
Disentangling Random and Cyclic Effects in Time-Lapse Sequences

ERIK HÄRKÖNEN
∗
, Aalto University, Finland

MIIKA AITTALA, NVIDIA, Finland

TUOMAS KYNKÄÄNNIEMI, Aalto University, Finland

SAMULI LAINE, NVIDIA, Finland

TIMO AILA, NVIDIA, Finland

JAAKKO LEHTINEN, Aalto University & NVIDIA, Finland

Synthesized year cycle Synthesized day cycle

Fig. 1. Our goal is to take a captured time-lapse sequence (top-middle, one year in Two Medicine shown) and learn a generative model using it. Such real

datasets typically contains a lot of flickering due to weather changes and missing frames. We can use the generative model to synthesize various cleaner

versions of the sequence, such as a year cycle or a day cycle under coherent weather, visualized on the top row by choosing image columns from different

parts of the synthetic sequences. On the bottom row, we show three realizations of a frame captured on 17.12.2015 12:30, synthesized using three different

weathers that were learned from the input sequence.

Time-lapse image sequences offer visually compelling insights into dynamic
processes that are too slow to observe in real time. However, playing a long
time-lapse sequence back as a video often results in distracting flicker due
to random effects, such as weather, as well as cyclic effects, such as the day-
night cycle. We introduce the problem of disentangling time-lapse sequences
∗Part of work done during an internship with NVIDIA Research.

Authors’ addresses: Erik Härkönen, Aalto University, Finland; Miika Aittala, NVIDIA,
Finland; Tuomas Kynkäänniemi, Aalto University, Finland; Samuli Laine, NVIDIA,
Finland; Timo Aila, NVIDIA, Finland; Jaakko Lehtinen, Aalto University & NVIDIA,
Finland.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
0730-0301/2022/7-ART72 $15.00
https://doi.org/10.1145/3528223.3530170

in a way that allows separate, after-the-fact control of overall trends, cyclic
effects, and random effects in the images, and describe a technique based
on data-driven generative models that achieves this goal. This enables us
to “re-render” the sequences in ways that would not be possible with the
input images alone. For example, we can stabilize a long sequence to focus
on plant growth over many months, under selectable, consistent weather.

Our approach is based on Generative Adversarial Networks (GAN) that
are conditioned with the time coordinate of the time-lapse sequence. Our ar-
chitecture and training procedure are designed so that the networks learn to
model random variations, such as weather, using the GAN’s latent space, and
to disentangle overall trends and cyclic variations by feeding the condition-
ing time label to the model using Fourier features with specific frequencies.

We show that our models are robust to defects in the training data, en-
abling us to amend some of the practical difficulties in capturing long time-
lapse sequences, such as temporary occlusions, uneven frame spacing, and
missing frames.

CCSConcepts: •Computingmethodologies→Machine learning;Learn-
ing latent representations; Image representations; Computer graphics.

ACM Trans. Graph., Vol. 41, No. 4, Article 72. Publication date: July 2022.

ar
X

iv
:2

20
7.

01
41

3v
1

 [
cs

.C
V

]
 4

 J
ul

 2
02

2

https://doi.org/10.1145/3528223.3530170

72:2 • Härkönen, et al.

Additional Key Words and Phrases: Generative Adversarial Networks, con-
trollability, interpretability

ACM Reference Format:
Erik Härkönen, Miika Aittala, Tuomas Kynkäänniemi, Samuli Laine, Timo
Aila, and Jaakko Lehtinen. 2022. Disentangling Random and Cyclic Effects
in Time-Lapse Sequences. ACM Trans. Graph. 41, 4, Article 72 (July 2022),
13 pages. https://doi.org/10.1145/3528223.3530170

1 INTRODUCTION

Time-lapse image sequences depict a fixed scene over a long period
of time, enabling compelling visualization of dynamic processes
that are too slow to observe in real time. Such processes include
both natural phenomena like plant growth, weather formation, sea-
sonal changes, and melting glaciers, as well as human efforts like
construction and deforestation. Unless shot in highly controlled set-
tings, time-lapse sequences mix together deterministic, often cyclic
effects over different time scales, as well as more random effects,
such as weather, traffic, and so on. When playing the sequence back
as video, these effects typically result in distracting flicker.
Given an input time-lapse sequence, our goal is to disentangle

the appearance changes due to random variations, cyclic fluctua-
tions, and overall trends, and to enable separate control over them.
Concretely this means, for example, that a raw sequence that shows
plant growth over many months, with the images featuring differ-
ent times of day as well as different weather conditions, can be
“re-rendered” so that the weather and time of day remain approxi-
mately fixed — at whatever we choose from among those featured in
the input sequence — and the plant growth remains the only visible
factor. This enables not only pleasing visualizations, but also helps
gain better insight into the depicted phenomena. See Figure 1.

We believe we are the first to study this problem. Prior work aims
to either hallucinate a time-lapse from a single input photo, to gen-
erate novel plausible time-lapses that feature scenes not seen during
training [Endo et al. 2019; Logacheva et al. 2020], or to stabilize a
given sequence into a temporally smooth version without control
over the different factors of variation [Martin-Brualla et al. 2015].
We build on modern data-driven generative models’ ability to

generate realistic, high-resolution images. Specifically, we train,
for each individual input sequence, a separate StyleGAN2 [Karras
et al. 2020b] generator that takes the time coordinate along the
sequence as a conditioning variable. Our networks learn to model
random variations, such as weather, using the GAN’s latent space,
and to model deterministic variations by the conditioning time
variable. To further enable disentanglement and separate control
over both overall trends and cyclic effects such as day-night cycles
and seasonal changes, we use Fourier features with carefully chosen
frequencies computed from the input timestamp.

We demonstrate our method on several time-lapse datasets from
the AMOS collection [Jacobs et al. 2007], with sequence lengths
typically between 2 and 6 years, as well as a proprietary plant
growth dataset collected over a summer.
In the figures, we visualize time-lapse sequences as time-lapse

images where time passes from left to right (Figure 2). We construct
these images as follows. For each 𝑥-coordinate of the time-lapse
image, we first assign an interpolated time value 𝑡𝑥 within the time-
lapse sequence. We then populate the image by copying vertical

y

x

t

Time-lapse data (3D) Time-lapse image

Fig. 2. A time-lapse image shows a path through the three-dimensional

time-lapse (left) in a single image by stacking vertical spans from individual

images together (right). The sources of the spans within the time-lapse cube

have been illustrated by the lines of alternating color.

columns of pixels, indexing the source sequence using 𝑡𝑥 and 𝑥 . For
example, if the time period is one year, this will visualize all seasons
in the same image.

Our contributions are summarized as follows:
• We present the first technique for disentangling appearance
changes due to trends, cylic variations, and random factors
in time-lapse sequences.
• We propose a new conditioning mechanism for GANs that is
suitable for learning repeating, cyclic changes.

Our implementation, pre-trained models, and dataset preprocessing
pipeline are available at https://github.com/harskish/tlgan.

