
Sampling Precomputed Volumetric Lighting

Janne Kontkanen1, Samuli Laine1,2

1Helsinki University of Technology / TML, 2Hybrid Graphics Ltd.

Abstract

Precomputing volumetric lighting allows realistic mutual shadowing
and reflections between objects with little run-time cost: for example,
using an irradiance volume the shadows and reflections due to a static
scene can be precomputed into a 3D grid and this grid can be used to shade
moving objects at run-time. However, a rather low spatial resolution has
to be used to keep the memory requirements acceptable. For this reason,
these methods often suffer from aliasing artifacts.

In this article we introduce a new sampling algorithm for precomputing
lighting in to a regular 3D grid. The advantage of the new method is that
it dramatically reduces aliasing while adding only a small overhead for
the precomputation time. Additionally, the run-time component does not
have to be changed at all.

1 Introduction

With precomputed volumetric lighting, we refer to the class of techniques that
precompute the illumination effects caused by a rigid object or scene to the
surrounding space. Then at run-time this precomputed information that is fixed
in the coordinate frame of the object or scene is used to shade other surfaces
that are in the vicinity. Techniques that fall into this category are, for example,
irradiance volume [2], neighborhood transfer [9] and ambient occlusion fields [4].
These are described in more detail in Section 2.

Usually these methods precompute the lighting information at the nodes of
the 3D grid. Then the run-time lookup at an arbitrary location is done by
fetching the values at the neighboring nodes and using tri-linear interpolation.
By its nature, this approach is prone to aliasing. Most distracting artifacts
tend to occur where the scene geometry intersects the volume. For example, a
node inside a solid wall is not a good representative for the illumination outside
the wall and due to tri-linear interpolation the darkness leaks from the wall to
the open space. The irradiance volume in the Figures 1(a-b) illustrates this.
Sometimes artifacts can be diminished by carefully positioning the grid, but
this is of course not always possible. Since geometry discontinuities introduce
infinite frequencies into the lighting, there is no finite resolution that is sufficient
to capture all the detail.

1



a) b) c) d)

Figure 1: A helicopter is lit by an irradiance volume that captures the reflec-
tions and shadows cast by the scene. a) 2D illustration of the leakage problem.
Darkness is leaking from a solid structure into the open space due to interpo-
lation. The red dots represent the nodes that cause a poor estimate of lighting
outside the solid. b) The same artifact shown in 3D scene. The helicopter is
lit by a conventional irradiance volume and some of the grid nodes are inside
the buildings, thus giving a bad estimate for lighting incident on the helicopter.
As a result, the helicopter appears too dark. c-d) The approach suggested
in this article solves the problem by precomputing the interior nodes (green)
in such a way that they only account for illumination outside the solid. For
more comprehensive results and a comparison against a reference solution, see
Figure 6.

In this article, we present an algorithm that reduces aliasing in two ways.
The first is fairly standard pre-filtering. This removes or attenuates the high
frequencies that cannot be represented by the grid. In practice, this is done by
modifying the precomputation stage so that instead of shooting rays from the
nodes of the grid, we shoot them from random locations and accumulate the
results of the ray queries according to the tri-linear weighting functions of the
grid nodes. This alone diminishes the problem shown in Figure 1(a-b), but does
not eliminate it.

Fortunately, the first idea prepares the way for the second. While we cannot
capture the discontinuities introduced by the polygon boundaries, we can rede-
fine the problem so that we get rid of most of these discontinuities. Note that in
most applications the polygonal surface represents the boundary between solid
and empty space and the solid objects are not allowed to overlap. In addition,
it is common that the camera is not allowed inside the solids. If either or both
of these restrictions is accepted, then it is only required to reproduce the illu-
mination on one side of the polygonal boundaries i.e. in the empty space. In
this article, this domain is called the domain of interest.

During precomputation, we need to generate rays that originate uniformly
from the domain of interest. To do this, we propose an efficient heuristic algo-
rithm that does not require this domain to be explicitly specified. Instead, the
domain is defined as a part of the space with no visibility to back-faces of the
geometry. This definition has the practical advantage that the geometry does
not have to be closed. While the definition imposes some requirements for the

2



geometry, these are in practice manageable (see Section 7). Figure 1(d) shows
the new technique in practice.

