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Abstract— We propose a deep learning method for three-
dimensional reconstruction in low-dose helical cone-beam
computed tomography. We reconstruct the volume directly,
i.e., not from 2D slices, guaranteeing consistency along all
axes. In a crucial step beyond prior work, we train our model
in a self-supervised manner in the projection domain using
noisy 2D projection data, without relying on 3D reference
data or the output of a reference reconstruction method.
This means the fidelity of our results is not limited by
the quality and availability of such data. We evaluate our
method on real helical cone-beam projections and simu-
lated phantoms. Our reconstructions are sharper and less
noisy than those of previous methods, and several decibels
better in quantitative PSNR measurements. When applied
to full-dose data, our method produces high-quality results
orders of magnitude faster than iterative techniques.

[. INTRODUCTION

OMPUTED tomography (CT) is a versatile medical

imaging technique for producing tomographic images
of body tissues from two-dimensional X-ray projections. In
modern systems, the goal is to reconstruct a consistent three-
dimensional volume instead of individual 2D slices, so that
various cross-sections can be examined easily. For medical CT
scans, the most popular mode of acquisition is moving a point-
like radiation source and a 2D X-ray detector along a helical
trajectory. Reconstructing tomographic images or 3D volumes
from such helical cone-beam (CB) data is a difficult problem,
and previous solutions typically resort to approximations such
as re-binning the data (e.g., [1], [2]). As CT uses ionizing
radiation, minimizing the dose is of paramount importance
when operating with living subjects. Unfortunately, lowering
the dose amplifies the noise in the X-ray images, which in
turn makes reconstruction more difficult.

In this paper, we present a deep learning method for CBCT
reconstruction. Our method closely resembles the weighted
filtered backprojection (WFBP) algorithm [1], but with ma-
chine learning components introduced in crucial points to
enable correction of errors introduced by noise and the finite
number of input projections. Like wFBP, we directly produce a
three-dimensional volume from a set of 2D X-ray projections,
guaranteeing tomographic consistency along all axes. This
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improves the quality of coronal and sagittal cross-sections and
facilitates automatic downstream tasks such as segmentation.

Machine learning models are built from parametric func-
tions, such as neural networks, that are adjusted in an initial
training stage to minimize the discrepancy between the model
output and the desired result. In the CBCT context, this poses a
dilemma: As we have no way to directly access the underlying
ground truth, how can we measure the quality of our solution
and train the model to an optimum? Existing solutions have
significant shortcomings. First, training using synthetic data
raises questions about validity due to the “domain gap” be-
tween training data and real test data. Second, using reference
volumes reconstructed using another algorithm, perhaps from
higher-quality inputs, limits the obtainable quality as the model
learns to reproduce errors made by the reference method.

We address the supervision problem by training the model
using data consistency in the projection domain as the loss
function. This is enabled by using a differentiable CT sim-
ulator in the training loop: Intuitively, the output volume is
good when real X-rays taken from the same volume —but
not used as input to the model —look similar to simulated
X-rays computed from the model output. This self-supervised
training objective has the significant benefit that it requires
no other reference data besides the noisy 2D projections.
Consequently, the achievable output quality is not limited
by the quality of, e.g., clean reference data or a reference
reconstruction method, as is usually the case with previous
machine learning-based reconstruction methods (e.g., [3], [4]).
While projection consistency is often employed by iterative
methods (e.g., [5], [6]), it has—to our knowledge — not
been utilized as a training objective in learned end-to-end
reconstruction methods.

We evaluate our method against several previous traditional
and machine learning methods. We demonstrate sharper and
less noisy results on real-world helical cone-beam data, and
several decibels improvement over previous methods with
synthetic phantoms where a ground truth volume is available.
Although our main focus is on low-dose inputs, our method
can be applied to full-dose data as well. In these cases, our
method produce high-quality solutions orders of magnitude
faster than iterative techniques.

Project page with supplemental results is available at
https://users.aalto.fi/~kosomaol/self-sup-ct/

Il. PREVIOUS WORK

Most of the widely used reconstruction methods are based
on filtered backprojection (FBP) [7]. In FBP, the X-ray data is
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filtered using a ramp filter, backprojected onto the reconstruc-
tion grid along straight lines, and averaged; the ramp filter is
needed to counteract the overrepresentation of low frequencies
that the average would otherwise exhibit. However, both the
spiral acquisition trajectory and cone-beam geometry used in
CBCT pose significant challenges. This is often solved by re-
binning the projection data into other geometries, such as in
weighted filtered backprojection (WFBP) [1]. Another large
family of approaches iteratively calculates a least squares
solution [5], [6] with a projection consistency loss. These
often require hand-tuned regularizers or priors, such as total
variation (TV), and are much slower than FBP-based methods.

Deep learning methods for CT can be roughly divided
into post-processing, iterative, and end-to-end reconstruction
methods. For a comprehensive survey, see Wang et al. [7].