2 RELATED WORK

Martin-Brualla et al. [2015] describe an optimization-based method
for removing flickering in time-lapse sequences by temporally regu-
larizing the L1 or L2 difference between two consecutive time-lapse
frames, on a per pixel basis. While their method is effective at re-
moving flickering, it leads to undesired blurring in the resulting
time-lapse sequence if the geometry of the images changes sig-
nificantly during the sequence, e.g., if trees are growing or new
buildings are built in the scene. Moreover, their method is “play-
back” only, meaning it can be used to compile a single time-lapse
video, whereas our method offers the user a control over cyclic and
random effects within the sequence.
Deep generative models, including generative adversarial net-

works (GAN) [Goodfellow et al. 2014], variational autoencoders
(VAE) [Kingma and Welling 2014], autoregressive models [van den
Oord et al. 2016a,b], flow-based models [Dinh et al. 2017; Kingma
and Dhariwal 2018], and diffusion models [Ho et al. 2020; Sohl-
Dickstein et al. 2015; Song and Ermon 2019], have been used to
reach impressive results in wide variety of tasks, including image
synthesis [Brock et al. 2019; Karras et al. 2020a, 2021, 2019, 2020b],
image-to-image translation [Choi et al. 2020; Kim et al. 2020; Zhu
et al. 2017], and controllable editing of still images [Huang et al.
2021; Karacan et al. 2019; Park et al. 2019, 2020]. They have also
been used in video synthesis [Clark et al. 2019; Tulyakov et al. 2018;
Wang et al. 2019, 2018].

Recently, many generative models that hallucinate a short time-
lapse sequence from a single starting image have been proposed
[Colton and Ferrer 2021; Endo et al. 2019; Horita and Yanai 2020;

ACM Trans. Graph., Vol. 41, No. 4, Article 72. Publication date: July 2022.

https://doi.org/10.1145/3528223.3530170
https://github.com/harskish/tlgan

Disentangling Random and Cyclic Effects in Time-Lapse Sequences • 72:3

Logacheva et al. 2020; Xiong et al. 2018]. These models are trained
with a large database of time-lapse videos. Among the proposed
methods, Logacheva et al. [2020] is the closest to our work. They
modify the original StyleGAN network [Karras et al. 2019] such that
it includes latent variables that can be used to separately control
static and dynamic aspects in the images. Time-lapse from a single
input image is generated by first embedding it to the latent space of
the generator network, and then varying the latent variables that
control the dynamic aspects.

Another perspective to hallucinating time-lapse videos is to apply
image-to-image translation [Anokhin et al. 2020; Nam et al. 2019].
Nam et al. [2019] use conditional GANs, conditioned on timestamps
from one day, to synthesize a time-lapse from a single image. Their
method can change the illumination of the input, based on the
conditioning time-of-day signal, but it cannot synthesize motion,
and thus moving objects, such as clouds, appear fixed. Anokhin et
al. [2020] modify the lighting conditions of a target image sequence
by translating the style from a separate source sequence. Theirmodel
can produce plausible lighting changes but as it works on a frame-
by-frame basis it leads to flickering of moving objects in the scene.

Our goal is not to invent time-lapse videos based on an image, but
rather to process actual time-lapse sequences so that different effects
can be disentangled, and the output can be stabilized and controlled
in a principled way. To the best of our knowledge, generative models
have not been used for this purpose before.

3 PROBABILISTIC GENERATIVE MODELING OF

TIME-LAPSE SEQUENCES

The appearance of a natural scene over long periods of time typically
features random components intermixed with deterministic effects.
For instance, the day-night cycle is entirely deterministic, whereas
the weather (rainy or clear) may vary randomly; the time of year
may alter the probability of rain, cloudiness, or snow cover at a
given time of day; and finally, long-time trends may show growth
of trees, construction of buildings, etc.
We seek a generative model that produces random images that

could have been taken at a specified time of day 𝑐𝑑 , day of year
𝑐𝑦 , and global trend 𝑐𝑔 . To this end, we interpret the frames in a
time-lapse sequence as samples from the conditional distributions

𝑝 (image | 𝑐𝑑 , 𝑐𝑦, 𝑐𝑔) (1)
and use it to train a generative model 𝐺 (𝒛; 𝑐𝑑 , 𝑐𝑦, 𝑐𝑔), a func-

tion that turns Gaussian random latent variables 𝒛 ∈ N (0, 𝑰) into
images. While images in the training set come with fixed combi-
nations of (𝑐𝑑 , 𝑐𝑦, 𝑐𝑔), a successful model will learn a disentangled
representation that allows them to be controlled independently, and
pushes the inherent random variation into the latent space. This
allows previously unseen applications, such as exploring random
variations at a particular fixed time, or stabilizing the appearance
by fixing the latent code and only showing variations over different
timescales.1
1The reader may notice that the inclusion of the global trend 𝑡𝑔 collapses the con-
ditional distribution (1) to a Dirac impulse, i.e., there is only a single training image
consistent with each combination of (𝑐𝑑 , 𝑐𝑦 , 𝑐𝑔) in the training data. This means our
generative modeling problem is, in this basic form, ill-posed and, in principle, solvable
by memorization. In the following section, we describe label jitterings techniques that
remove this shortcoming.

←−· · · · · · · · · · · · · · · · · 7 years · · · · · · · · · · · · · · · · ·−→

(a
)N

or
ma

nd
y

←−· · · · · · · · · · · · · · · · · 5 years · · · · · · · · · · · · · · · · ·−→

(b
)B

ar
n

Time-lapse image of original dataset Example frame

Fig. 3. Time-lapse datasets contain various defects. (a) In this dataset long

chunks of data are missing (striped columns). (b) Camera alignment has

changed in the middle, causing the barn to bend upwards.

The conditional distribution view to time-lapse sequences reveals
why a regression model that would deterministically learn to output
a given image at a given (𝑐𝑑 , 𝑐𝑦, 𝑐𝑔) is not able to learn the disen-
tangled representation we seek: even if equipped with cyclic time
inputs, the model is required to reproduce the particular images at
particular time instants, i.e., to bake random effects together in with
the time inputs. This would lead to a lack of disentanglement, and
in practice, blurry results due to finite model capacity.
Our formulation encourages the model to attribute repeating

patterns in the appearance distributions to the cyclic input variables
𝑐𝑑 and 𝑐𝑦 . This has the great benefit that training is robust to the
significant gaps often found in long time-lapse datasets (Figure 3a):
as long as there are other days or years where images from the
missing combination can be found, ourmodels are able to hallucinate
plausible content to the missing pieces.
In addition to random changes in the scene, real time-lapse se-

quences feature several other common types of defects that further
increase apparent randomness and underline the need of a prob-
abilistic model. These include changes in alignment and camera
parameters during servicing (Figure 3b), camera hardware updates,
and due to thermal expansion and contraction; adaptive ISO settings
based on scene brightness; and temporary occlusions, e.g., spider
webs, condensation, and ice.

