
Ambient Occlusion Fields
Janne Kontkanen∗ Samuli Laine,

Helsinki University of Technology Helsinki University of Technology and
Hybrid Graphics, Ltd.

Abstract

We present a novel real-time technique for computing inter-object
ambient occlusion. For each occluding object, we precompute a
field in the surrounding space that encodes an approximation of the
occlusion caused by the object. This volumetric information is then
used at run-time in a fragment program for quickly determining the
shadow cast on the receiving objects. According to our results, both
the computational and storage requirements are low enough for the
technique to be directly applicable to computer games running on
the current graphics hardware.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: shadowing techniques, games & GPUs, interactive
global illumination, reflectance models & shading

1 Introduction

The idea of ambient occlusion is a special case of the obscurances
technique which was first presented by Zhukov et al. [1998], but
half of the credit belongs to the movie industry and the produc-
tion rendering community for refining and popularizing the tech-
nique [Landis 2002; Christensen 2002]. Ambient occlusion refers
to the attenuation of ambient light due to the occlusion of nearby
geometry:

A(x,n) :=
1
π

∫
Ω

V (x,ω)bω ·ncdω (1)

Here x is the location and n is the normal vector on the receiving
surface. V (ω,x) is the visibility function that has value zero when
no geometry is visible in direction ω and one otherwise. In the
above,

∫
Ω

refers to integration over a hemisphere oriented accord-
ing to the surface normal n.

Multiplying the classical ambient term [Phong 1975] with 1− A
gives a much better looking result than the dull constant, because
the ambient occlusion is able to approximate effects that are oth-
erwise attainable only by computing full global illumination. For
instance, sharp corners appear darker than open areas and objects
cast plausible contact shadows on the surfaces they are resting on.

Compared to a full global illumination solution, ambient occlusion
is significantly faster to compute. In addition, the self-occlusion of
a rigid object can be computed as a preprocess and then re-used in
different environments. Since the data can be stored in a texture
map or as vertex attributes, the technique has a negligible run-time

∗email:{janne,samuli}@tml.hut.fi

Figure 1: A tank casts shadows on the surrounding environment.
The shadows are rendered using the method described in this paper.
The scene runs 136 fps at 1024× 768 resolution on a Pentium 4
with ATI Radeon 9800XT graphics board.

overhead. For this reason, ambient occlusion is gaining interest
also in the real-time graphics community [Pharr 2004]. However,
the inter-object occlusion has to be re-evaluated whenever spatial
relationships of the objects change. This is in most cases affordable
in offline rendering, but not in real-time applications.

To quickly evaluate inter-object ambient occlusion we need an ef-
ficient method to compute the shadow cast by an occluder at an
arbitrary position and surface orientation in the neighborhood. In
this paper, we propose precomputing an ambient occlusion field for
each occluder.

The basic idea is as follows. We approximate the occluder by a
spherical cap when computing the ambient occlusion on the receiv-
ing surfaces. A spherical cap is defined by a direction and a solid
angle. To quickly determine a spherical cap at an arbitrary location
in the neighborhood, we precompute the subtended solid angle and
the average direction of occlusion as fields around the occluder. To
keep the memory requirements low, these fields are stored as radial
functions into a cube-map surrounding the occluder.

The proposed method can be used for computing real-time ambient
occlusion cast by rigid bodies. The run-time costs are independent
of the object’s complexity, and both computational costs and mem-
ory requirements are such that the approach is practically applicable
to computer games. Also, the method poses no requirements for the
tessellation of the receiving surface, since the run-time evaluation
is done in a fragment program. Figure 1 illustrates contact shadows
rendered with our method.

In the next section we discuss the previous work. The concept of
the ambient occlusion fields is explained in Section 3 and the imple-
mentation in Section 4. Our main contributions are the following:

• A spherical cap approximation for fast computation of ambi-
ent occlusion (Section 3.1)



• A radial parameterization of space and simple models for the
subtended solid angle and the average direction of occlusion
in order to compactly store the data (Section 3.2)

• An efficient implementation that utilizes modern graphics
hardware, including a fast precomputation method (Section 4)

• A practical method for combining occluders (Section 4.3)

The results are summarized in Section 5 and we discuss the future
work in Section 6. For convenience, the list of used symbols is
given in Table 1.