2 Background and Applicability

The irradiance volume [2] is an important technique for computer games, be-
cause it can be used for realistic scene-to-object-lighting including arbitrary
reflections and shadowing. To our knowledge, the first computer game using
an irradiance volume-like approach was Max Payne 2 by Remedy Entertain-
ment [1]. The method is especially useful for indirect illumination and large
area light sources.

In the irradiance volume the irradiance distribution function (i.e. irradiance
as a function of the normal of the receiving surface) is precomputed and stored
into the nodes of the 3D grid. Then this grid is used to illuminate moving diffuse
objects at real-time. In the original article the irradiance distribution function
was stored by discretizing it with respect to direction. However, a more up-to-
date version of the technique is obtained if the irradiance distribution function
is expressed in the spherical harmonics basis [7]. Also, the technique can be gen-
eralized for non-diffuse reflections by storing radiance instead of irradiance. In
this article, we demonstrate our method with irradiance volume using spherical
harmonics as the directional basis.

In addition to irradiance/radiance volume, the new method is applicable to
neighborhood transfer [9] and ambient occlusion [10, 5]. Neighborhood transfer
can be considered as a radiance volume that has been parameterized by distant
environment lighting. The technique is used to capture the reflections and
shadows that an object or scene casts to their surroundings in the presence of
dynamic lighting.

The ambient occlusion shadows cast by an object to another can be effi-
ciently rendered in real-time if the ambient shadows are precomputed into the
surrounding space of each shadow caster as done by Kontkanen and Laine [4].
The authors use heuristic radial models to store the 3D data into a 2D cube-map
and thus the new sampling method is not directly applicable. However, the new
method can be applied if the ambient occlusion is precomputed into a regular
3D grid.

3 Irradiance Volume with Spherical Harmonics

In this section, we briefly describe how we upgraded the classical irradiance vol-
ume to use spherical harmonics as directional basis. This is fairly straightfor-
ward, but the formalizations we develop are needed in the subsequent sections.

First, consider a single point x in space and the illumination incident upon
it. Ramamoorthi and Hanrahan [7] showed that the irradiance depends strongly
only on the first nine spherical harmonic coefficients of the radiance distribution.
According to this, we store the radiance distribution with nine coefficients and

3



Table 1: The first nine spherical harmonics basis functions Yj and the convolu-
tion coefficients Aj for transforming the radiance to irradiance. x, y and z are
the components of the normalized direction vector. bi is a standard tri-linear
weighting function of a node i.

Y0 = 0.282209 A0 = 3.141593 bi(x, y, z) = (1− dx)(1− dy)(1− dz)
Y1 = 0.488603 x A1 = 2.09395 dx = min(|x− xi|/wx, 1)
Y2 = 0.488603 y A2 = 2.09395 dy = min(|y − yi|/wy, 1)
Y3 = 0.488603 z A3 = 2.09395 dz = min(|z − zi|/wz, 1)
Y4 = 1.092548 xz A4 = 0.785398
Y5 = 1.092548 yz A5 = 0.785398 xi,yi,zi = location of node i
Y6 = 1.092548 xy A6 = 0.785398 wx,wy ,wz = width of the grid cell
Y7 = 0.315392 (3x2 − 1) A7 = 0.785398
Y8 = 0.546274 (x2 − y2) A8 = 0.785398

convert it to irradiance in the run-time look-up (Section 6). This is expressed
by the following equation1:

E(x,n) ≈
9∑

j=1

Lj(x)AjYj(n), (1)

where E(x,n) denotes the irradiance at location x, given a normal vector of
the receiving surface n. Lj is the j:th spherical harmonic coefficient of the
radiance distribution. Aj refers to the convolution coefficients for converting
the radiance to irradiance (Table 1), and Yj is the j:th spherical harmonic basis
function (Table 1). Since we store radiance instead of irradiance, the data can be
used for illuminating non-diffuse surfaces as well, but for simplicity we consider
the diffuse case only. Of course, it would be equally justified to directly store
the irradiance distribution functions in the spherical harmonics basis.