1) Learned post-processing: Learned post-processing meth-
ods take an existing reconstruction as an input and seek to
remove artifacts and noise from it. Most approaches involve
supervised training of neural networks to minimize the mean
squared error (MSE) between the network output and a full-
dose FBP reference. Chen et al. [3] proposed a residual
encoder-decoder convolutional neural network (RED-CNN)
for improving FBP reconstructions. The CNN is executed
slice-by-slice axially, without utilizing three-dimensional in-
formation. Zamyatin et al. [4] extended the residual network
to 3D. Adversarial losses have been proposed to mitigate the
blurring caused by minimizing MSE in the reconstruction do-
main. Yang et al. [8] utilized a two-dimensional generator and
discriminator, and Wolterink et al. [9] extended the generator
to 3D while keeping the discriminator two-dimensional. While
adversarial methods produce sharper and more detailed results
than supervised methods, there is a risk of introducing spurious
features that are not actually present in the input data [10].

Overall, post-processing approaches share two key short-
comings. First, perfect reference volumes are rarely available,
which limits the quality of the learned results. Second, these
methods do not have full visibility to the information in
the raw input projections; they only see the approximate 3D
volume produced by the initial reconstruction method.

2) Learned iterative reconstruction: Iterative techniques
have also been improved using deep learning via, e.g., learned
priors [11] and unfolded iterative processes [12]. We focus on
a non-iterative approach in search of higher runtime efficiency.

3) Learned end-to-end reconstruction: Deep learning meth-
ods that operate directly on the raw input projections have also
been proposed. Most commonly, these methods train multiple
neural networks in a supervised manner by minimizing per-
voxel MSE compared to a FBP reference. Wiirfl et al. [13]
proposed jointly learning the projection and volume domain
weights for 3D reconstruction. By implementing the gradient
of the backprojection operator as a projection, they train the
weights end-to-end. However, they target only limited-angle
circular cone-beam reconstruction, which is in many ways a
simpler task than helical CBCT.

He et al. [14] proposed a two-dimensional end-to-end
reconstruction pipeline using several neural networks. The
method consists of learned projection filtering, backprojection,
and image post-processing components. They evaluated the

method using simulated 1D circular parallel-beam projections.
The networks were trained in a supervised manner in the
volume domain using a full-dose reference reconstruction. The
method does not extend to the helical cone-beam setup.

Operating on the projections allows these methods to see
everything captured by the scanner, thereby circumventing a
significant limitation of post-processing methods. Still, current
algorithms all require reference volumes computed using other
means, and are thus bound to learn the errors in the reference.

4) Training without clean data: As shown by Lehtinen et
al. [15], it is possible to train neural networks using only noisy
training data, given that certain conditions are met. Our work
builds on this so-called Noise2Noise principle, as detailed later.
A few previous works have used the approach to circumvent
the lack of ideal reference volumes [16], [17]. These methods
construct an uncorrelated estimate of the 3D volume from a
sparse set of input projections using a method such as wFBP,
and use this as a training target for learned reconstruction.
Still, the reference reconstruction technique limits the output
quality. Our method does not have this issue, as we employ
no reference reconstruction method.

Blind-spot approaches [18] seek to train models with no
paired training data whatsoever. Jing et al. [19] used such a
network to denoise 2D slices of a reconstruction. Their method
suffers from the fact that the corruptions in the reconstructions
are not independent between pixels, violating the assumptions
behind blind-spot models. As such, the results are worse than
those of supervised methods.

I1l. OUR RECONSTRUCTION PIPELINE

Our reconstruction pipeline, illustrated in Fig. |I} aims to
leverage the known good properties of weighted filtered back-
projection (WFBP) while providing sufficient flexibility in both
2D and 3D domains to automatically adapt to non-idealities
resulting from, e.g., helical cone-beam geometry, noise, and
finite number of input projections. The overall structure is
shared with wFBP, with four major deviations:

1) The raw 2D X-ray images are preprocessed using a
learned 2D neural network before ramp filtering. The
2D network is not supervised directly; its function is to
do whatever it can to help the subsequent stages.

2) We replace the fixed ramp filter with a learned one,
enabling it to adapt to the non-idealities caused by the
finite number of projections and the noise they contain.

3) Instead of re-binning the cone-beam projections to par-
allel beams, we backproject directly from the cone-beam
geometry, taking special care to avoid aliasing.

4) Finally, the 3D voxel grid that results from the back-
projection is processed by a learned 3D network. As its
receptive field is relatively large, it can correct for blur,
spiral, and other artifacts caused by the earlier stages.