2 Previous Work

Accessibility shading [Miller 1994] is a predecessor of the ambient
occlusion technique. Accessibility shading models the local varia-
tions of surface materials due to processes such as dirtying, clean-
ing, tearing, aging or polishing. For example, the accessibility of a
surface location determines how much dirt is gathered into it. Com-
puting ambient occlusion can be seen as computing the accessibility
of light.

Ambient occlusion has become a popular technique in production
rendering [Landis 2002; Christensen 2002]. It is typically com-
puted on the surfaces of each object and stored in a texture map
or as vertex attributes. The most straightforward method is to use
rasterization or ray tracing to sample the hemispherical visibility
around the surface of the object, but a similar result can be achieved
by rendering the object from multiple directions and accumulating
the visibility on each surface element. In any case, the goal is to
evaluate Equation 1 on the surface of the object.

Ambient occlusion is a simplified version of the obscurances illu-
mination model [Zhukov et al. 1998], where the visibility function
V of ambient occlusion (Equation 1) is replaced by a function of
distance, giving the obscurance W :

W (x,n) :=
1
π

∫
Ω

ρ(d(x,ω))bω ·ncdω (2)

In above d(x,ω) refers to the distance of the first intersection when
a ray is shot from x towards ω . ρ is a function that maps the dis-
tance suitably. Iones et al. [2003] suggest 1−eτd , where τ is a user
defined constant.

Mendez et al. [2003] introduce a method for dynamically updat-
ing the obscurances information in the presence of moving objects.
Obscurances are re-sampled only in a selected region of the scene
by utilizing temporal coherence. However, since the obscurances
are evaluated per patch, the method requires a huge number of
patches to account for high quality contact shadows. Thus, while
the method is usable for approximating the global illumination in
large scale, the fine detail present in contact shadows requires a dif-
ferent approach.

Sattler et al. [2004] compute the visibility from the vertices to a
number of directions and utilize the coherence in the visibility func-
tion to achieve interactive frame rates with deformable objects in
dynamic distant illumination. This differs from our work in that the
method is intended for computing self occlusion instead of inter-
object ambient occlusion effects.

Kautz et al. [2004] use a look-up-table for rasterizing occluding tri-
angles on a hemisphere. Their method finds hemispherical occlu-
sion quickly enough for determining shadows from a low-frequency
lighting environment at interactive rates. While this method is in-
tended primarily for computing self-shadows, it can be used also

Variable meaning
x 3D position
ω direction vector
ω̂ discretized direction vector
n surface normal
V (x,ω) visibility function
A(x,n) ambient occlusion
Ã(x,n) approximate ambient occlusion
Ak(x,n) ambient occlusion by object k
Ω(x) subtended solid angle of occluder
Ω̃(x) approximation of Ω

ϒ(x) average direction of occluder
ϒ̃(x) approximation of ϒ

r distance from origin
a(ω),b(ω),c(ω) parameters for function Õ
C0(ω) characteristic center of occlusion
p controls the shadow in the convex hull
r0(ω) distance of convex hull from origin

Table 1: List of used symbols.

for inter-object shadows. However, due to efficiency reasons, the
evaluation must be done per-vertex and thus artifacts are hard to
avoid without highly tessellated geometry.

Our method can be seen as a real-time shadow algorithm for am-
bient light. Most research on real-time shadow algorithms concen-
trate on point light sources or relatively small area lights. Hasen-
fratz et al. [2003] give an extensive survey on the real-time soft
shadow algorithms.

Deep shadow maps [Lokovic and Veach 2000] store a piecewise
linear function into each shadow map pixel to represent the frac-
tional visibility of the light source. Unlike conventional shadow
mapping, deep shadow maps can model shadows cast by partici-
pating media or partially transparent surfaces. However, since the
deep shadow maps work only for point lights the technique is not
usable for ambient light. The idea of storing functions into texture
maps is used widely. For example, Malzbender et al. [2001] use bi-
quadratic polynomial textures to express appearance of an image in
varying lighting.