At run-time we need to reconstruct the irradiance according to Equation 1
at arbitrary locations in space. Thus, we need to have access to the spherical
harmonic coefficients Lj(x) at any location x. For this, we spatially discretize
the functions Lj(x) into a 3D grid. In the look-up we express them as the
weighted averages of the values stored in the neighboring nodes:

Lj(x) ≈
∑

i∈B(x)

cijbi(x), (2)

where cij is the coefficient corresponding to the node i and the spherical har-
monic j. The function bi is the standard tri-linear weighting function of the
node i (for definition see Table 1). B(x) refers to the set of nodes i for which
bi(x) > 0. Substituting (2) to (1) gives:

E(x,n) ≈
9∑

j=1

Aj

 ∑
i∈B(x)

cijbi(x)

Yj(n), (3)

1Equation 1 corresponds to Equation 7 in [7]. However, for a detailed derivation, an
interested reader should read both [7] and [8].

4



which is all that is needed at run-time when reconstructing the approxima-
tion of the irradiance. For completeness, the above reconstruction is given as
pseudo-code in Section 6. In the next section we discuss how to determine the
coefficients cij .

4 Sampling

In the most straightforward implementation of irradiance volume with spherical
harmonics, the coefficients cij in Equation 3 would be determined by projecting
the incident illumination to spherical harmonics separately at each node location
xi:

cij =

∫
Θ

L(xi, ω)Yj(ω)dω (4)

We refer to this as point sampling. However, the problem with this method is
that a single location xi is often a bad representative for the illumination in
its neighborhood. Thus, instead of point sampling, we compute the coefficients
cij by integrating the radiance against both the spherical harmonics and the
tri-linear weighting functions according the following double integral:

cij =

∫
∆

(∫
Θ
L(x, ω)Yj(ω)dω

)
bi(x)dx∫

∆
bi(x)dx

(5)

where ∆ is the spatial domain covering the domain of interest of the irradiance
volume (see the next section) and Θ refers to the set of all possible directions.
The denominator is necessary because in our method, the boundary of ∆ is
determined by scene geometry, and thus the basis functions bi are not normalized
in the domain2.

In practice, we estimate Equation 5 using Monte Carlo integration by tracing
random rays distributed in both spatial and angular dimensions as described in
Section 6.

There are several advantages of using Equation 5 instead of Equation 4.
First is anti-aliasing: in Equation 5 each cij is a weighted average of the light
distribution on the support of the corresponding basis function bi. Thus the
method removes high frequencies that cannot be represented by the spatial
basis. Second advantage is that Equation 5 gives fine control over the integration
domain ∆. We use this opportunity to carefully define the domain to address
the problem of leaking illumination.

5



Figure 2: 2D illustrations of the domain of interest in different scenes. The
small arrows denote the normal vectors of the scene geometry, black contour
represents the surfaces and the domain of interest is light green. The space that
is not a part of the domain is draw with dark gray. Left: A horizontal cross
section of a maze. Right: A vertical cross section of a small town, intended to
be viewed only from outside.

5 Domain of Interest

The domain of interest, denoted ∆, must contain all the space in which the
incident lighting is queried at run-time. In practice, this means every part of
space that visible dynamic objects are allowed to enter. In a typical application
at least solid structures are outside of this domain.

On the other hand, efficient Monte Carlo integration of Equation 5 relies on
the ability to quickly generate samples from the domain of interest ∆. Since we
will use rejection sampling this means that we need to be able to quickly tell
whether an arbitrary point belongs into the domain of interest or not. We refer
to this procedure as point classification.

We define the domain of interest as all the space from which no back-face
of the scene geometry is visible. 2D illustrations of this are shown in Figure 2.
This definition excludes the solid structures from the domain of interest, and
has an advantage that the point classification is relatively easy, as explained in
Section 6.

The requirement that the back-faces of the scene geometry are not exposed
to the viewer is reasonable for most applications. For example, it does not imply
that the geometry must be closed, watertight or non-self-intersecting. In Sec-
tion 7 we give a detailed error analysis and show that the classification is robust
in practice even in the presence of different kinds of geometry imperfections such
as cracks.

2Note also that Equation 5 is not a projection to the spatial basis bi(x), but simply an
average weighted according to bi(x). The basis bi(x) is not orthogonal, and evaluating the
minimum error projection would require integrating against dual basis functions with infinite
support. This is not feasible in practice, and the result might be visually objectionable due
to ringing artifacts.

