Introduction

- **Problem**
 - GANs become seriously unstable as the output resolution increases.
 - How to enable high-quality image synthesis at megapixel resolutions?

- **Approach**
 - New training methodology
 - Grow both the generator and discriminator progressively
 - Add new layers to model increasingly fine details as training progresses
 - Several tricks to increase variation and avoid mode collapse
 - New metric for assessing result quality

- **Benefits**
 - Considerably faster and more stable training, especially at high resolutions
 - Able to produce images of unprecedented quality at 1024x1024
 - Achieves record inception score of 8.80 in unsupervised CIFAR10

Contributions

- **Progressive growing**
 - Stable training and speed up convergence

Mimibatch standard deviation

- Improves variation
- Special layer in discriminator measures variation across minibatch
- Discourages generator from producing too homogeneous results

Equalized learning rate

- Makes layers learn at same pace
- Initializes weights to unit variance, re-scale at runtime
- Effective learning rate becomes independent of layer dimensions

Pixelwise feature vector normalization

- Avoid collapse
- Normalizes generator activations to unit length at each pixel
- Prevents generated pixel values from varying from -1 to infinity

Sliced Wasserstein distance (SWD)

- Access quality
- Takes small 7x7 pixel patches from generated & training images
- Compares distributions on multiple scales (full res., halved, ...)