In addition to shadowing techniques, the reverse problem of quickly
computing the illumination reflected to the neighborhood of the
object is closely related to our work. Sloan et al. [2002] present
neighborhood transfer as an application of precomputed radiance
transfer. For each point in a 3D grid surrounding an object, they
precompute a linear operator that maps distant incident illumina-
tion to the neighborhood of the object. This method is able to ex-
press full light flow from the low-frequency lighting environment
to the space around the the object. Compared to our method, neigh-
borhood transfer is more general, but both storage and computa-
tional requirements are much higher. To accurately represent con-
tact shadows, the resolution of the grid needs to be prohibitively
high.

Chunhui et al. [2004] suggest precomputing spherical radiance
transport maps (SRTMs) to account for inter-object shadowing and
caustics due to distant illumination. The illumination is modeled as
a set of directional lights. The method solves inter-object shadow-
ing by pre-rasterizing coverage masks of occluder from a discrete
set of directions and uses these coverage masks to look up the oc-
clusion of each directional light when rendering the receivers. This
approach results in a significant number of look-ups, but real-time
performance is achieved by clustering of light sources and careful
low-level optimization. However, since the shading is computed per
vertex, the method requires finely tessellated receiving geometry to
accurately compute contact shadows.



V

Vcap

x

n

Figure 2: A spherical cap approximation for an occluder. An ap-
proximate ambient occlusion is computed at each x with surface
normal n by approximating the visibility function V (x,ω) by a vis-
ibility of a corresponding spherical cap Vcap(x,ω). The size of the
spherical cap is determined so that it subtends the same solid angle
as the occluder. The direction of the cap is given by the average of
the occluded directions.

3 Ambient Occlusion Fields

In this section we introduce our spherical cap approximation for
computing ambient occlusion and define the fields for the solid an-
gle and the average direction of occlusion. Then we discuss how to
express the fields compactly as radial functions, and finally how the
special case of a receiver entering the convex hull of the occluder
is treated. In this section the fields are assumed to be continuous;
discretizing for storing into cube-maps is discussed in Section 4.

3.1 Spherical Cap Approximation

To quickly determine ambient occlusion at an arbitrary point in
space around an occluder, we approximate the visibility of the oc-
cluder with a spherical cap (see Figure 2).

The spherical cap approximation works well in practice, since
the ambient occlusion integral (Equation 1) is a smooth, cosine
weighted average of the visibility function over a hemisphere. The
result is not very sensitive to variations in the shape of the visibility
function as long as the proportions of V = 0 and V = 1 are approx-
imately correct.

We define Vcap(x,ω) as the visibility function of a cap from po-
sition x towards direction ω . Thus for each location x there is a
corresponding spherical cap representing the occluder. Vcap(x,ω)
has value one when ω falls within the cap and zero otherwise. Sub-
stituting this into Equation 1 gives an approximation of ambient
occlusion:

Ã(x,n) =
1
π

∫
Ω

Vcap(x,ω)bω ·ncdω (3)

To evaluate the above integral we need to be able to construct the
function Vcap(x,ω). We determine the size of the spherical cap
from the solid angle subtended by the occluder. This is defined at
position x as:

Ω(x) :=
∫

Θ

V (x,ω)dω (4)

r

Figure 3: The solid angle Ω subtended by an object and the average
direction of occlusion ϒ are stored for each direction as functions of
distance r. At run-time these functions are fetched from a cube-map
and evaluated at the receiving surface in order to compute ambient
occlusion.

Here Θ refers to integration over a sphere. Ω(x) equals 4π when
the object is blocking every direction as seen from point x and zero
when the object is not visible at all. As the direction of the cap, we
use the average direction of occlusion:

ϒ(x) := normalize
(∫

Θ

V (x,ω)ω dω
)

(5)

Thus ϒ(x) is the componentwise average of all the directions ω for
which the visibility function V (x,ω) evaluates to one.