A key benefit of our design is that it can be easily adapted
to any acquisition setup with variable number of projections,
spacing of the helical trajectory, and radiation doses, with the
learned components complementing the fixed backprojection
in a data-driven manner. We will first walk through the pipeline
in detail, and then describe our self-supervised training setup
in Section
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Fig. 1. Our reconstruction pipeline reconstructs a 3D voxel volume based on a set of raw cone-beam projections. First, we feed each of the input

projections through a 2D neural network to produce denoised projections. Next, we filter the projections along the cone-beam rows using a ramp
filter and backproject them using a differentiable 3D backprojection operator that uses mipmapping to prefilter the projections. We then normalize
the reconstructed volume to obtain a per-voxel average and pass it through a 3D neural network to produce the final reconstructed volume.
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Fig. 2. Example crops of inputs and outputs of the learned neural
networks (low-dose data from the LDCT [20] dataset). Top: The 2D
network turns the log-space projections into feature maps for further
processing. Bottom: The 3D network outputs the final reconstructed
volume.

A. Pipeline walkthrough

1) 2D network: Given a set of projections as an input, we
first feed each of them through a learned 2D neural network
that outputs a single-channel feature map in the same spatial
resolution as the input. While the network has no other task
than to prepare the projections for subsequent processing, we
observe that it learns to perform 2D denoising to the inputs.
This is illustrated in Fig. 2] top row. We visualize the resulting
feature map in false color, as it is not guaranteed to be in
interpretable units. While we could output a higher number
of feature maps from the model, our experiments indicate no
benefit from doing so.

2) Learned ramp filter: Next, to prepare for the backprojec-
tion operator that transfers the projection information from 2D
to 3D, we filter the projections along the cone-beam rows using
a learned ramp filter. This is implemented as a convolution
with a one-dimensional kernel that is twice as wide as the
input projections. The filter taps are initialized according to
the inverse Fourier transform of the desired ramp frequency
response, but they are treated as learnable parameters during
training. This allows the pipeline to adjust the frequency
spectrum of the projections, in case it is beneficial for the
later operations — in practice, we have observed that the ramp
filter changes very little during training.

3) Differentiable backprojection: To transfer the 2D feature
maps into the 3D volume, we pass each of them to a fixed-
function differentiable backprojection operator that accumu-
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Fig. 3. A variable-size prefilter is necessary for high-quality cone-beam
backprojection. Top: The green voxel near source intersects a thicker
bundle of rays than the purple voxel near detector, and thus requires
a wider prefilter in the projection domain to avoid aliasing. Bottom:
Prefiltered sampling into the voxel grid. Sampling the underlying signal
(left) with a constant-size prefilter in the projection domain (middle)
yields aliasing near source, blurring near detector, or both as in this
example. A variable-size prefilter (right) extracts all the frequencies that
the sampling grid can represent. (2D illustration, not to scale)

lates log-space attenuation to all voxels intersected by the
cone-beam in question. In contrast to wFBP, we perform back-
projection directly using cone-beam geometry —i.e., along
lines that connect sensor pixels with the radiation source —
without re-binning to parallel beam projections first.

The backprojected value for a voxel is obtained by first
projecting its center onto the 2D sensor using the radiation
source as the center of projection, and then finding the value
by interpolation on the sensor’s pixel grid. The projection
lines converge onto the radiation source, which causes the
local frequency content of the backprojected signal to vary
significantly: Close to the source, the projection lines are
packed densely, while near the sensor their spacing is sparser
(Fig. Bl top). As using a voxel grid fine enough to capture
the densest beam bundles is impractical, we carefully anti-
alias the result to ensure the backprojected signal can be
represented by the voxel grid faithfully, i.e., without aliasing.
As per standard Shannon—Nyquist sampling and reconstruction
theory [21], this requires prefiltering (blurring) the 3D signal
before sampling to remove spatial frequencies too high to be
representable by the voxel grid.

In practice, prefiltering and sampling are combined into a
single per-voxel operation. We first geometrically determine
the ratio between the 3D voxel pitch and the 2D sensor pixel
pitch by considering similar triangles. The ratio, which varies
between voxels, determines the amount of bandlimiting that
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Fig. 4. To train the learned components of our reconstruction pipeline (Fig. , we use a self-supervised setup that does not require reference
data. The training pipeline first selects 12 target projections from a randomly chosen rotation of the scanner. We feed the rest of the projections
into our reconstruction pipeline to produce a reconstruction of the target region. From this reconstruction, we simulate projections from the same
locations as the target projections, which are then downsampled and exp-transformed into photon intensity space. A weighted difference between
the simulated and target projections is used for calculating an L, loss. To speed up convergence, we ramp filter the difference before the L, norm.

must be applied to the 2D feature map in order to avoid
aliasing. As illustrated in Fig. [3| (bottom), more aggressive
filtering is required for voxels closer to the radiation source.