4 ARCHITECTURE AND TRAINING

We build on the StyleGAN2 [Karras et al. 2020b] model that has
achieved remarkable results in synthesizing realistic high-resolution
images. In this section, we describe how the cyclic conditioning
signals are provided for the generator and discriminator. We also
describe how the model is trained.

ACM Trans. Graph., Vol. 41, No. 4, Article 72. Publication date: July 2022.

72:4 • Härkönen, et al.

1

Mapping network: Synthesis network:

Upsample

Conv 3×3

bias1 +

Const 4×4×512

A1

weights1Mod

Demod

A2

weights2Mod

Demod

bias2 +

Conv 3×3

RGB image

…

L1

L2

Normalize

noise2

noise1

8x FC

Fig. 4. StyleGAN2 architecture with our cyclic conditioning mechanism

highlighted using red. Our conditioning first transforms a timestamp

(𝑡𝑑 , 𝑡𝑦, 𝑡𝑔) into a stack of conditioning signals c = (c𝑑 , c𝑦, c𝑔) . These are
further transformed, at each layer 𝑖 , using a learnable linear transformation

L𝑖 and used to modulate the convolution weights. The StyleGAN2 symbols

"FC", A, "Mod", and "Demod" denote a fully connected layer, learned affine

transformation, modulation, and demodulation, respectively.

4.1 Architecture

StyleGAN2 Architecture. The distinguishing feature of StyleGAN2
is its unconventional generator architecture, Figure 4. Instead of
feeding the input latent code z ∈ Z only to the beginning of the
network, the mapping network first transforms it to an intermediate
latent code w ∈ W. Affine transforms then produce styles that con-
trol the layers of the synthesis network by modulating convolution
weights. Additionally, stochastic variation is facilitated by providing
additional random noise maps to the synthesis network.

Our Architecture. We encode the conditioning signals as follows:

c(𝑡𝑑 , 𝑡𝑦, 𝑡𝑔) =

c𝑑 (𝑡𝑑)
c𝑦 (𝑡𝑦)
c𝑔 (𝑡𝑔)

 =

sin(2𝜋 𝑓0𝑡𝑑)
cos(2𝜋 𝑓0𝑡𝑑)
sin(2𝜋 𝑓1𝑡𝑦)
cos(2𝜋 𝑓1𝑡𝑦)

𝑡𝑔 · 𝑘
1

, (2)

where 𝑓0 matches the day cycle, 𝑓1 = 𝑓0/365.25 matches the year
cycle, and the scaling constant 𝑘 = 1×10−2 makes the relative learn-
ing rate of the trend component smaller. During training, the input
linear timestamps 𝑡𝑑 = 𝑡𝑦 = 𝑡𝑔 ∈ [0, 1] are identical and normalized
across the whole time-lapse sequence, with 0 corresponding to the
time and date of the first image and 1 to those of the last image.
After training, they can be modified independently to change only
certain aspects of the output image. This mechanism has similarities
with Fourier features [Tancik et al. 2020] and positional encoding
of transformers [Vaswani et al. 2017], as they both use stacks of
sinusoids to map from lower to higher dimensional space.

←− · · · · · · · · · · 24 hours · · · · · · · · · · −→ ←− · · · · · · · · · · 24 hours · · · · · · · · · · −→

←
−
··
··
··
··
··
··
·1

ye
ar
··
··
··
··
··
··
·−
→

Training data Ours

Fig. 5. Our model reproduces seasonal changes in day length, shown above

by varying the 24h cycle (horizontally) and the year cycle (vertically). Our

result is computed using a different random latent code 𝒛 per row.

As illustrated in Figure 4, we feed the conditioning signals directly
to each layer of the synthesis network and provide a simple mecha-
nism for them to control the styles. Similar direct manipulation of
styles has previously been shown to yield excellent disentanglement
in the editing of GAN-generated images [Chong et al. 2021; Collins
et al. 2020; Kafri et al. 2021]. For each layer 𝑖 , the conditioning sig-
nals are transformed by a learned linear transformation L𝑖 into a
scale vector k𝑖 = L𝑖c with the same dimensionality as the corre-
sponding style vector s𝑖 . This scale vector is then used to modulate
the style vector by element-wise (Hadamard) multiplication, i.e.,
s′
𝑖
= k𝑖 ⊙ s𝑖 , and the resulting scaled style vector s′𝑖 replaces the orig-

inal style vector s𝑖 when modulating the convolution kernels. We
also tried introducing another set of linear transforms to produce
c-dependent biases for each layer. This allowed the conditioning
to manipulate styles also in an additive way, but it did not lead to
further improvement.
Intuitively, the linear transformations L𝑖 are able use the sinu-

soidal inputs to build detailed, time-varying scaling factors for each
feature map in the layer. Since c contains both sine and cosine parts
of the cyclic signals as well as constant and linear terms, the output
linear combinations can contain cyclic signals with arbitrary phases,
offsets, and linear trends, including purely linear or constant scale
factors. As an example, Figure 5 showcases more complex behavior
where the timing of sunrise and sunset depends on both time-of-day
(𝑐𝑑) and time-of-year (𝑐𝑦) simultaneously.

For the discriminator, we adopt the approach of Miyato and
Koyama [2018] by evaluating the final discriminator output as
𝐷 (𝑥) = normalize(𝑀 (𝑐)) · 𝐷 ′(𝑥), where 𝐷 ′(𝑥) corresponds to the
feature vector produced by the last layer of the discriminator.𝑀 (𝑐)
represents a learned embedding of the conditioning vector that we
compute using using a dedicated 8-layer MLP.2

2Note that this is the same mechanism employed by the official implementation of
StyleGAN2-ADA [Karras et al. 2020a].

ACM Trans. Graph., Vol. 41, No. 4, Article 72. Publication date: July 2022.

Disentangling Random and Cyclic Effects in Time-Lapse Sequences • 72:5

4.2 Training

We follow the general procedure for training a conditional GAN
model: the generator and the discriminator are trained simultane-
ously, and the conditioning labels of the generated and real images
are also passed to the discriminator. The conditioning labels are
sampled from the training set, and augmented with noise as de-
scribed below. We use the StyleGAN2-ADA training setup [Karras
et al. 2020a] in the ’auto’ configuration, keeping most of the hy-
perparameters at their default values. In practice, we have found
it beneficial to increase the R1 gamma slightly: we use values 4.0
and 16.0 for 512 × 512 and 1024 × 1024 models, respectively. We use
batch size 32 for all datasets.
The goal is to train the generator so that any input timestamp

generates a reasonable distribution of output images, even if it is
missing from the training data. The timestamps in the data suffer
from several subtle issues related to regular discrete sampling, miss-
ing intervals, and the theoretical possibility of simply memorizing
the timestamp-to-image mapping. In the following, we introduce
two timestamp jittering mechanisms to eliminate these problems.