6



a) b) c) d)

Figure 3: Algorithm for point classification. In (a), first potential sampling ray
origin (yellow) is created and in absence of known back-face-points a ray is shot
towards random direction. This yields an intersection with front-face and for
now, the sampling ray is preserved. In (b), second sampling ray is generated
and it hits a back-face. Thus the sampling ray is discarded and a back-face-point
(red cross) is created. Previously generated sampling rays are tested against this
new back-face-point by shooting query rays (yellow) towards it. In this case, the
query ray does not hit a back-face, thus the existing sampling ray is preserved.
In (c), third sampling ray origin is created, and tested against known back-face-
points. Since this does not yield intersections with a back-face, a sampling ray
is shot towards a random direction. In (d), the process has been completed and
only the rays originating from the domain of interest remain (green).

6 Implementation

In this section we describe both the precomputation and run-time stages of our
method. However, most of the section is devoted to the precomputation, since
the run-time component is not affected by the new sampling method.

Precomputation

The double integral in Equation 5 can be estimated by Monte Carlo integration:

cij ≈ 4π

∑N
s=1 L(xs, ωs)Yj(ωs)bi(xs)∑N

s=1 bi(xs)
(6)

In the above, the nominator and denominator of Equation 5 have been approx-
imated separately with the same set of samples xs and the terms 1/N cancel
out. In practice, the evaluation of this equation is done by shooting randomly
oriented rays from random locations inside the domain of interest. For fast
convergence, we used Halton quasirandom sequence [3] to generate both the
directional samples ωs and spatial samples xs.

Since the domain of interest ∆ is defined implicitly by the scene geometry as
explained in Section 5, we can not directly generate samples (ray origins) from
it. Instead, we use rejection sampling, i.e., we generate uniformly distributed
samples in a simpler bounding volume and reject those that are not within the

7



desired domain. To do this, we need a method to tell whether an arbitrary point
lies within the domain of interest or not.

Recall from Section 5 that if back-facing geometry can be seen from location
x, it does not belong into the domain of interest and thus a ray that originates
from such a location should be ignored. A näıve algorithm would check each
candidate ray by shooting numerous query rays from its origin to all directions
and test whether any of them hit back-facing geometry. However, this is not
affordable in practice, and we developed a more efficient algorithm by utilizing
the spatial coherence.

We divide the space into cells and process one cell at the time. For conve-
nience, we chose to use the irradiance volume cells. The goal of the algorithm
is to produce a set of randomly oriented rays so that the origins are inside the
part of the cell that overlaps the domain of interest.

The algorithm traces two kinds of rays. Sampling rays are shot to random
directions and are, in the end, used to integrate the incident illumination into
the cell. Query rays are shot to explicitly test whether there is visibility from
a potential sampling ray origin to back-facing geometry. Back-face-point refers
to a location on a back-facing surface that is known to be visible from the cell.

Processing a single cell starts by clearing the list of known back-face-points
and the list of sampling rays. Then potential sampling ray origins are repeatedly
generated. Whenever visibility from a potential sampling ray origin to back-
face-point is detected, the sampling ray is thrown away and all the sampling
ray origins generated so far are tested by shooting query rays towards this new
back-face-point. In the end only rays that have origins in the domain of interest
remain. The full description of the procedure is given in Figure 3.

The results of the ray intersection computations done for the point classifi-
cation algorithm can be re-used when computing the incident illumination. In
cells with no visibility to back-facing geometry, the algorithm does not cause
any notable overhead: Only the rays that are required to integrate the illumina-
tion are traced. On the other hand, in the rest of the cells the algorithm often
needs only one back-face-point. A complete pseudo-code for doing this is given
in Algorithm 2.

Run-time

Since the run-time component is not affected by the new sampling scheme for
precomputation, it can be straightforwardly implemented using graphics hard-
ware. The look-up is done according to Equation 3 and the resulting pseudo-
code is given in Algorithm 1.

7 Error Analysis

In this section, we focus on the possible sources of error in our method. For the
purposes of discussion, we divide the errors in three classes according to their

8



Algorithm 1 Pseudo-code for the run-time look-up.
input: location x, surface normal n

cell = getCell(x)
for all corners of cell, node do

i← index of node
L = 0
for j = 1 to 9 do

L = L + AjYj(n)bi(x)c(i, j)
return L

cause: errors due to lack of resolution, errors due to geometry imperfections,
and errors due to small support.

Lack of Resolution: It may happen that the support of a single node
covers an area with abrupt changes in lighting. In this case the node may be
unable to represent the lighting accurately. For example, a low-resolution grid is
unable to capture the illumination on both sides of a thin wall (see Figure 4(a)).