While supporting a per-voxel arbitrarily-sized 2D prefilter is
infeasible, an excellent approximation can be achieved through
a variation of mipmapping [22], a technique common in
computer graphics. In practice, when preparing to backproject
a 2D feature map, we compute several progressively blurrier
versions of it using Lanczos [23] prefilters of increasing
support (decreasing bandwidth). After the desired prefilter
bandwidth has been determined for a voxel, we reconstruct
the backprojected sample value via trilinear interpolation from
the two prefiltered projections whose filter sizes best match
the desired bandwidth. This is a very close approximation
to having a prefilter with arbitrary size and position on
the denoised and ramp-filtered 2D projection. In our current
configuration, we use five prefilter bandwidths chosen to cover
the range of filter bandwidths required by the backprojection.
In contrast to standard mipmapping, we keep the resolution of
the prefiltered feature maps unchanged.

To normalize the result of accumulating the backprojections
from the entire set of 2D projections into the volume, we
track the number of backprojections contributing to each voxel
and divide by this number to obtain a per-voxel average.
While this normalization scheme is unable to account for the
unevenness in the angular distributions of rays resulting from
the cone-beam geometry, we have found that the resulting
spiral artifacts are easily corrected by subsequent processing.

4) Learned 3D processing: As the final step of the recon-
struction pipeline, we pass the volume through a learned 3D
neural network. The purpose of this network is to perform
final denoising and sharpening and to remove any remaining
artifacts. An example is shown in Fig. [2| bottom row.

B. Implementation details

We use U-Nets [24], i.e., autoencoders with skip connec-
tions, for the 2D and 3D networks as they have been shown
to perform well on a variety of tasks including denoising and
removal of image artifacts [25]. The 2D network architecture
follows Lehtinen et al. [15] exactly, whereas the 3D network is
otherwise similar except that the intermediate channel counts
have been halved to conserve memory, and 3x3 convolution
kernels have been replaced with 3x3x3 kernels to enable
volume processing. Network weights were initialized using He
initialization [26]. Our differentiable backprojection operation
was implemented as a custom PyTorch [27] operator using a

combination of custom CUDA code and a modified version of
the texture lookup function in Nvdiffrast [28].

V. TRAINING

We now turn to training the learned 2D neural network,
ramp filter weights, and 3D neural network. We train the
pipeline in an end-to-end fashion, meaning that only the
fidelity of the final reconstruction provides the signal that
guides the components to a joint optimum. We describe the
overall architecture of the self-supervised loss function and
training loop in Sec. [[V-A] and deal with photon noise in the
training data in Sec. The process is illustrated in Fig.

A. Self-supervised training

To enable training without known reference 3D volumes,
we combine a projection consistency loss, similar to many
iterative reconstruction techniques, with a leave-out strategy
that resembles cross validation: A volume reconstruction is
considered faithful if left-out real X-rays look the same as
simulated X-rays computed using the same scanner position.
A key benefit of this approach is that it requires no reference
data, either in 2D or 3D domain.

Each training iteration begins by selecting a random slab of
the volume from a scan in the dataset, and identifying the set
of X-rays whose backprojections overlap with the slab. The
set is then randomly split into a large set of input projections
and a small set of rarget projections (Fig. [B). The input
projections are fed to our reconstruction pipeline, resulting in
a 3D volume. We then compute, for each target projection, a
virtual X-ray using the known positions of the radiation source
and sensor using a differentiable X-ray simulator (Sec.
[C). The final loss function is the mean squared error between
the simulated projections and left-out target projections. As
all components in the pipeline are differentiable, the gradient
of the learnable parameters can be computed using standard
backpropagation. We use Adam [29] as the optimization
algorithm and run the training in parallel using 8 NVIDIA
A100 GPUs. The networks were trained for 2.5 days (480 GPU
hours) for the synthetic dataset, and 8 days (1536 GPU hours)
for the real dataset to accommodate for the higher resolution.

B. Noisy target projections

A subtle point not addressed in the discussion above is
that as we train with real X-ray data, we do not have noise-
free projections at hand, i.e., the target projections contain
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Fig. 5. Geometric setup of the reconstruction problem. (a) The scanner
travels along a helical trajectory, capturing cone-beam projections at
regular intervals with the positions of the X-ray source depicted by the
blue dots. During inference, the full volume is reconstructed using all
input projections. (b) In each training iteration, we randomly choose
a small z range (gray) that corresponds to a single a rotation of the
scanner, and use the projections that intersect it as either inputs (blue
dots) or targets (orange dots). (lllustration not to scale)

all forms of noise inherent to X-ray imaging. Fortunately, it
has been previously shown that under certain circumstances, it
is possible to train neural networks using only noisy training
targets. In particular, this Noise2Noise principle [15] states that
if the corruptions in the training targets are zero-mean and
uncorrelated with the corruptions in the inputs, an Lo training
loss will, given sufficient data, converge to the same optimum
as a model trained with noise-free targets. This is exactly the
situation we are faced with: The photon noise is zero-mean
and uncorrelated between the input and target projections, and
therefore, computing the loss between simulated projections
and the noisy real targets is justified.