4.2.1 Timestamp dequantization. Whereas our training sequences
contain photographs taken at specific times — often at regular inter-
vals, such as at every 30 minutes — our goal is to create models that
can be evaluated at arbitrary points. To this end, we add noise to the
input labels with the goal of mapping every continuous time value
to a valid training image. We call this dequantization. It is applied to
the inputs of both the generator and discriminator during training.
The 𝑗 ’th image in the temporally ordered dataset is associated

with a raw linear timestamp 𝑇𝑗 ∈ [0, 1], which is used to com-
pute the corresponding conditioning triplet (c𝑑 , c𝑦, c𝑔). Whenever
a timestamp𝑇𝑗 is used in training (either to condition the generator,
or when sampling real images for the discriminator), we first jitter
it by a random offset 𝜖 ∼ N(0,max(𝑇𝑗+1 − 𝑇𝑗 ,𝑇𝑗 − 𝑇𝑗−1)/2) that
is proportional to the temporal distance to its neighboring frames.
This spreads the timestamps of existing images to fill any gaps in
the dataset.

When a dataset systematically lacks, e.g., night-time images, our
label noise basically redirects the missing timestamps to the nearest
morning and evening images. Obviously, night-time images cannot
be synthesized if they were never seen in training. With random
gaps the situation is different, and we can indeed learn to fill the
gaps using plausible variation. Consider a multi-year dataset where
all data from July 2015 is missing. The label noise again fills this gap
with nearby neighbors. Now, when training the model, we sample all
training images with equal probability. If we have plenty of samples
from July 2014 and 2016, those will be used frequently in training,
while the 2 neighbors of July 2015 will be sampled only rarely. The
time-of-year signal thus learns to essentially ignore the gap and fill
it using the other years. The same is true for all time scales.

4.2.2 Discriminator timestamp augmentation. As detailed in Sec-
tion 3, the conditional distributions of Equation (1) are almost de-
generate, i.e., each input tuple (𝑐𝑑 , 𝑐𝑦, 𝑐𝑔) is only associated with
a small number of training images even under the label dequanti-
zation scheme. To combat this and encourage the model to share
information between similar conditions, we build on the intuition

that the distribution of images taken at, say, 12:00 noon on March
15 should not look too different from images taken around the same
time on March 13 or March 20, and that the global trend should only
pay attention to effects clearly longer than a year.
We implement this by adding, in addition to the dequantiza-

tion noise described above, independent noise to the raw linear
timestamps 𝑡𝑦 and 𝑡𝑔 for both real and generated images upon
passing them to the discriminator. Specifically, we add Gaussian
noise of 𝜎𝑦 = 1 week to the time of year input 𝑡𝑦 , and noise of
𝜎𝑔 ∈ {1.5 years, 2 years} to the global trend input 𝑡𝑔 depending on
the dataset, see Table 1. The former makes it impossible for the
model to discern the precise day within the year, and the latter
makes the global component 𝑡𝑔 essentially uncorrelated with the
other inputs, making it impossible for the model to capture any-
thing but effects of the longest time scales using 𝑡𝑔 . This process
can also be seen to “inflate” or augment the training data so that a
single moment in time corresponds to a much larger set of possible
images, each of which is still (roughly) consistent with the given
time-of-year and time-of-day. In our tests, this makes convergence
more reliable also in smaller datasets. The noise never seems to hurt
larger datasets, although in such cases we observe that the inductive
biases of our architecture guide the learning to a similar disentan-
gled representation even without the addition of conditioning noise
– section 5.3 discusses this further.

5 RESULTS AND COMPARISONS

Wewill now present example results from our model, and study how
the different control mechanisms (latent code, time-conditioning
signals) affect the synthesized time-lapses. Most of the results are
best appreciated from the accompanying videos.
We use 8 datasets from the Archive Of Many Outdoor Scenes

(AMOS) [Jacobs et al. 2009, 2007]: Frankfurt, Küssnacht, Nor-
mandy, Barn,Muotathal, Teton, Two Medicine, and Valley. Of
these, the first 3 are urban environments, while the rest are land-
scapes. All datasets are multiple years long (48k – 82k frames). In
addition, we use a proprietary shorter dataset, Mielipidepalsta
(“Letters to the Editor”), that depicts an art installation made
of growing plants over a single summer (6k frames over 5 months).
Due to its shorter length, we only conditionMielipidepalsta using
the time-of-day and global trend signals. The spatial resolution of
the image content ranges from 512×358 to 1024×960, and is slightly
different for almost all datasets. The frames are further zero-padded
to the closest power of two to produce a square-shaped image for
training. Typical temporal resolution is one frame per half an hour,
with some variation within and between the datasets. We provide
detailed statistics of all datasets in Table 1.
We selected the datasets from the AMOS collection based on

image resolution and quality, sequence length, camera alignment
stability, and subjective appeal of scene content. These criteria led
to the elimination of all data recorded before 2010. The selected
datasets were aligned during preprocessing (Appendix B).
As our goal is to disentangle the effects of a particular dataset,

we train a separate generator for each time-lapse sequence. We
train each model until Fréchet inception distance (FID) [Heusel et al.
2017] stops improving and the roles of conditioning inputs have

ACM Trans. Graph., Vol. 41, No. 4, Article 72. Publication date: July 2022.

72:6 • Härkönen, et al.

Table 1. Details of our test datasets.

Name Resolution Frames Date range Length Sampling rate Longest
gaps

AMOS
ID

Trend noise

(days) (median, 95th perc.) (days) (𝜎𝑔)

Barn 1024 × 646 63806 05.2012 – 02.2017 1729 0.50h, 0.98h 32, 18, 13 19189 1.5 years
Frankfurt 1024 × 960 52118 04.2013 – 07.2016 1197 0.50h, 0.99h 11, 5, 4 09483 1.5 years
Küssnacht 512 × 358 54966 10.2012 – 06.2017 1686 0.50h, 0.99h 15, 8, 5 08687 1.5 years
Muotathal 1024 × 786 82374 02.2010 – 05.2017 2661 0.30h, 2.88h 34, 26, 13 10180 2 years
Normandy 512 × 444 56247 02.2010 – 10.2016 2440 0.50h, 1.01h 365, 59, 58 09780 2 years
Teton 512 × 358 48276 05.2012 – 06.2017 1841 0.50h, 2.00h 48, 39, 37 19188 1.5 years
Two Medicine 1008 × 536 79594 08.2011 – 05.2017 2120 0.50h, 0.99h 112, 69, 43 17183 2 years
Valley 1024 × 828 49834 03.2011 – 04.2017 2225 0.50h, 1.00h 15, 13, 8 07371 1.5 years
Mielipidepalsta 1024 × 670 6338 05.2019 – 10.2019 143 0.50h, 0.51h 8, 0, 0 — 1 week

19
.9.
20
12

16
:3
0

19
.8.
20
15

7:
30

8.7
.20

16
12
:0
0

9.2
.20

17
15
:0
0

Latent code 1 (foggy day) Latent code 2 (bright day) Latent code 3 (partly cloudy) Latent code 4 (rainy day)

Fig. 6. We synthesize a frame from Barn dataset at four different timestamps (rows), using four latent codes (columns). The latent codes express the weather

consistently across timestamps. On each row, all differences between the images are caused by the latent codes.

stabilized, which happens around 6M real images. This takes ∼60
hours on 4 NVIDIA V100 GPUs at 1024 × 1024 resolution (30 hours
at 512× 512). Once the model is trained, images can be generated at
interactive rates.

