sufficiently
smooth within each step. In Equation 6, however, we intentionally introduce discontinuities at o, and
oni- In order to satisfy the smoothness requirement, we must thus ensure that both transitions happen
exactly at step boundaries so that the value of w(o) stays constant within each step. In practice, we
choose to do this by rounding oy, and oy; appropriately, i.e., by setting o = o0; and 0y, = o for
some ¢ < j. Note that this leads to a seemingly high numerical precision in the values of g, and oy;,
which should not be taken as an indication of extremely precise tuning.

4 Results

We will first evaluate and ablate our method quantitatively using ImageNet [11]. Limiting the
guidance interval leads to clearly identifiable qualitative changes in the images, which we subsequently
demonstrate also in the large-scale context using Stable Diffusion XL [30]. Please refer to Appendix B
for additional results.

4.1 Main results

‘We mainly evaluate our method on ImageNet at 512 x 512, using the current state-of-the-art approach
EDM? [23] as a baseline.! We use the small (EDM2-S) and the largest (EDM2-XXL) models as-is
with the default sampling parameters: 32 deterministic steps with a 2"¢ order Heun sampler [22].

"https://github.com/NVlabs/edm2
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Figure 3: FID and FDpinov2 as a function of guidance weight for classifier-free guidance (orange,
red) and our method where the guidance has been limited to the stated interval (blue, green). The
shaded regions indicate the min/max over three evaluations.
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Figure 4: Precision and recall curves for classifier-free guidance (orange, red) and our method
(blue, green), when the guidance weight w is varied from 1.0 to 4.0 in 0.1 increments. Black points
indicate the minimum and maximum guidance weights in the sweep, while colored triangles show
the precision/recall tradeoffs that achieve the best FDpnoyv2. We used the DINOv?2 feature space in
this plot, following the recommendation by Stein et al. [42]. The curves represent median over three
evaluations.

Table 1 shows that our method improves FID [15] and the more recently proposed FDpnovz [42]
significantly. Using EDM2-S, FID improves from 2.23 to 1.68, already beating the state-of-the-art in
this dataset. With EDM2-XXL, the record further improves to 1.40 and FDpNov2 also improves from
33.09 to 29.16.

To find the optimal parameters for each case, we performed a full grid search over w, oy, and oy;.
In the case of EDM2-XXL, the best FID is achieved by applying guidance at 6 of the 32 steps,
corresponding to noise levels o € (0.19, 1.61], with weight w = 2.0. The best FDpnoy2 is obtained
with slightly higher noise levels o € (0.60,5.00] and a slightly higher weight w = 2.9.

For additional validation, we also tested our method on diffusion transformers [29] using the DiT-
XL/2 model? with default sampling parameters: 250 step iDDPM [28]. Limiting the guidance interval
leads to significant improvements with this model as well. The best FID results were obtained
by using guidance with w = 2.5 in 75 of the 250 sampling steps, corresponding to the interval
o € (0.34,1.02]. The best FDpnoy2 is again obtained with slightly higher noise levels (0.45, 1.23]
and weight w = 4.0.

4.2 Ablations

Figure 3 shows that standard classifier-free guidance is quite sensitive to the guidance weight. When
the weight is too high, the output image distribution is excessively truncated, and the harm caused
outside the useful interval starts to outweigh the benefits obtained within. In contrast, limiting the

’https://github.com/facebookresearch/DiT
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Figure 5: Sensitivity of FID to the chosen guidance interval. Left: Sweep over oy, with optimal o),
and w. Right: Sweep over 01, with optimal oy; and w. The shaded regions indicate the min/max over
three evaluations.

guidance interval allows the use of much higher guidance weight, and FID or FDpnoy, are far less
sensitive to the exact choice.

Figure 4 shows precision and recall [25] curves for CFG and our method, evaluated with varying
guidance weights in DINOvV2 feature space, as suggested by Stein at al. [42]. Compared to CFG,
our method achieves better FDpnoy, primarily by improving Recall without significantly affecting
Precision. This is consistent with the qualitative observation that the results are more varied.