3.2 Storing Ω and ϒ

Now that we have means for evaluating ambient occlusion on an ar-
bitrary surface point based on vector ϒ(x) and scalar Ω(x), we con-
sider how to store these fields compactly in 3D. Since our goal is to
express accurate contact shadows, we need high resolution near the
object and lower resolution suffices at larger distances. Optimally,
the resolution would depend on the distance from the surface of the
object. However, since this is not easily achieved in practice, we use
a radial parameterization. We parameterize the space by direction ω

and distance r from the center of the occluder and express the fields
with respect to these parameters: Ω(x) = Ω(ω,r),ϒ(x) = ϒ(ω,r).

To compactly store Ω and ϒ, we assume that given a direction ω , the
fields behave predictably as functions of radial distance. Thus in the
following we construct models for both quantities as functions of r.
This setup is illustrated in Figure 3. For an efficient representation
of Ω(ω,r) we use the knowledge that the solid angle subtended by
an object is approximately proportional to the inverse square root of
r. To capture this, we use the following model to express the solid
angle:

Ω(ω,r)≈ Ω̃(ω,r) =
1

a(ω)r2 +b(ω)r + c(ω)
(6)

In order to fit the above model to data, the coefficients a(ω), b(ω)
and c(ω) have to be determined for each direction ω .

To find a model for the average direction ϒ, we note that when going
farther away from the object, the average direction approaches the



Figure 4: A teapot intersected by a ground plane. The computation-
ally cheap method of approximating the ambient occlusion inside
the convex hull gives a perceptually pleasing result.

direction towards the center point of the object, while in the close
proximity the direction might deviate considerably. We model this
by:

ϒ(ω,r)≈ ϒ̃(ω,r) = normalize (Co(ω)− rω) (7)

In above, given a direction ω , Co(ω) can be understood intuitively
as a characteristic point of the occluder, i.e a point in space in which
the direction of occlusion mostly points. The approximation sets
ϒ̃(ω,r) to point from (ω,r) to Co(ω). The challenge of fitting this
model to data is to find Co that minimizes a suitable error metric.
The fitting procedure is discussed in Section 4.1.

3.3 Inside the Convex Hull

A radial line originating from the center of the occluder may in-
tersect the object multiple times. This introduces discontinuities
in functions Ω(ω,r) and ϒ(ω,r), making both piecewise smooth
functions of r. However, in a practical implementation we cannot
afford to use a piecewise representation, since this would compli-
cate the look-up and make the amount of stored data much larger.
Instead, we make the assumption that the receiving geometry sel-
dom enters the convex hull of the object, and thus it is sufficient
that the data is accurate outside the convex hull. Inside the convex
hull and outside the occluder itself, we map the ambient occlusion
Ã towards constant A0 according to the following formula:

t = (r/r0(ω))p

Ã(ω,r) = tÃ(ω,r0(ω))+(1− t)A0
(8)

where r0 is the radial distance from the center point of the object to
the convex hull, which must be stored for each direction indepen-
dently. Parameter p allows to adjust how fast the shadow is mapped
towards A0 as we go towards the center. Figure 4 illustrates that the
above solution gives satisfactory shadows inside the convex hull.

4 Implementation

In this section we present an efficient implementation of the ambi-
ent occlusion fields. We devote separate subsections for preprocess-
ing and run-time components. Finally we discuss how to combine

the effects of multiple occluders and present two alternative render-
ing algorithms.

4.1 Preprocess

As a preprocess, we use the method of least squares to fit the mod-
els Ω̃ and ϒ̃ to the computed occlusion and direction samples. Then
these radially parameterized functions are stored into two cube-
maps surrounding the object. We denote the resulting discretized
direction with ω̂ . The stored components are:

a(ω̂),b(ω̂),c(ω̂) for Ω̃ 3
Co(ω̂) for ϒ̃ 3
r0(ω̂), distance from the center to the convex hull 1
Total 7 scalars