5.1 Latent space

As hypothesized in Section 3, our model should learn to describe
random variations (such as weather) of a time-lapse sequence using
the latent space. In Figure 6 we verify that this actually happens.
We chose four time stamps from the Barn dataset to cover different
seasons (summer, autumn, winter) and times of day (dawn, noon,

ACM Trans. Graph., Vol. 41, No. 4, Article 72. Publication date: July 2022.

Disentangling Random and Cyclic Effects in Time-Lapse Sequences • 72:7

←− · · · · · · · · · · · 18 hours · · · · · · · · · · · −→ ←− · · · · · · · · · · · 18 hours · · · · · · · · · · · −→ ←− · · · · · · · · · · · 18 hours · · · · · · · · · · · −→ ←− · · · · · · · · · · · 18 hours · · · · · · · · · · · −→
Dawn Noon Dusk Dawn Noon Dusk Dawn Noon Dusk Dawn Noon Dusk

Fr
an

kf
ur

t
6.4

.20
15

Kü
ss
na

ch
t

19
.2.
20
13

Te
to

n
13
.10

.20
12

←− · · · · · · · · · · 12 months · · · · · · · · · · −→ ←− · · · · · · · · · · 12 months · · · · · · · · · · −→ ←− · · · · · · · · · · 12 months · · · · · · · · · · −→ ←− · · · · · · · · · · 12 months · · · · · · · · · · −→
Summer Autumn Winter Spring Summer Summer Autumn Winter Spring Summer Summer Autumn Winter Spring Summer Summer Autumn Winter Spring Summer

Va
ll
ey

20
16

Tw
o
M
ed

ic
in
e

20
16

M
uo

ta
th

al
20
13

Input data Ours, clear skies Ours, clouds Ours, fog/snow

Fig. 7. In these six datasets, we change only the time-of-day (top 3 rows) or time-of-year (bottom 3 rows) conditioning signal. The input data shows the

time-lapse image for that particular day or year, respectively. While the inputs have reasonably constant weather over a day, the same is not at all true for the

whole year. When we sweep the time-of-day signal, the synthesized time-lapse images show a clear day cycle, as desired. Similarly, the time-of-year causes

the time-lapse image to cycle through the seasons (note that winter is in the middle). We furthermore visualize our results using 3 different latent codes,

chosen separately for each dataset to demonstrate approximately clear sky, some clouds, and a foggy or snowy appearance. For the top part, we show 18 of

the 24 hours to crop out some of the uneventful nighttime.

ACM Trans. Graph., Vol. 41, No. 4, Article 72. Publication date: July 2022.

72:8 • Härkönen, et al.

Tr
ai
ni
ng

da
ta

O
ur
s

Fig. 8. In Normandy, time-of-day controls also the tidal changes.

evening). We also chose four latent codes that appear to match a
foggy day, clear day, partly cloudy, and a high-contrast rainy day.
Clearly, the chosen latent code has a very large effect on the

output images. We can also see that the same weather type gets
plausibly expressed across the time stamps, indicating that we can
now stabilize the weather in synthesized time-lapse sequences of
arbitrary length by simply selecting one latent code for the entire
sequence. This eliminates the significant flickering exhibited in
the input sequence. By selecting a different latent code, we can
switch the entire output sequence from, e.g., clear weather to cloudy
weather, as demonstrated in the accompanying video.

5.2 Time conditioning

Wewill now inspect the effect of our three time-conditioning signals,
by varying each of them in isolation and observing the resulting
changes in the output images. Figure 7, top half, shows three datasets
where we adjust only the time-of-day signal to observe its effect. We
see that this signal has learned to represent the day cycle, as we had
hoped. Again, we can synthesize the results using different latent
codes to specify the weather and other random aspects. Figure 8
shows an additional test, where the time-of-day signal controls the
sunrise and sunset, and also the tides, closely matching the training
data.3 As shown in the bottom half of Figure 7, the time-of-year
signal learns to similarly control seasons.

Figure 10 shows the effect of varying only the trend signal, indicat-
ing that non-cyclical effects like plant growth and the construction
or renovation of buildings are controlled by it. The variance im-
ages visualize which pixels are most strongly affected by the trend
component. The exact computation of the variances is explained in
Appendix A.

The accompanying video demonstrates that we can synthesize
naturally evolving time-lapse sequences at a much higher sampling
rate than the training data, indicating that our model has learned a
continuous representation of time.
Figure 9 shows an example where significant chunks of input

data are missing and some other time periods have been corrupted
by overexposure. As this is a multi-year dataset, our model ends up
extrapolating the missing data based on the other years, leading to
a plausible result.
3In reality, tidal schedules change between days in a complicated way, which our
longer-term signals also try to emulate.

←− · · · · · · · · · · 12 months · · · · · · · · · · −→ ←− · · · · · · · · · · 12 months · · · · · · · · · · −→

Input data Our example result

Fig. 9. Almost half of the input data is missing from Teton in 2016, marked

with red stripes. Furthermore, exposure problems have rendered many days

unusable (yellow-green column). We can synthesize plausible time-lapses

even in such challenging cases.

5.3 Training behavior

We use variance (computed as detailed in Appendix A) to estimate
how strongly the synthesized images are affected by different net-
work inputs/control mechanisms: latent code, time-of-day, time-of-
year, trend, and StyleGAN2’s noise inputs.

Figure 11 plots how the relative variance of components evolves
during training in the Valley sequence. The roles of latent code,
time-of-day, and time-of-year are learned quickly, and each of them
ends up corresponding to ∼30% of the variance in output images.
The role of the trend signal is much slower to learn and is ultimately
responsible for less than 10% of the variance, further indicating that
the trend is not being abused for memorization. The noise inputs of
StyleGAN2 have a very minor effect on the output, which implies
that the generator has learned to model almost all the variation
using the latent code and time conditioning, and basically does not
need the additional degrees of freedom offered by the noise inputs.
Figure 12 showcases a rare situation where where the lack of

timestamp augmentation noise (Section 4.2.2) causes models trained
on smaller datasets to collapse and generate only a few template
frames, seen as the variance of the latent approaching zero. Including
timestamp noise prevents such failures. Additionally, we find that
timestamp augmentation and the scale of the linear component
(𝑘 in Equation 2) interact during training: with a faster adapting,
larger-scaled linear component, more noise is needed to prevent
memorization.

ACM Trans. Graph., Vol. 41, No. 4, Article 72. Publication date: July 2022.

Disentangling Random and Cyclic Effects in Time-Lapse Sequences • 72:9
Fr
an

kf
ur

t
M
ie
li
pi
de

pa
ls
ta

Te
to

n

Variance from the trend signal Example image Evolution of the close-ups over time

Fig. 10. The trend signal ends up controlling mainly plant growth, and construction and renovation of buildings. The variance images highlight the areas most

strongly affected by the trend signal. Note that in Frankfurt lights were added to the upper bridge in the middle of the time-lapse sequence, and thus they

show up in the trend signal.