The requirement that the noise in the model inputs is
uncorrelated with training targets is also the reason behind
the leave-out strategy of not using target projections as model
inputs. If this is not met, the quality of the results deteriorates
dramatically, as demonstrated in Section While the leave-
out strategy leaves gaps in the set of input projections seen by
the reconstruction pipeline during training, we have found the
impact of these gaps to be negligible as long as the number of
target projections is kept small. For each training iteration, we
use approx. 7000 input projections and 12 target projections.

A final detail to consider is that the noise in the acquired 2D
projections is zero-mean in photon intensity, but not in log-
attenuation because of the nonlinear transformation. As such,
to use noisy training targets, we must compute the Lo loss in
photon intensity space. This, however, has the severe problem
that pixels with high photon counts, i.e., low attenuation, have
exponentially larger weight in the overall loss function than
highly attenuated pixels, which is at odds with the practice
of viewing the results in log-attenuation space. Therefore,
we scale the photon-intensity Lo loss so that each pixel’s
contribution to the overall loss is proportional to what it would
have been if the loss were computed in log-attenuation space.
The resulting loss function is

LERY)=|[wX) o X -V, wX)=1/X O

where X and Y are the simulated projection and the training

data projection in photon intensity space, respectively, and ®
denotes element-wise multiplication. The weighting function
w(X ) is proportional to the inverse derivative of the exp-
transform. Importantly, we zero the gradients of w(X ) to pre-
vent training from attempting to just minimize this weight [15].

We have so far assumed that the same projections are
used as both inputs to the reconstruction pipeline as well as
training targets. However, we may have paired projections with
different dosages available at training time. Such paired data
can be obtained by, e.g., acquiring higher-dose projections and
adding noise to them that simulates a lower-dose scan. In
this situation, we can use the higher-dose projections as Y
in Eq. [T} while still using the lower-dose projections as input.
The training pipeline (Fig. ) remains almost unchanged: Each
scanner position is now associated with two projections instead
of one, and their use depends on whether the scanner position
was designated as input (blue) or target (orange).

Both inputs and targets are free to exhibit noise that may be
correlated between them, which is the case when lower-dose
projections are simulated based on a higher-dose scan.

C. Projection simulation

The simulated projections are computed by ray marching
through the reconstructed voxel grid using trilinear interpo-
lation. To prevent aliasing, we cast 16 rays per output pixel
arranged in a uniform grid pattern, and downsample the re-
sulting image by 4x4 using a Lanczos filter. As is common in
iterative reconstruction techniques [30], we low-pass filter the
target projections to adjust the amount of ringing in the results.
We used filter kernels [0.2,1.0,0.2] and [0.05,1.0,0.05] for
synthetic and real-world data, respectively.

We have found experimentally that training convergence
can be accelerated considerably by emphasizing high spatial
frequencies in the pixelwise error images between simulated
projections and target projections before computing the mean
squared loss. In practice, we apply a classic (non-learned)
ramp filter to the difference images, i.e., the weighted differ-
ence inside the norm in Eq. [I] Reminiscent of the derivation
of the ramp filter in wFBP, this focuses the loss evenly on all
frequencies in the volume, whereas low frequencies tend to
dominate otherwise. We use this optimization in all of our
training runs. Similar to many previous works (e.g., [31]),
we also found it practically beneficial to use our custom
mipmapping-based backprojection operator for computing the
gradient of the ray-marching operation.

D. Augmentations

Three kinds of data augmentation are applied during training
to increase the robustness of the neural networks. First, we
choose a random rotation around the z axis for the voxel grid,
ensuring that the networks learn no preferential orientation
of features in the zy plane. Second, we add a random sub-
voxel offset for the center of the reconstruction volume to
break the alignment of the voxel grid in relation to the scanner
geometry. These augmentations are implemented by perturbing
the geometry information in training data, and do not involve,
e.g., resampling of projection or volume data. Finally, we scale
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TABLE | TABLE Il
DATASET SPECIFICATIONS LOW-DOSE RECONSTRUCTION QUALITY USING SYNTHETIC DATA
Synthetic Real Method PSNR (dB) RMSE Runtime

Source XCAT [32] LDCT [20] Traditional methods
Training scans 13 41 wFBP [1] 23.23 0.1379 90s
Evaluation scans 4 6 IR-TV [5] 35.49 0.0336 ~1h
Projections per scan 9,000-12,000 11,000-15,000 Supervised training
Projection resolution 736x64 736 x64 wFBP + RED-CNN [3] 38.18 0.0247 106s
Spiral pitch 09 0.9 wFBP + 2D U-Net 39.17 00220  92s
Scan range 210-300mm  240-380 mm wFBP + 3D U-Net 39.77  0.0206 93s
zy voxel grid size 576x576 1024x1024 Self-supervised training (Our method)
z voxel grid size (inference) 272-374 402-644 2D U-Net + Our BP + 3D U-Net 4111  0.0176  27s
z voxel grid size (training) 128 160
Reconstruction voxel spacing 0.784 mm 0.586 mm
Reconstruction cylinder diameter 452 mm 600 mm

the log-attenuation values in all input and target projections by
a random scalar in range [0.75,1.25] for each reconstruction
during training. This is a valid transformation because the
backprojection and projection operations are linear in log-
domain, and it prevents the networks from learning typical
attenuation coefficients and exploiting that information when
reconstructing previously unseen data.