In some cases this problem can be alleviated by aligning the grid suitably
with the geometry, but this is not in general the case. The only way to actually
solve this undersampling problem is to increase the resolution of the grid (see
Figure 4(b)). For a cost-efficient way to choose the resolution, an adaptive
scheme should be used [6]. These methods are still under development, but we
expect them to be orthogonal to our technique.

For practical irradiance volumes, undersampling the lighting is a necessity.
For example, see the interior scene in Figure 6. The thin bars of the bed
cast small shadows as seen in the reference image. A faithful reproduction of
these shadows would require an excessive resolution. Our method averages the
shadows away, while the the conventional point sampling causes a distracting
artifact as some of the grid nodes end up inside the bars.

(a) (b)

Figure 4: The effect of a coarse resolution. In (a) a too low resolution is used
and the support (red) of some of the nodes (marked with black dots) reach
to the both sides of the wall. There is no way to precompute these nodes so
that potentially very different illumination at the both sides of the wall can be
reproduced. In (b) high enough resolution is used and none of the nodes have
support on the both sides of the wall.

9



Lack of Support: It is possible that only a small part of the support of
a certain spatial basis function falls into the domain of interest. In this case
only a small number of sampling rays is used to evaluate the illumination for
the corresponding node. Intuitively, this should cause high variance. However,
the basis functions that are mostly outside the domain of interest tend to have
small weight also when the lighting is reconstructed. Thus, we have not seen
the effects of this potential problem in practice.

Geometry Imperfections: The requirement that the back-faces of the
geometry should not be visible from the locations where the lighting volume is
used is in general reasonable. However, in real applications the geometry is often
imperfect, in which case the back-faces may become visible from the domain of
interest.

Common imperfections are polygons with reversed surface normals and cracks
between polygons. Our method does not tolerate the former, but fortunately
the reversed polygons can be easily found by visual inspection if the back-faces
are highlighted with a color. Then the back-facing polygons can be reversed
manually. The latter, however, requires further attention.

In the presence of a crack (see Figure 5), a sampling ray shot from a cell
may accidentally go through the crack and thus generate a back-face-point.
This causes the ray to be thrown away and the rest of the sampling locations
are then tested against this new back-face-point. Fortunately, since the further
query rays originate from different locations, it is very improbable that any of
them will go through the crack again. Thus the number of misclassified samples
is statistically insignificant and the algorithm is robust in practice even in the
presence of cracks.

Figure 5: Cracks between polygons might result in rays going through surfaces.
This may give false visibility from the domain of interest to back-faces. However,
even if a back-face-point is found this way, it is very improbable that the query
rays shot to classify the other points in the cluster go through the same crack (In
the figure, the size of the crack has been exaggerated for illustrative purposes).

8 Results

To validate our method, we computed irradiance volumes in two different scenes.
The city scene represents a relatively large outdoor environment. The lighting
is emitted slightly directionally from a sky dome to create smooth but clearly

10



visible shadows and some color bleeding due to indirect illumination. The results
are shown in Figures 6(a-b). Neither the conventional point sampling nor our
new method are able to reproduce all the fine detail seen in the ray traced image.
Our method gives a result that is blurry, but visually pleasing. On the other
hand, point sampling suffers from darkness leaking from insides of the buildings,
resulting in visually objectionable artifacts.

Secondly, we computed an irradiance volume for an interior scene (see Fig-
ure 6(c)). Light falls from the window and illuminates the room both directly
and indirectly. The room contains detail that cannot be captured with an ir-
radiance volume without using an excessive resolution. In this case the volume
computed with point sampling shows distracting aliasing and leakage. Our
method smoothes out the excessive detail and avoids the leakage problems, giv-
ing a more pleasing result.

Both scenes were modeled by artists who were briefly informed about the
requirements that the point classification algorithm poses on the scene geometry.
After flipping some reversed surface normals, the algorithm worked perfectly on
both of the scenes.

Acknowledgements

The authors would like to thank the following people for proofreading and sup-
port: Timo Aila, Jaakko Lehtinen, Lauri Savioja and Jani Vaarala. The 3D
models were made by Eetu Martola (the city model) and Tuukka Takala (the
interior). This work was funded by Anima Vitae, Bitboys, Hybrid Graphics,
Nokia, Remedy Entertainment and National Technology Agency of Finland
(Tekes).