Figure 5 probes the sensitivity of our results to the chosen guidance interval. In this test, we sweep
over oy, and oy,;, while keeping the other interval endpoint, oy,; or 0y,, and the guidance weight w as
the optimal choices as reported in Table 1. The left side shows a sweep over oy, i.e., the highest noise
level with guidance. Including too high noise levels to the guidance interval leads to truncation of the
image distribution, which can be seen as an increase in FID. Furthermore, too narrow an interval (low
01i) yields sub-optimal results. For both EDM2 models the optimal choice for oy, is located at the
middle noise levels. The right side shows a sweep over oy,, i.e., the lowest noise level with guidance.
Applying guidance at low noise levels does not bring additional benefits, compared to the middle
levels. Thus, guidance can be disabled in most of the low noise levels to decrease sampling cost, an
observation also made in [9].

To estimate the optimal guidance interval in practice, the upper and lower guidance limits can
be determined separately, without the need for a two-dimensional search. This happens by first
establishing the optimal upper limit by keeping the lower limit at zero. This can be done because the
lower limit affects the result only weakly, and in a predictable way (Figure 5, right). Once the optimal
upper limit is known, the lower limit is determined. Optionally, a bisection method can be used for
accelerating both search operations. Finally, one can reduce the sample size of FID evaluation from
50k to, say, Sk, at least for an initial run, which accelerates the process by 10x.

We have found that the optimal choice of 0}, and oy; is not overly sensitive to the other sampling
parameters. For example, if we halve or double the number of steps with EDM2-S, the optimal
guidance interval remains unchanged. With 16 steps, our method improves FID from 2.49 to 1.84,
and with 64 steps, from 2.27 to 1.70.

In an additional test, we tried applying various smooth weighting functions to the guidance weight
(less guidance towards the ends of the interval), but these tests did not improve the results over the
simple binary inclusion. We also tried estimating the importance of guidance at individual noise
levels by enabling or disabling it at each sampling step at a time. However, these tests consistently
underestimated the downsides of guidance, suggesting that they build up cumulatively over multiple
consecutive steps.

4.3 Qualitative analysis

With the rise of recent large-scale image generators, ImageNet can hardly be considered a meaningful
benchmark for gauging perceptual image quality. Thus, we primarily focus on evaluating our method
in the context of Stable Diffusion XL (SD-XL), but we also provide corresponding results for



CFG with low guidance CFG with high guidance Ours with high guidance
w=2, o€ (0,00) w =16, o € (0, 00) w =16, o € (0.28,5.42]
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crisp details, low diversity

Rembrandt painting of a raccoon.

An adorable painting of a Dachshund.

w =1 (no guidance) w =25, o€ (0,00) w=2>5, o€ (0.19,1.61]
fuzzy details, high diversity crisp details, high diversity

ImageNet class 64: green mamba

ImageNet class 959: carbonara

Figure 6: Traditional CFG vs. our method. Left: Low w yields diverse but fuzzy images that lack
detail. Middle: Increasing w adds crispness, but reduces diversity and oversaturates the colors.
Right: Our method reduces these effects while retaining the crisp look.
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ImageNe classSS: castle ImageNet class 933: cheeseburger

Figure 7: Effect of guidance weight w with our method. We limit the guidance to o € (0.28, 5.42]
with SD-XL (top) and to o € (0.19, 1.61] with EDM2-XXL (bottom). Higher w leads to clearer and
more well-defined image details while keeping the color palette and overall composition unchanged.

ImageNet using EDM2-XXL. For SD-XL, we use the official pre-trained checkpoint® with a standard
32-step deterministic Heun sampler, where the first step corresponds to 0 = 14.61.

With SD-XL, we apply guidance at 50% of the sampling steps, corresponding to noise levels
o € (0.28,5.42], with weight w = 16. These parameters were chosen by visual inspection. The
beneficial interval is wider than in ImageNet, likely due to the more varied dataset used in the

*https://github.com/Stability-AI/generative-models
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Figure 8: Effect of changing the guidance interval (o0, oni] with w = 16. Top: Decreasing oy, i.e.,
disabling guidance at high noise levels, while keeping o}, = 0.28. High values lead to simplified
image composition and oversaturated colors (left); low values cause the image to become increasingly
convoluted (right). Bottom: Increasing oy, i.e., disabling guidance at low noise levels, while keeping
oni = 5.42. The value can be made relatively high with no noticeable impact, reducing sampling cost.