Ray tracing or rasterization can be used for computing the sam-
ples. We chose rasterization to be able to utilize graphics hardware.
To compute Ω and ϒ for a single location, six images have to be
rasterized to account for all directions. The images contain binary
information indicating whether the occluder is visible in a certain
direction or not. The images are read from the graphics card to the
main memory, and Ω and ϒ are computed according to Equations 4
and 5. Since the read-back from the graphics card is a bottleneck in
this approach, we use the stencil buffer and frame buffer blending
to store the bitmasks on separate bitplanes. With this optimization,
we can fetch 24 bitmasks corresponding to three 8-bit color com-
ponents from the graphics card at once. In our experiments, the
preprocessing times ranged from 1 to 66 minutes (see the results in
Section 5).

We concentrate the computational effort and accuracy to close prox-
imity of the surface by distributing the sampling points in logarith-
mic scale with respect to r. We do not sample inside the convex
hull or farther than a predefined limit.

To fit Ω̃ for each ω̂ we minimize the following error:

εΩ(ω̂) =
N

∑
i=1

(Ω(ω̂,ri)− Ω̃(ω̂,ri))2 (9)

where Ω(ω̂,ri) refers to the sampled occlusion value (Equation 4)
and Ω̃(ω̂,ri) to the approximated value (Equation 6) at the sampling
location (ω̂,ri). N is the number of sampling locations. The fitting
process yields the coefficients a, b and c for each direction ω̂ .

To fit the model for the average direction ϒ̃, we minimize the devi-
ation from the sampled directions:

εϒ(ω̂) =
N

∑
i=1

(1− ϒ̃(ω̂,ri) ·ϒ(ω̂,ri))2 (10)

where ϒ(ω̂,ri) refers to the sampled average direction (Equation 5)
and ϒ̃(ω̂,ri) to the approximated direction (Equation 7). The opti-
mization yields Co(ω̂), the characteristic point of the occluder.

While ambient occlusion is in general spatially smooth, there are
certain cases where the function might contain high frequency de-
tail and care must be taken to avoid undersampling artifacts. We
use the standard solution for the aliasing problem by low-pass fil-
tering the signal before sampling. This can be done by constructing
a high resolution cube-map and downsampling it with a suitable
low-pass reconstruction filter. Typical undersampling artifacts and
a Gaussian-filtered result are shown in Figure 5.

Even extremely low cube-map resolutions such as 8×8 can be used
to render visually pleasing, smooth ambient occlusion. Since cur-
rent graphics hardware does not perform bilinear filtering across



Figure 5: Left: Artifacts caused by undersampling. Right: The
result achieved by downsampling from a higher resolution with
a Gaussian reconstruction filter. Both images are using the same
32×32 resolution for the cube maps. Contrast has been adjusted to
highlight the artifact.

the edges of a cube-map, border texels must be used to avoid vis-
ible seams. Thus, each cube-map face should have one-texel-wide
border which duplicates the closest texels from the neighboring face
and the border texels setting should be set on. The quality of shad-
ows with different cube-map resolutions is illustrated in Figure 8.

4.2 Run-time

When rendering a receiving surface, the polynomials are fetched
from the cube-map associated with the occluder. To compute the
ambient occlusion from the direction ϒ and subtended solid angle
Ω, we need to integrate a cosine weighted spherical cap according
to Equation 3. We derived an analytic formula for this purpose,
but it turned out to be rather expensive to evaluate it in a fragment
program. As a solution, we computed a small look-up-table para-
meterized by solid angle and the elevation angle relative to surface.
Note that the azimuth angle can be ignored, since it does not affect
to the result.

The functions Ω̃(ω,r) and ϒ̃(ω,r) may diverge from the true Ω and
ϒ as we go outside the range in which they were fitted. The solution
is to ramp the ambient occlusion towards zero beyond a certain limit
distance. This makes sense also for performance reasons, because it
makes the region of influence of the occluder finite, and thus allows
us to ignore distant occluders early in the rendering pipeline.

The whole process of looking up polynomials and computing the
resulting ambient occlusion values is done in a fragment program,
giving per-pixel accuracy and a good performance. A pseudocode
for the fragment program is given in Algorithm 1.