V. RESULTS

We evaluate our method on both synthetic and real-world
data. Real-world data enables us to qualitatively confirm that
our method scales up to the complexity of real subjects and
scanner setups, while a synthetic dataset, where a noise-free
ground truth is available, allows calculation of quantitative
metrics. We train our reconstruction pipeline separately for
each type of data. Dataset specifications are listed in Table [I}
Full versions of result images, including neighboring slices and
an interactive viewer, are available as supplemental material.

A. Datasets and comparison methods

1) Synthetic data: We generate a synthetic helical cone-
beam dataset using the XCAT CT projection simulator [32].
We simulate full-dose and low-dose (10% of full dose) scans
of each phantom. We chose the scanner parameters to match
those of the real-world dataset (described below) with the
exception that we do not use a flying focal spot. Because
the projections in the real-world dataset have beam hardening
correction applied, we simulate monochromatic radiation with
an energy level of 80keV to avoid beam hardening effects
in the synthetic data as well. Following the real-world setup
further, we simulate tube current modulation that attempts to
keep the photon Poisson noise roughly consistent throughout
the scan. To produce high-quality ground truth, we export the
voxel output from XCAT in 16x the target resolution and
downscale it using a 16 x 16 x 16-voxel box filter, yielding a
total of 4096 samples per output voxel.

2) Real data: For the real data experiments we use the Low
Dose CT Image and Projection Dataset (LDCT) [20], from
which we use 47 chest scans captured on Siemens scanners.
Each scan contains full-dose projections with various cor-
rections (e.g., for beam hardening, scattering, nonuniformity)
applied to them by the scanner manufacturer. In addition,

each scan has a corresponding set of simulated low-dose
(10% of full dose) projections created by adding noise on
top of the full-dose projections. Unless otherwise noted, we
use the simulated low-dose projections as inputs and full-
dose projections as training targets in our method (Sec. [[V-B).
Finally, each scan has a reference 3D reconstruction computed
by the scanner manufacturer. These references are noisy, so we
cannot perform numerical comparisons against them.

3) Comparison methods: We compare our reconstructions
with three previous methods: wFBP [1], total variation regular-
ized iterative reconstruction (IR-TV) [5], and RED-CNN [3].
We use FreeCT [33] as the wFBP implementation. As further
points of comparison, we evaluate the components of our re-
construction pipeline in isolation and in various combinations.

Our straightforward IR-TV implementation employs the
same non-aliasing high-quality projection and backprojection
operators as our reconstruction pipeline, and performs the
optimization using the Adam optimizer [29]. In addition, we
weight the projected rays according to approximate noise level
using a Poisson noise model [34]. As is customary, we low-
pass filter the input projections to minimize ringing using a
[¢,1.0,c] kernel where c¢ is a free parameter. The parameter
c and the strength of the TV regularizer where chosen to
maximize PSNR on synthetic data. We re-implemented RED-
CNN following the design of Chen et al. [3] exactly.

4) Metrics: For numerical evaluation, we compute peak
signal-to-noise ratio (PSNR) in decibels between the recon-
struction result and ground truth reference volume (only
available in the XCAT dataset). The PSNR computation is
done over the 3D volume instead of, e.g., averaging over
individual 2D slices. We also compute the root-mean-square
error (RMSE) of visual densities assuming a display window
width of 2000 Hounsfield Units (HU) that covers the variation
in XCAT data. The PSNR is computed from these scaled
values as well, corresponding to an implicit choice of 2000 HU
as the peak difference between raw densities. Both metrics are
calculated without clipping or quantizing the data.

B. Quantitative results on low-dose synthetic inputs

Our main focus is on reconstruction from low-dose input
projections, and we begin by comparing various methods in
this regime using synthetic data. To enable fair comparison,
we use full-dose data as the training target for all learning-
based methods. Table [[I] presents the PSNR and RMSE for
each method, computed against noise-free XCAT ground truth
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Fig. 6.

volumes. We start from traditional methods and build up
towards our method by gradually adding learned components.