CFG Ours, 0 € (O 19,1.61]

ImageNet class 483: castle

Figure 9: Effect of increasing guidance weight w with CFG vs. our method. Left: Increasing the
guidance weight with CFG leads to changes in image composition and contrast. Right: With our
method, increasing w improves image details but retains the overall composition and realistic colors.



training of SD-XL. Consequently, our method leads to over 20% speed-up due to a lower number of
unconditional model evaluations [1].

Figure 6 shows a comparison between standard classifier-free guidance with low and high weights
(left and middle columns) and our method with high guidance weight (right column). When the
guidance weight is increased in standard CFG (middle), the composition of the image tends to change
drastically, towards some limited set of per-class “templates”. Furthermore, the colors saturate
unnaturally as the guidance weight increases. When we limit the guidance interval (right), image
diversity is preserved to a significant degree and the color saturation is also reduced, although
excessively large guidance weights can still lead to over-saturation.

Figure 7 shows the effect of increasing the guidance weight with our method. With low weight, the
images appear blurry, inconsistent, and lacking in detail. Increasing the weight improves the rendition
of details while retaining the original image composition.

As the task of selecting the best guidance interval (oo, oni] with SD-XL is necessarily subjective,
we provide a visual ablation of this choice in Figure 8. Modifying the upper limit oy, i.e., dis-
abling guidance at high noise levels, has two distinct effects. First, it affects the overall image
composition — higher values lead to more simplified image layouts whereas low values lead to
unnecessary complexity. Second, high values lead to oversaturated colors whereas lower oy,; leads to
a blander color scheme. Similar to EDM2 results, changing the lower limit o}, has only a modest
effect— guidance can be disabled from most of the low noise levels with no noticeable impact while
improving the inference speed.

Lastly, Figure 9 compares the effects of increasing the guidance weight in standard CFG vs. our
method with EDM2-XXL.

5 Conclusions

Classifier-free guidance is an indispensable tool for improving the results of practically all image-
generating diffusion models. As our simple modification improves the results both numerically
and visually, and also reduces sampling cost, we recommend exposing the guidance interval as an
additional sampler parameter.

Future work could investigate whether the optimal guidance interval can be automatically derived
from the ODE, and the role played by the non-idealities in the trained denoiser. A recent work by
Biroli et al. [6] predicts from a dataset the interval where the generated images specialize to a certain
class. A follow-up study could examine whether their “speciation” interval overlaps with the interval
that is beneficial for guidance.
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A Characterizing sampling steps in noise levels

In the main paper, we reported the guidance interval measured in noise levels o. Here, we show for
each model how the indices of sampling steps are mapped to noise levels. For EDM2 models and
SD-XL, we use the discretization from [22]. The ¢th sampling step corresponds to noise level that is

given by:
1 i 1 1 P
o; = <0n’§ax + m <0—rflin - O'rga)()) ) (7)

where NV is the total number of sampling steps, omin = 0.002, omax = 80. With SD-XL, we use
p = 3, which is the default value in the official code, with EDM2 models we use p = 7. With DiT,
we use the iDDPM discretization from [22] which maps the ith sampling step to the corresponding
noise level in the following way:

O =y, M1 ®)

j0+ﬁi+%J ’

2 .
where upr = 0, uj_1 = ui+1 y = land &; = sin? (gm) We use the default

max(aj,l/aj7c’1

parameters C7; = 0.001, Co = 0.008, M = 1000 and j;, = 0 from [22].

B Additional qualitative results

Figures 10 and 11 show further comparisons between classifier-free guidance and our method.
Figures 12 and 13 show additional examples from our method where we increase the guidance weight.
Figures 14, 15 and 16 compare classifier-free guidance to our method when the guidance weight is
increased.