Compiling the shader written in Cg to OpenGL ARB assembly lan-
guage gives 47 instructions in total containing three texture fetches
corresponding to the occlusion and direction functions, and the
spherical cap integration look-up-table.

4.3 Combining Occluders

To make the ambient occlusion fields feasible in practice, we must
consider how to combine shadows from multiple casters efficiently.
In theory, two spherical caps representing occluders could be com-
bined for example by using a look-up-table, but since the spherical
cap is already a rather rough approximation for an arbitrary object,
this is not worth the extra computation. In practice, our choice is
simply multiplicatively blend 1−A for each occluder to the frame-
buffer. In the following we argue that this choice has some theo-
retical justifications. Interestingly, our considerations are similar to

Algorithm 1 Pseudocode for the fragment program used to render
the receiving surfaces.

Input:
x receiver position in field space
n receiver surface normal in fields space

Output:
Ã ambient occlusion value

Constants:
rnear near falloff distance
rfar far falloff distance
A0 inside-hull ambient occlusion
p inside-hull falloff

Textures:
TOcc occlusion data cube-map
TC0 direction data cube-map
TLUT spherical cap integration look-up-table

r = ‖x‖
ω = normalize(x)
if r > rfar then discard

(a,b,c,r0) = TOcc[ω]
rclamp = max(r,r0)
Ω̃ = (ar2

clamp +brclamp + c)−1

ϒ̃ = normalize(TC0 [ω]− rclampω)
Ã = TLUT [Ω̃,n · ϒ̃]
if r < r0 then

t = (r/r0)p

Ã = tÃ+(1− t)A0
end if
Ã = Ã∗smoothstep(rfar,rnear,r)
return Ã

those of Porter and Duff [1984] in the context of image composit-
ing. For the sake of simplicity, we consider the case of two occlud-
ers, but the results are directly applicable to an arbitrary number of
occluders.

To exactly compute the ambient occlusion of two occluders a and
b, would require the evaluation of the following integral:

Aab(x,n) =
1
π

∫
Vab(x,ω)bω ·ncdω (11)

where Vab(x,ω) is the combined visibility function of the objects
a and b, i.e., it is one when at least one of the objects is visible in

a

b

n

x

a

b
n

x

a

b
n

x

Figure 6: A 2D-illustration of the three different ways two occlud-
ers may block point x on a receiving surface. Left: Object a is
completely occluded by object b, and just picking up the bigger
ambient occlusion, max(Aa,Ab), would yield the correct combined
ambient occlusion Aab. Middle: The occluders do not overlap each
other, and the correct result would be given by adding the ambient
occlusion terms of the objects: Aab = Aa +Ab. Right: The interac-
tion of the occluders is more complex, but the ambient occlusion is
always between max(Aa,Ab) and Aa +Ab



direction ω and zero otherwise.

We want to get an approximate value for Aab by utilizing the known
ambient occlusion values Aa and Ab. We are not using knowledge
about Va or Vb, but we may think of three different cases that are
illustrated in Figure 6. When an occluder completely overlaps the
other one, the combined ambient occlusion is given by picking up
the larger of the values Aa and Ab. When the occluders do not
overlap at all the value is given by the sum of the ambient occlusions
of each object. It is easy to see that these two cases represent the
extremes and the combined ambient occlusion Aab always satisfies:

max(Aa,Ab) 6 Aab 6 Aa +Ab

Multiplicative blending of 1−A for each object satisfies the above
inequality. In addition, it can be shown that a ray shot from a re-
ceiving surface with a cosine weighted probability distribution, hits
occluding geometry with probability equal to ambient occlusion.
Thus, if we understand Ax as probability of hitting object x, Aab
can be interpreted as probability of hitting either or both of the ob-
jects. Assuming that Aa and Ab are uncorrelated and combining the
probabilities by elementary probability theory yields:

1−Aab = (1−Aa)(1−Ab)

This suggests the multiplicative blending of the shadow casted by
each occluder into the framebuffer. Note that the result is proba-
bilistic and thus only an approximation for Equation 11. However,
as illustrated in Figure 7, the resulting quality is perceptually satis-
factory.