Fig. 11. Typical convergence behavior for our models (Valley shown): the

latent (z) dominates initially, but the day and year cycles quickly start

affecting the output. The noise inputs tend to decrease in importance over

time, while the linear component typically increases in importance after an

initial delay.

Fig. 12. On rare occasions our models can start memorizing the input data,

leading to a collapsed state where the time axis is reduced to a few template

frames, and all random variation disappears, seen as the variance of the

latent approaching zero. We have found that including timestamp noise

(Section 4.2.2) and reducing the linear component scale (Equation 2) fixes

the issue.

ACM Trans. Graph., Vol. 41, No. 4, Article 72. Publication date: July 2022.

72:10 • Härkönen, et al.

Ours Closeups Martin-Brualla et al.

Fig. 13. Comparison of our result with [Martin-Brualla et al. 2015] in Mielipidepalsta. Our method gives significantly sharper results in case of moving

content such as growing plants or the moving chairs.

5.4 Comparisons

Figure 13 presents a comparison with [Martin-Brualla et al. 2015] in
Mielipidepalsta. The method produces a single stabilized version
of the input sequence by temporal smoothing. As the technique
optimizes pixels in isolation — without regard to how neighboring
pixels change together — it blurs moving content such as grow-
ing plants or moving chairs. In contrast, our results are free from
such artifacts. The accompanying video includes the full time-lapse
sequences.

We provide comparisons to [Anokhin et al. 2020] and [Logacheva
et al. 2020] in the accompanying video. While both are able to
generate subtle changes in lighting, the results clearly show how
our models trained on one specific scene are able to generate much
more specialized changes, such as shadows being realistically cast
by the scene content as the lighting conditions change.

As an ablation, we trained a variant of our architecture where the
cyclical signals (𝑐𝑑 , 𝑐𝑦) are left out, and only the global trend (𝑐𝑔)
input is included (Ablation A). As expected, this model disentangles
the global trend correctly, but all other changes, such as time-of-day
and time-of-year, end up in the latent space, giving the user only
indirect and imprecise control over the output – see Figure 14, top.

As a baseline, we trained a simple conditional StyleGAN2 genera-
tor, where the (embedded) conditioning signals are concatenated to
the latent code z [Mirza and Osindero 2014]. This approach leads to
more entangled results than our conditioning architecture. When
only 𝑐𝑔 is used (Ablation B), the baseline strongly entangles time-of-
year to the global trend (Figure 14, bottom). When also the cyclical
signals (𝑐𝑑 , 𝑐𝑦) are used (Ablation C), we observe partial entangle-
ment such as the day cycle affecting seasons and trend, and latent
z affecting the apparent timestamp. Figure 15 showcases one such
example, where the day cycle is entangled with the trend, causing a
tree to disappear.

5.5 Latent exploration

Several techniques enable post hoc analysis of the features learned
by generative models. We use the GANSpace approach [Härkönen
et al. 2020] to discover interpretable directions in the intermediate
latent space𝒘 . The first principal component controls overall sun-
niness in all models, with clear skies, partly cloudy, overcast, and

foggy weather being generated in order along the same linear sub-
space. During wintertime, the amount of snow also changes with the
conditions, with cloudy/foggy weather being associated with more
snow, and clear sunny weather resulting in more melting. Other typ-
ical effects found are controls for the smoothness of bodies of water
like rivers and lakes, changes in brightness and saturation, changes
in cloud appearance and altitude, and so on. Interactive exploration
of the latent space is showcased in the accompanying video.

6 LIMITATIONS AND FUTURE WORK

Clearly, it would be desirable to learn the alignment as a part of the
training. One possibility could be to switch to Alias-Free GAN [Kar-
ras et al. 2021], which includes the concept of input transformations
through spatial Fourier Features. Currently the alignment issues
that remain in the data are learned by the global trend component,
as are changes in color temperature or exposure (Figure 16).

As night and day look almost completely different in urban envi-
ronments (e.g., Figure 8), a generator may handle these separately,
in which case there is no guarantee that a latent would yield the
same weather for both day and night. Also, we find that night-time
often has very little variation in the input data, causing the GAN to
learn only a few “templates” for night-time images.

As our output images are synthesized from scratch using a gener-
ator network, some GAN-related artifacts may appear. Each frame is
generated independently and nothing forces, e.g., the clouds to move
plausibly in animation. Explicitly encouraging time-continuity in
GAN training is a possible future improvement. The training of
GANs is memory-intensive, and this currently limits the maximum
resolution of images to approximately 2048 × 2048.

We find the quality of the resulting images to be generally good.
Close inspection can reveal subtle artifacts, such as grid-like patterns
in foliage areas, clouds sometimes being rendered unrealistically,
or ringing around strong edges. We interpret these effects as slight
signs of collapse, probably caused by the highly correlated nature
of the training images.

Perhaps somewhat surprisingly, we find that the increased control
provided by our method does not come at the cost of image quality –
Table 2, which contains FIDs of our method and StyleGAN2 [Karras
et al. 2020b], shows no systematic degradation in quality.

ACM Trans. Graph., Vol. 41, No. 4, Article 72. Publication date: July 2022.

Disentangling Random and Cyclic Effects in Time-Lapse Sequences • 72:11
A
bl
at
io
n
A

Time-lapse image, 1 year 18.01.2013 23:30, latent 1 18.01.2013 23:30, latent 2 18.01.2013 23:30, latent 3 18.01.2013 23:30, latent 4

A
bl
at
io
n
B

Time-lapse image, 1 year 18.01.2013 23:30, latent 1 18.01.2013 23:30, latent 2 18.01.2013 23:30, latent 3 18.01.2013 23:30, latent 4

Fig. 14. Two ablations with a single scalar time input. Ablation A: with our proposed style modulation conditioning mechanism, the input controls only trends,

with all other variation ending up in the latent space. This results in seemingly broken time-lapse images that display only trend changes, and random samples

that have completely random time of day and season. Ablation B: using the concatenation method of Mirza and Osindero [2014], the conditioning ends up

controlling trends and time of year together, with the latent space controlling the day cycle. This results in random samples that are consistent w.r.t. the year

cycle, but have inconsistent time of day.

A
bl
at
io
n
C

09.05.2014 12:53 09.05.2014 15:45 09.05.2014 18:37 09.05.2014 21:30

Fig. 15. With the full stack of cyclic conditioning signals the concatenation conditioning mechanism ofMirza and Osindero [2014] (Ablation C) tends to entangle

the inputs, here seen as the day cycle controlling changes in the image that we would expect to be handled entirely by the trend input (a tree being cut down).

Table 2. FIDs from equal-time training runs of our method and StyleGAN2 (unconditional). Despite the increased control provided by our method, we do not

see a systematic decrease in image quality.