1) Traditional methods: The traditional baseline methods,
wFBP and IR-TV, do not take advantage of any training
data— with the exception that the parameters of IR-TV were
tuned to maximize the output quality over the dataset. As such,
their reconstruction quality is limited in the low-dose regime.

2) Supervised deep learning: We first apply RED-CNN to
the output of wFBP, improving the result by several decibels.
The RED-CNN denoiser was trained in a supervised fashion,
with full-dose reconstructions made using wFBP as training
targets, representing a realistic training scenario. As a control,
we also similarly trained a denoiser network using the archi-
tecture of our 2D U-Net, achieving 0.99 dB better PSNR than
RED-CNN. While the architecture change yields a significant
improvement, the results are not as good as 3D models.

In the preceding denoising tests, processing is done one
axial slice at a time, meaning that the denoiser cannot exploit
3D structure in the volume. To gauge the usefulness of vol-
umetric denoising, we trained a standalone denoiser network
based on our 3D U-Net architecture. Again using full-dose
wFBP reconstructions as training targets and wFBP low-dose
reconstructions as inputs, our 3D U-Net denoiser improves the
output quality by further 0.60 dB, confirming that access to 3D
structure improves denoising results numerically.

3) Self-supervised training (Our method): Up to this point,
the reference training targets for all methods has been the full-
dose reconstructions made using wFBP, which is a realistic
scenario assuming that absolutely noise-free training targets
are not available. However, the drawback is that the attainable
output quality is limited by any reconstruction artifacts left in

wFBP +

WFBP 3D U-Net

Ours

[ ] [ ]
39.84dB 40.96dB

Low-dose reconstructions of synthetic data with different methods. Display window is set to [-400, 400] HU. PSNR values refer to the
individual volumes shown, not the entire dataset. Full images and neighboring slices are available in the supplemental material.

the training targets. Our full method that uses self-supervised
training sidesteps this problem by computing the loss in
projection domain. As seen on the last row of Table [
this improves the output quality significantly to 41.11dB,
surpassing the best comparison method by 1.34 dB.

C. Qualitative results on low-dose inputs

Fig. [] shows a set of example low-dose reconstructions
for the XCAT dataset, and Fig. [7] shows the corresponding
results for the LDCT dataset. The figures confirm that the
PSNR improvements seen in Table [[I] correspond to visually
better results for both synthetic and real data. As noise-free
ground truth data is not available for LDCT, we show full-
dose wFBP reconstructions in their place. To facilitate visual
comparison, we slightly blur the 3D reconstructions produced
by our method to better match the visual look of the ground-
truth and wFBP results using a hand-tuned Lanczos filter.

Our main competitor, “wFBP + 3D U-Net” (2" column
from the right), suffers from the correlations between the low
and full-dose projections in LDCT dataset: because the low-
dose projections have been simulated by adding noise into full-
dose projections, there is a common noise component between
inputs and outputs that the 3D network learns to partially
preserve. Our method removes the target projections from the
set of input projections in each training step to avoid this issue.

Fig. [§] highlights the importance of performing denoising
over the full 3D volume. 2D denoisers, such as RED-CNN,
construct the 3D volume slice-by-slice, which results in strong
artifacts along the non-axial cross-sections. Our 3D network,
on the other hand, produces a consistent 3D volume.
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wFBP
Full-Dose

wFBP Full-Dose

Axial (soft-tissue) Axial (lung)

Sagittal (soft-tissue)

wFBP +
3D U-Net

Fig. 7. Low-dose reconstructions of real-world data with different methods. For reference, full-dose wFBP (two leftmost columns) is shown in lieu
of noise-free ground truth that is not available. Soft tissue window is set to [-300, 300] HU and lung window to [-1350, 150] HU. Full images and

neighboring slices are available in the supplemental material.

D. Results using full-dose inputs

A unique property of our self-supervised loss is that our
method can be trained to operate on full-dose scans as well.
In contrast, supervised methods rely on the availability of a
separate reference result; it is not meaningful to construct this
reference from the same projections that are also used as input.

Table [[Il shows that our method achieves the best numerical
results compared to wFBP and iterative reconstruction; these
traditional methods are the only ones applicable in this com-
parison. As illustrated in Fig. [0} our reconstructions have less
noise than the comparison methods, and no detail is lost.

E. Additional experiments

1) Noise-free targets: To validate the correctness of our
self-supervised training setup, we performed experiments with
noise-free synthetic data. If both input and reference data
are noise-free, our method converges to a virtually perfect
result when using either supervised or self-supervised loss.

2D

RED.CNN 2D U-Net 3D U-Net

2D RED-CNN

E
S |
5 I
O [
0
Volume PSNR 38.20dB 39.08dB 39.87dB
Fig. 8. Coronal slices of low-dose reconstructions of synthetic data

using supervised 2D and 3D denoisers. As the 2D methods process
each axial slice independently, they suffer from inconsistencies in other
planes. A 3D denoiser is consistent along all axes.