Figure 7: The shadows are combined efficiently from multiple cast-
ers by simple multiplicative blending. The cubes cast shadows to
each other and to the ground plane. This scene runs at 17 fps with
400 object-to-object shadowing interactions. In addition to the con-
tact shadows, notice the overall darkening of the ground plane in the
bottom image. See the accompanying animation sequence.

4.4 Rendering Algorithms for Multiple Occluders

Two alternative algorithms for rendering scenes with multiple oc-
cluders are described in Algorithms 2 and 3. The first algorithm ren-
ders the receivers once for each occluder. After the first pass only
the visible fragments have to be processed as the hidden fragments
can be rejected by an early depth test. Despite of this, in real-world
applications some receivers such as the static surroundings are of-
ten expensive to render, and thus a different algorithm should be
used. Algorithm 3 utilizes deferred shading [Deering et al. 1988] to
process the scene only once and then re-use the stored visible frag-
ments to render the illumination. This approach is more efficient
in practice as the performance degrades linearly to the number of
fragments shaded times the number of occluding objects.

Algorithm 2 Simple algorithm for rendering ambient occlusion
from multiple casters

Render the scene once with ambient light only
for all occluders, O do

for all receivers, R do
if R in the region of influence of O then

Render R with ambient occlusion field of O with multi-
plicative blending

end if
end for

end for

Algorithm 3 Deferred shading-based algorithm
Render the scene with ambient light only and store the required
fragment data
for all occluders, O do

for all fragments, F do
if F in the region of influence of O then

Render F with ambient occlusion field of O with multi-
plicative blending

end if
end for

end for

5 Results

We measured the precomputation times and run-time performance
on a desktop PC with Pentium 4 running at 2.8 GHz, 1GB RAM
and an ATI Radeon 9800XT graphics board. The results are sum-
marized in Table 2.

As seen from the results, the memory consumption and the pre-
processing time increases quadratically with the cube-map resolu-
tion, but the run-time cost remains approximately the same. We
used a 16-bit fixed point format to store the data into cube-maps,
so the run-time memory consumption is (N +2)2 ×6×7×2 bytes
with N ×N cube-map resolution. Additional +2 is due to border
texels. Note that in the precomputation we super-sampled the cube-
maps with a double resolution to avoid aliasing artifacts (see Sec-
tion 4.1). The resolutions shown in the table are the run-time reso-
lutions.

Both the storage cost and the run-time overhead are clearly low
enough so that the method is suitable for use in real-time applica-
tions that have demanding performance requirements such as com-
puter games.



scene run-time memory preprocess fps
cube-map consumption time
resolution in bytes

Tank 8×8 8400 1 min 2 s 136
Tank 16×16 27 216 4 min 6 s 136
Tank 32×32 97 104 16 min 29 s 136
Tank 64×64 365 904 66 min 136
1 Cube 32×32 97 104 5 min 16 s 500
5 Cubes 32×32 97 104 5 min 16 s 95
10 Cubes 32×32 97 104 5 min 16 s 44
20 Cubes 32×32 97 104 5 min 16 s 16

Table 2: The results: memory consumption of cube-maps, pre-
processing times and run-time fps. All scenes where rendered at
1024×768 resolution.

6 Discussion & Future Work

We have presented a practical solution for computing inter-object
ambient occlusion. We hope that the method gains popularity in
the computer game industry and stimulates future work. Our view
is that ambient occlusion has not yet been fully exploited either in
game industry or in research.

There are many directions for future work. For example, it might
be fruitful to consider other kinds of models for storing the fields to
further increase the accuracy of the method. Also, while this paper
has dealt with constant ambient illumination, it might be possible
to efficiently integrate non-constant illumination against a spherical
cap as well. This would require to use a spherical cap to represent
the unobstructed instead of the obstructed directions. Then this in-
verse spherical cap could be used for a bent normal -like look-up
from a prefiltered environment map [Landis 2002].