Method Küssnacht Mielipidepalsta Frankfurt Valley Barn Teton Normandy Two
Medicine Muotathal

Ours 8.71 9.02 11.11 3.83 4.66 6.88 3.51 4.76 5.76
StyleGAN2 8.13 11.44 11.65 3.87 6.83 6.21 4.96 4.42 6.86
Training time 30h 60h 60h 60h 60h 30h 30h 60h 60h

An objective evaluation of disentanglement is difficult due to
the lack of generally applicable quantitative metrics. This is an
important avenue of future work.

We currently train a separate generator for each dataset. Training
on multiple datasets simultaneously and conditioning the model
also using the scene ID might offer possibilities for useful trans-
fer between similar-looking datasets. The resolution differences
between datasets are a practical hindrance, however. In targeted
tests, we have observed quite reliable disentanglement with as few
as 1000 training images. Concurrent training with multiple datasets
would likely improve the behavior in the limited-data regime.

Overall, we believe conditional generative models may have more
applications in disentangling complex effects in individual datasets.

ACKNOWLEDGMENTS

We thank Tero Karras for insightful comments and feedback.Mielipi-
depalsta is the work of visual artists Emma Rönnholm and Salla
Vapaavuori. We are grateful to them, as well as curators Eerika
Malkki and Jari Granholm of the Purnu Art Center 2019 summer
exhibition Lumous for working with us on capturing the dataset.
This work was partially supported by the European Research

Council (ERC Consolidator Grant 866435), and made use of compu-
tational resources provided by the Aalto Science-IT project and the
Finnish IT Center for Science (CSC).

ACM Trans. Graph., Vol. 41, No. 4, Article 72. Publication date: July 2022.

http://www.mielipidepalsta.fi/
http://www.mielipidepalsta.fi/
https://www.emmaronnholm.com
https://www.sallavapaavuori.net
https://www.sallavapaavuori.net
https://purnu.fi/english/

72:12 • Härkönen, et al.

←−· · · · · · · · · · · · 5 years · · · · · · · · · · · ·−→ ←− · · · · · · · · · · 12 months · · · · · · · · · · −→

(a) Barn (b)Muotathal

Fig. 16. Examples of unwanted entanglement. (a) An alignment error that

remained after preprocessing was learned by our trend signal, as was the

change in color temperature. (b) Automatic brightness adjustment in the

camera led to the sky darkening during winters, causing our time-of-year

signal to learn this effect.

REFERENCES

Anokhin, I., Solovev, P., Korzhenkov, D., Kharlamov, A., Khakhulin, T., Silvestrov,
A., Nikolenko, S., Lempitsky, V., and Sterkin, G. (2020). High-resolution daytime
translation without domain labels. In Proc. CVPR.

Brock, A., Donahue, J., and Simonyan, K. (2019). Large scale gan training for high
fidelity natural image synthesis. In Proc. ICLR.

Choi, Y., Uh, Y., Yoo, J., and Ha, J.-W. (2020). Stargan v2: Diverse image synthesis for
multiple domains. In Proc. CVPR.

Chong, M. J., Chu, W.-S., Kumar, A., and Forsyth, D. (2021). Retrieve in style: Unsuper-
vised facial feature transfer and retrieval. In Proc. ICCV.

Clark, A., Donahue, J., and Simonyan, K. (2019). Efficient video generation on complex
datasets. CoRR, abs/1907.06571.

Collins, E., Bala, R., Price, B., and Süsstrunk, S. (2020). Editing in style: Uncovering the
local semantics of GANs. In Proc. CVPR.

Colton, S. and Ferrer, B. P. (2021). Ganlapse generative photography. In Proc. Interna-
tional Conference on Computational Creativity.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). Density estimation using Real NVP.
In Proc. ICLR.

Endo, Y., Kanamori, Y., and Kuriyama, S. (2019). Animating landscape: self-supervised
learning of decoupled motion and appearance for single-image video synthesis. In
Proc. SIGGRAPH ASIA 2019.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., and Bengio, Y. (2014). Generative Adversarial Networks. In Proc. NIPS.

Härkönen, E., Hertzmann, A., Lehtinen, J., and Paris, S. (2020). GANSpace: Discovering
interpretable GAN controls. In Proc. NeurIPS.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. (2017). GANs
trained by a two time-scale update rule converge to a local nash equilibrium. In
Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, page 6629–6640, Red Hook, NY, USA. Curran Associates Inc.

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models. In Proc.
NeurIPS.

Horita, D. and Yanai, K. (2020). Ssa-gan: End-to-end time-lapse video generation with
spatial self-attention. In Proc. ACPR.

Huang, X., Mallya, A., Wang, T.-C., and Liu, M.-Y. (2021). Multimodal conditional image
synthesis with product-of-experts GANs. CoRR, abs/2112.05130.

Jacobs, N., Burgin, W., Fridrich, N., Abrams, A., Miskell, K., Braswell, B. H., Richardson,
A. D., and Pless, R. (2009). The global network of outdoor webcams: Properties
and applications. In ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems (ACM SIGSPATIAL).

Jacobs, N., Roman, N., and Pless, R. (2007). Consistent temporal variations in many
outdoor scenes. In Proc. CVPR.

Kafri, O., Patashnik, O., Alaluf, Y., and Cohen-Or, D. (2021). Stylefusion: A generative
model for disentangling spatial segments. CoRR, abs/2107.07437.

Karacan, L., Akata, Z., Erdem, A., and Erdem, E. (2019). Manipulating attributes of
natural scenes via hallucination. In Proc. TOG.

Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., and Aila, T. (2020a). Training
generative adversarial networks with limited data. In Proc. NeurIPS.

Karras, T., Aittala, M., Laine, S., Härkönen, E., Hellsten, J., Lehtinen, J., and Aila, T.
(2021). Alias-free generative adversarial networks. In Proc. NeurIPS.

Karras, T., Laine, S., and Aila, T. (2019). A style-based generator architecture for
generative adversarial networks. In Proc. CVPR.

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and Aila, T. (2020b). Analyzing
and improving the image quality of StyleGAN. In Proc. CVPR.

Kim, J., Kim, M., Kang, H., and Lee, K. (2020). U-gat-it: Unsupervised generative
attentional networks with adaptive layer-instance normalization for image-to-image

translation. In Proc. ICLR.
Kingma, D. P. and Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1

convolutions. In Proc. NeurIPS.
Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes. In Proc. ICLR.
Logacheva, E., Suvorov, R., Khomenko, O., Mashikhin, A., and Lempitsky, V. (2020).