C Broader impacts

Large-scale diffusion models, such as Stable Diffusion XL, might have various negative societal
effects related to the spread of disinformation or amplifying harmful biases and stereotypes. Our
method improves the result quality of these models which can potentially further magnify these issues.
In the large-scale setting, our method decreases the cost of sampling, but diffusion models continue
to require a lot of computing power, which may contribute to wider issues such as climate change.

D Licenses
The pre-trained EDM2 [23] models are licensed under the CC BY-NC-SA 4.0 International License

by NVIDIA corporation. The pre-trained SD-XL [30] model is available under the CreativeML Open
RAIL++-M License by Stability AI. ImageNet [11] dataset uses a custom non-commercial license.
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CFG with low guidance CFG with high guidance Ours with high guidance
w=2, o€ (0,00) w =16, o € (0,00) w =16, o € (0.28,5.42]
fuzzy details, high diversity crisp details, low diversity crisp details, high diversity
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A pointillist painting of a raccoon looking at

the sea.

A wild west town with cowboys and saloons,
set at sunset

A blue jay standing on a large basket of rain-

bow macarons.

Figure 10: More SD-XL results that demonstrate how CFG with low w yields fuzzy images that
lack detail (left) and CFG with high w leads to reduced diversity and oversaturated colors. Our
method (right) produces images with crisp details while maintaining natural colors. The degree of the
negative effects with CFG varies between prompts.
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CFG with low guidance CFG with high guidance Ours with high guidance
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Figure 11: Additional EDM2-XXL results that demonstrate how CFG with low w yields fuzzy images
that lack detail (left) and CFG with high w leads to reduced diversity and oversaturated colors. Our
method (right) produces images with crisp details while maintaining natural colors.
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A highly detailed zoomed-in digital painting of a cat dressed as a witch wearing a wizard hat in a
haunted house, artstation.

s _an
A fantasy landscape of the Shire during sunrise. The Sun is near the horizon and there is fog over
farm fields. Highly detailed fantasy art, artstation.

/

A 4K dslr photo of a hedgehog sitting in a small boat in the middle of a pond. It is wearing a Hawaiian
shirt and a straw hat. It is reading a book. There are a few leaves in the background.

Figure 12: More SD-XL results showing the effect of changing w with our method. We limit the
guidance to o € (0.28, 5.42]. Increasing w produces images with more well-defined details while
maintaining the color palette and the original image composition.
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Figure 13: More EDM2-XXL results showing the effect of changing w with our method. We limit
the guidance to o € (0.19, 1.61]. Increasing w produces images with more well-defined details while
maintaining the color palette and the original image composition.
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Ours, o € (0.28,5.42]

Awe Awn /(e /Dwm
A highly detailed paper origami of a Dachshund on a table next to a porcelain teapot, 4k dslr.
Figure 14: Effect of increasing guidance weight w with CFG vs. our method. Top: Increasing the
guidance weight with CFG leads to large changes in the image composition. Note how the dog’s head

moves as w changes. Bottom: Our method leads to well-defined image details and retains the overall
composition to a significant degree.
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Ours, o € (0.28,5.42]

I e ( 4
A fantasy landscape on an alien planet in which there are many buildings. There is a beautiful bridge
with a pond in the center. There is one large moon in the sky. The sky is orange. Digital art, artstation

Figure 15: Effect of increasing guidance weight w with CFG vs. our method. Top: Increasing the
guidance weight with CFG leads to large changes in the image composition. Bottom: Our method
leads to well-defined image details and retains the overall composition to a significant degree.
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Ours, o € (0.19,1.61]

ImageNet class 64: green mamba  ImageNet class 33: loggerhead

ImageNet class 1: goldfish

ImageNet class 504: coffee mug

Figure 16: Effect of increasing guidance weight w with CFG vs. our method. Left: Increasing the
guidance weight with CFG leads to large changes in the image composition. Right: Our method
leads to well-defined image details and retains the overall composition to a significant degree.

20



	Introduction
	Background
	Our method
	Practice

	Results
	Main results
	Ablations
	Qualitative analysis

	Conclusions
	Characterizing sampling steps in noise levels
	Additional qualitative results
	Broader impacts
	Licenses