Acknowledgements

The authors would like to thank Timo Aila, Jaakko Lehtinen and
Lauri Savioja for fruitful discussions and helpful comments. This
work was funded by National Technology Agency of Finland, Bit-
boys, Hybrid Graphics, Nokia, and Remedy Entertainment.

References

CHRISTENSEN, P. H. 2002. Note #35: Ambient Occlusion, Image-
Based Illumination, and Global Illumination. PhotoRealistic
RenderMan Application Notes.

CHUNHUI, M., JIAOYING, S., AND FULI, W. 2004. Rendering
with Spherical Radiance Transport Maps. Computer Graphics
Forum 23, 3, 281–281.

DEERING, M., WINNER, S., SCHEDIWY, B., DUFFY, C., AND
HUNT, N. 1988. The Triangle Processor and Normal Vector
Shader: A VLSI System for High Performance Graphics. In
Computer Graphics (Proceedings of ACM SIGGRAPH 88), 21–
30.

HASENFRATZ, J.-M., LAPIERRE, M., HOLZSCHUCH, N., AND
SILLION, F. 2003. A Survey of Real-Time Soft Shadows Algo-
rithms. Computer Graphics Forum 22, 4.

IONES, A., KRUPKIN, A., SBERT, M., AND ZHUKOV, S. 2003.
Fast, Realistic Lighting for Video Games. IEEE Computer
Graphics and Applications 23, 3, 54–64.

KAUTZ, J., LEHTINEN, J., AND AILA, T. 2004. Hemispheri-
cal Rasterization for Self-Shadowing of Dynamic Objects. In
Rendering Techniques 2004 (Proceedings of Eurographics Sym-
posium on Rendering), 179–184.

LANDIS, H., 2002. RenderMan in Production, ACM SIGGRAPH
2002 Course 16.

LOKOVIC, T., AND VEACH, E. 2000. Deep Shadow Maps. In
Proceedings of ACM SIGGRAPH 2000, 385–392.

MALZBENDER, T., GELB, D., AND WOLTERS, H. 2001. Polyno-
mial Texture Maps. In Proceedings of ACM SIGGRAPH 2001,
519–528.

MÉNDEZ, A., SBERT, M., AND CATÀ, J. 2003. Real-time Ob-
scurances with Color Bleeding. In Proceedings of the 19th
spring conference on Computer graphics, 171–176.

MILLER, G. 1994. Efficient algorithms for local and global acces-
sibility shading. In Proceedings of ACM SIGGRAPH 94, 319–
326.

PHARR, M. 2004. Ambient occlusion. In GPU Gems, R. Fernando,
Ed., 667–692.

PHONG, B.-T. 1975. Illumination for computer generated pictures.
CACM June 1975 18, 6, 311–317.

PORTER, T., AND DUFF, T. 1984. Compositing digital images.
In Computer Graphics (Proceedings of ACM SIGGRAPH 84),
253–259.

SATTLER, M., SARLETTE, R., ZACHMANN, G., AND KLEIN, R.,
2004. Hardware-accelerated ambient occlusion computation. To
appear in the proceedings of International Fall Workshop on Vi-
sion, Modeling, and Visualization 2004.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precomputed
Radiance Transfer for Real-Time Rendering in Dynamic, Low-
Frequency Lighting Environments. In Proceedings of ACM SIG-
GRAPH 2002, 527–536.

ZHUKOV, S., IONES, A., AND KRONIN, G. 1998. An ambient
light illumination model. In Rendering Techniques ’98 (Proceed-
ings of the Eurographics Workshop on Rendering), 45–55.



8×
8

16
×

16
32
×

32
64
×

64
re

fe
re

nc
e

Figure 8: The ambient occlusion computed with different cube-map resolutions. The left column shows a tank casting contact shadows on
the box. The right column shows the shadow cast on the side wall for closer inspection. The resolutions range from 8×8 for each cube-map
side to 64× 64 and the bottom row shows a reference image computed by sampling the ambient occlusion for each pixel (the computation
took several hours). The shadows on the box have been computed with our method, while the tank has precomputed self shadows.