Deeplandscape: Adversarial modeling of landscape videos. In Proc. ECCV.
Martin-Brualla, R., Gallup, D., and Seitz, S. M. (2015). Time-lapse mining from internet

photos. In Proc. TOG.
Mirza, M. and Osindero, S. (2014). Conditional generative adversarial nets. CoRR,

abs/1411.1784.
Miyato, T. and Koyama, M. (2018). cgans with projection discriminator. In Proc. ICLR.
Nam, S., Ma, C., Chai, M., Brendel,W., Xu, N., and Kim, S. J. (2019). End-to-end time-lapse

video synthesis from a single outdoor image. In Proc. CVPR.
Park, T., Liu, M.-Y., Wang, T., and Zhu, J.-Y. (2019). Semantic image synthesis with

spatially-adaptive normalization. In Proc. CVPR.
Park, T., Zhu, J.-Y., Wang, O., Lu, J., Shechtman, E., Efros, A. A., and Zhang, R. (2020).

Swapping autoencoder for deep image manipulation. In Proc. NeurIPS.
Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., and Ganguli, S. (2015). Deep

unsupervised learning using nonequilibrium thermodynamics. In Proc. ICML.
Song, Y. and Ermon, S. (2019). Generative modeling by estimating gradients of the data

distribution. In Proc. NeurIPS.
Sun, J., Shen, Z., Wang, Y., Bao, H., and Zhou, X. (2021). LoFTR: Detector-free local

feature matching with transformers. In Proc. CVPR.
Tancik, M., Srinivasan, P. P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal,

U., Ramamoorthi, R., Barron, J. T., and Ng, R. (2020). Fourier features let networks
learn high frequency functions in low dimensional domains. In Proc. NeurIPS.

Tulyakov, S., Liu, M.-Y., Yang, X., and Kautz, J. (2018). MoCoGAN: Decomposing motion
and content for video generation. In Proc. CVPR.

van den Oord, A., Kalchbrenner, N., and Kavukcuoglu, K. (2016a). Pixel recurrent neural
networks. In Proc. ICML.

van den Oord, A., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A., and
Kavukcuoglu, K. (2016b). Conditional image generation with PixelCNN decoders.
In Proc. NIPS.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. (2017). Attention is all you need. In Proc. NeurIPS.

Wang, T.-C., Liu, M.-Y., Tao, A., Liu, G., Kautz, J., and Catanzaro, B. (2019). Few-shot
video-to-video synthesis. In Proc. NeurIPS.

Wang, T.-C., Liu, M.-Y., Zhu, J.-Y., Liu, G., Tao, A., Kautz, J., and Catanzaro, B. (2018).
Video-to-video synthesis. In Proc. NeurIPS.

Xiong, W., Luo, W., Ma, L., Liu, W., and Luo, J. (2018). Learning to generate time-lapse
videos using multi-stage dynamic generative adversarial networks. In Proc. CVPR.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017). Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proc. ICCV.

A COMPUTATION OF VARIANCE IMAGES

In order to monitor the training progress and analyze our results, we
measure the relative importance of our model inputs, by computing
the per-pixel variance of the output with respect to each input.
Given a model G, a random output image 𝑦 is produced as a

function of five input variables:

𝑦 = G(𝒛, 𝒏, 𝑡𝑔, 𝑡𝑦, 𝑡𝑑), (3)

where 𝒛 ∼ N512 (0, 1) denotes the latent vector, 𝒏 ∼ N𝐾 (0, 1) is the
tensor of all per-layer noise inputs, 𝑡𝑔 ∼ U(0, 1) is the global trend
timestamp, 𝑡𝑦 ∼ U(0, 1) is year cycle timestamp, and 𝑡𝑑 ∼ U(0, 1)
is the day cycle timestamp.

For each of these five parameters, we compute the variance of each
output pixel (and color channel) with respect to that parameter, and
average this variance over all choices of the remaining parameters.
For example, for parameter 𝑧:

𝑉𝒛 = E𝒏,𝑡𝑔,𝑡𝑦 ,𝑡𝑑Var𝒛 [G(𝒛, 𝒏, 𝑡𝑔, 𝑡𝑦, 𝑡𝑑)], (4)

and analogously for the other choices of parameter. An equivalent
formulation is amenable for convenient Monte Carlo estimation:

𝑉𝒛 =
1
2E𝒛,𝒛

′,𝒏,𝑡𝑔,𝑡𝑦 ,𝑡𝑑 [G(𝒛, 𝒏, 𝑡𝑔, 𝑡𝑦, 𝑡𝑑) − G(𝒛′, 𝒏, 𝑡𝑔, 𝑡𝑦, 𝑡𝑑)]2 (5)

ACM Trans. Graph., Vol. 41, No. 4, Article 72. Publication date: July 2022.

Disentangling Random and Cyclic Effects in Time-Lapse Sequences • 72:13

In practice, we generate 𝑁 = 5000 pairs of images with random pa-
rameters, such that within each pair, the relevant parameter (e.g., 𝑧)
is further randomized while the others are held constant. A squared
difference is computed for each pair, and the 𝑁 difference images
are averaged.
The five estimated variance images �̃�𝒛 , �̃�𝒏 , �̃�𝑡𝑔 , �̃�𝑡𝑦 , and �̃�𝑡𝑑 , are

further normalized so as to sum to one at each pixel and color
channel. For example, for 𝒛:

�̃� norm
𝒛 =

�̃�𝒛

�̃�𝒛 + �̃�𝒏 + �̃�𝑡𝑔 + �̃�𝑡𝑦 + �̃�𝑡𝑑
(6)

Figure 10 shows �̃� norm
𝑡𝑔

, averaged over the channel dimension.
Figure 11 shows the evolution these normalized variance images,
averaged over the channel and the pixel dimensions.

B INPUT SEQUENCE ALIGNMENT

Ourmodels are keen to pick up on small changes in image alignment,
and any inconsistencies in the input sequence are inherited to the

outputs. Since we want to synthesize well-aligned images, and our
models don’t do so implicitly, we have to handle alignment as a
preprocessing step.

For Valley, we perform automatic alignment using LoFTR [Sun
et al. 2021] by matching all frames to an anchor frame, and fitting
an affine transform to the detected keypoints. We discard keypoints
with confidence 𝑝 < 0.5, and only fit an affine if 𝑁 ≥ 30 keypoints
are detected, otherwise falling back to the closest valid preceding
alignment in the sequence.
The LoFTR-based alignment is quite sensitive to scene content,

anchor frame, and choice of parameters. As such, for the other
datasets, we instead perform manual alignment: the time-lapse se-
quence is split at each large discontinuity in alignment, generating
several sub-sequences which are internally more consistent. Then, a
representative frame is chosen from each sequence, and it is aligned
to a global anchor by hand-picking the same three points in both
images, and fitting a partial affine transformation with 4 degrees of
freedom (translation, rotation, and uniform scale) to the point sets.

ACM Trans. Graph., Vol. 41, No. 4, Article 72. Publication date: July 2022.

	Abstract
	1 Introduction
	2 Related Work
	3 Probabilistic Generative Modeling of Time-lapse Sequences
	4 Architecture and training
	4.1 Architecture
	4.2 Training

	5 Results and Comparisons
	5.1 Latent space
	5.2 Time conditioning
	5.3 Training behavior
	5.4 Comparisons
	5.5 Latent exploration

	6 Limitations and future work
	Acknowledgments
	References
	A Computation of variance images
	B Input Sequence Alignment