This confirms that our networks are able to correct for any
artifacts resulting from the volumetric backprojection in a
data-driven way, and that the self-supervised loss achieves
results on par with the supervised loss when having access
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wFBP Full-Dose

Axial (lung)

Sagittal (soft-tissue)

wFBP Full-Dose  IR-TV Full-Dose

Fig. 9. Full-dose reconstructions of real-world data. Soft tissue window is set to [-300, 300] HU, and lung window to [-1350, 150] HU. Our self-
supervised loss enables us to train our pipeline with full-dose input data, which is not possible with traditional supervised methods. Compared to
FBP and total variation regularized iterative reconstruction, our results contain less noise and do not suffer from IR-TV’s blockiness. Full images

and neighboring slices are available in the supplemental material.

TABLE IlI
FULL-DOSE RECONSTRUCTION QUALITY USING SYNTHETIC DATA

Method PSNR (dB) RMSE Runtime
Traditional methods

wFBP [1] 3341  0.0427 90s

IR-TV [5] 42.12  0.0157 ~1h
Self-supervised training (Our method)

2D U-Net + Our BP + 3D U-Net 44.21  0.0123 27s

to synthetic ground truth reconstructions.

2) Correlated noise: To highlight the importance of not
having correlated corruptions in the inputs and targets, we
experimentally trained our method without removing the target
projections from the input. In this case, the input noise is
correlated with the target projections, and the networks learn
to pass the noise on to the reconstructions (Fig. [I0).

3) Photon-space loss: To gauge the effect of our photon-
space loss (Eq. [T), we trained variants of our method using Lo
loss in log-space instead. The log-transformation is nonlinear
and therefore skews the mean of the targets, violating the zero-
mean noise requirement of Noise2Noise training [15]. When
training with full-dose targets we did not observe significant
differences in the numerical results, suggesting that the skew
is small compared to photon counts. However, when training

Target projections excluded Target projections incorrectly
from the input set included in the input set

Fig. 10. Example crops of our method trained with target projections
excluded (left) and included (right). Both were trained with synthetic
full-dose data as input and target. If the targets are not excluded, the
network input becomes correlated with the targets and the networks
learn to pass the noise through instead of removing it.

with low-dose targets, the photon counts are lower, and the log-
transformation skew is relatively larger. With low-dose targets
we observed a drop of 3.32dB compared to our photon-space
loss function. Visual inspection confirmed that the results
overestimated the attenuation, as the loss function was skewed
towards higher log-space attenuation values. This confirms the
importance of calculating the loss in photon intensity space.

4) Network capacity: To analyze the effect of network
capacity, we trained various networks on the synthetic dataset
with varying channel counts. Halving the channel count of the
3D network hurt the numerical results significantly, but halving
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the channel count of the 2D network had a fairly small impact.
Hence, it appears that increasing the channel count of the 3D
network could improve the results further; at present this is
prohibited by the memory space available in GPUs.

5) Custom backprojection: Given that we do not explicitly
correct for potential artifacts arising from the cone-beam ge-
ometry in our differentiable backprojection operator, one may
ask whether our results could be improved by replacing the be-
ginning of our pipeline with FreeCT’s wFBP implementation.
In a separate experiment with low-dose inputs, we found that
this is not the case: this combination reached an output quality
of 39.59dB, i.e., 1.52dB lower than our proposed pipeline.
We suspect that the cause of this failure is due to aliasing in
wFBP outputs that do not cause issues in scenarios where the
training targets are also computed using wFBP. However, in
the self-supervised setting, this aliasing apparently makes it
difficult for the 3D network to recover a high-quality volume
that would faithfully match the projections.

To validate this hypothesis, we performed another experi-
ment where we trained our pipeline in a supervised fashion,
similar to the “wFBP + 3D U-Net” case in Table [[Il This com-
bination reached an output quality of 39.38dB, i.e., 0.39dB
lower than running our 3D U-Net directly on the output of
wFBP. This confirms that wFBP is indeed beneficial in the
supervised setting, but harmful in the self-supervised setting.

V1. DISCUSSION AND FUTURE WORK

We have shown that self-supervised training can be highly
beneficial in helical CBCT reconstruction, and believe that
the idea of combining projection simulation with end-to-
end machine learning could be applied in a range of other
tomography setups and other inverse imaging problems.

There are also several specific improvements that could
be made in the CBCT case. Most importantly, our training-
time model of the imaging setup, i.e., generation of simulated
projections from reconstructed volume, is fairly simplistic.
For example, we do not utilize tube current information. We
also do not currently attempt to reproduce effects such as
beam hardening, scattering, and metal artifacts. We believe
that using uncorrected raw projection data and simulating these
effects in the projection simulation step could lead to further
significant improvements, as these artifact-inducing effects are
presumably easier to simulate than to remove directly.
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