11



Algorithm 2 Pseudo-code for the precomputation.
Input
scene : scene geometry

Output
c(i,j) : grid of coefficients, i = index of grid node, j = index of spherical harmonic

Data structures
ray,qray : pair (origin, direction)
isect,isect2 : quadruple (location,normal,valid,brdf)
sample : pair (ray, intersection)
samples : list of candidate samples
bfpoints : list of locations where a ray hit a back-face
norm() : the normalization factors

Functions
findFirstHit(ray,scene) : returns the first intersection of ray with scene
incidentRadiance(sample) : returns radiance incident towards sample.ray.origin

from sample.intersection.location

for all grid cells, cell do
clear list samples
clear list bfpoints
for i = 1 to Nsamples do

ray ← random direction and random origin in cell
bfhit ← false
for all bfpoints, bfpoint do

qray ← ray from ray.origin to bfpoint
isect ← findFirstHit(qray,scene)
if dot(isect.normal,qray.direction) > 0 then

bfhit ← true
break

if !bfhit then
isect ← findFirstHit(ray,scene)
if isect.valid and dot(isect.normal,ray.direction) > 0.0 then

bfpoints.add(isect.location)
for all samples, sample do

qray ← ray from sample.ray.origin to isect.location
isect2 ← findFirstHit(qray,scene)
if dot(isect2.normal,ray.direction) > 0 then

samples.remove(sample)
else

samples.add(pair(ray,isect))

for all samples, sample do
L ← incidentRadiance(sample)
for all corner nodes of cell, node do

i ← index of node
for j = 1 to 9 do

c(i, j)← c(i, j) + L Yj(sample.ray.direction)bi(sample.ray.origin)
norm(i) ← norm(i) + bi(sample.ray.origin)

for i = 1 to Nnodes do
for j = 1 to 9 do

c(i, j)← c(i, j)/norm(i)

12



References

[1] Personal communication with Jaakko Lehtinen, one of the authors of Max
Payne 2 by Remedy Entertainment, 2003.

[2] G. Greger, P.Shirley, P. M. Hubbard, and D. P. Greenberg. The Irradiance
Volume. IEEE Computer Graphics and Applications, 18(2):32–43, 1998.

[3] J. H. Halton and G. Weller. Algorithm 247: Radical-inverse quasi-random
point sequence. Communications of the ACM, 7(12):701–702, 1964.

[4] Janne Kontkanen and Samuli Laine. Ambient occlusion fields. In Proceed-
ings of ACM SIGGRAPH 2005 Symposium on Interactive 3D Graphics and
Games, pages 41–48, 2005.

[5] Hayden Landis. RenderMan in Production, ACM SIGGRAPH 2002 Course
16, 2002.

[6] Chris Oat. Irradiance Volumes for Games, Presentation at Game Develop-
ers Conference, 2005.

[7] R. Ramamoorthi and P. Hanrahan. An Efficient Representation for Irradi-
ance Environment Maps. In Proceedings of ACM SIGGRAPH 2001, pages
497–500, 2001.

[8] R. Ramamoorthi and P. Hanrahan. On the relationship between radiance
and irradiance: determining the illumination from images of a convex Lam-
bertian object. Journal of the Optical Society of America A, 18(10):2448–
2459, 2001.

[9] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed Radiance
Transfer for Real-Time Rendering in Dynamic, Low-Frequency Lighting
Environments. In Proceedings of ACM SIGGRAPH 2002, pages 527–536,
2002.

[10] Sergey Zhukov, Andrey Iones, and Grigorij Kronin. An ambient light il-
lumination model. In Rendering Techniques ’98 (Proceedings of the Euro-
graphics Workshop on Rendering), pages 45–55, 1998.

13



R
ef

er
en

ce
P

oi
n
t

sa
m

p
li

n
g

N
ew

m
et

h
o
d

O
v
er

v
ie

w

(a) (b) (c)

Figure 6: Sampling methods compared. The columns (a-c) correspond to dif-
ferent scenes/views. The top row shows images rendered using our method. In
each image, the flat plate is illuminated by the irradiance volume. The second
row shows the irradiance incident on the plate. The third row shows the cor-
responding result with conventional irradiance volume and the last row is the
ground truth obtained by ray tracing. Bright green indicates the parts of the
plate that are outside the domain of interest.

14


