
Timo Aila Samuli Laine Tero Karras

NVIDIA Research

Understanding the Efficiency of Ray Traversal on GPUs – Kepler and Fermi Addendum

Abstract

• This poster is an addendum to the HPG2009 paper
"Understanding the Efficiency of Ray Traversal on
GPUs" [AL09]
− We cover the performance optimization of traversal and

intersection kernels for Fermi and Kepler
architectures [NVI10, NVI12a]

− We demonstrate that ray tracing is still, even with incoherent
rays and more complex scenes, almost entirely limited by the
available FLOPS

− We also discuss two esoteric instructions, present in both
Fermi and Kepler, and show how they can be used for faster
acceleration structure traversal

Implications of memory architecture

Performance and scalability

• Relative average performance (MRays/sec) of
primary, ambient occlusion, and diffuse rays
in our four test scenes on GTX285, GTX480,
and GTX680, plotted against the relative
memory bandwidth and peak FLOPS
− Ray tracing performance continues to follow peak

flops very closely, while memory bandwidth has
increased at a much slower rate

− Interestingly, diffuse rays seem to scale even better
than primary rays, but that is an artifact caused by
our Kepler-specific optimizations that favor
incoherent rays (See Table 2)

VMIN, VMAX

DEFINITIONS
B = Box (xmin,ymin,zmin,xmax,ymax,zmax);
O = ray origin (x,y,z);
D = ray direction (x,y,z);
invD = (1/D.x,1/D.y,1/D.z);
OoD = (O.x/D.x,O.y/D.y,O.z/D.z);
tminray = ray segment’s minimum t value; ≥ 0
tmaxray = ray segment’s maximum t value; ≥ 0

RAY vs. AXIS-ALIGNED BOX
// Plane intersections (6 x FMA)
float x0 = B.xmin*invD[x] - OoD[x]; [− ∞ , ∞ ]
float y0 = B.ymin*invD[y] - OoD[y]; [− ∞ , ∞ ]
float z0 = B.zmin*invD[z] - OoD[z]; [− ∞ , ∞ ]
float x1 = B.xmax*invD[x] - OoD[x]; [− ∞ , ∞ ]
float y1 = B.ymax*invD[y] - OoD[y]; [− ∞ , ∞ ]
float z1 = B.zmax*invD[z] - OoD[z]; [− ∞ , ∞ ]

// Span intersection (12 x 2-way MIN/MAX)
float tminbox = max4(tminray, min2(x0,x1),

min2(y0,y1), min2(z0,z1));
float tmaxbox = min4(tmaxray, max2(x0,x1),

max2(y0,y1), max2(z0,z1));

// Overlap test (1 x SETP)
bool intersect = (tminbox<=tmaxbox);

// Span intersection (6 x VMIN/VMAX)
float tminbox = vmin.max(x0,x1,vmin.max(y0,y1,

vmin.max(z0,z1,tminray)));
float tmaxbox = vmax.min(x0,x1,vmax.min(y0,y1,

vmax.min(z0,z1,tmaxray)));

Tesla

• Can safely use integer VMIN
and VMAX in ray-box test
− Intermediate results often wrong

− End result provably correct

• Traversal and intersection
performance
− Fermi: +10%

− Kepler: +5% due to lower
throughput of the instructions

Fermi, Kepler

tmin_x

tmax_x

tmin_y

tmax_y

tmin

tmax

tmin

tmax

X

X

References

[AL09] AILA T., LAINE S.: Understanding the efficiency of ray
traversal on GPUs. In Proc. High-Performance Graphics 2009
(2009), pp. 145–149.

[NVI10] NVIDIA: NVIDIA’s next generation CUDA compute
architecture: Fermi. Whitepaper, 2010.

[NVI12a] NVIDIA: NVIDIA’s next generation CUDA compute
architecture: Kepler GK110. Whitepaper, 2012.

[NVI12b] NVIDIA: Parallel thread execution ISA version 3.0.
Whitepaper, 2012.

Tesla Fermi Kepler

Data fetches Fetch nodes through texture, triangles
from (uncached) global memory.

Fetch nodes through L1, triangles via
texture. L1 is a bottleneck with in-
coherent rays but texture is not fast
enough to fetch everything.

Fetch all node and triangle data via
texture, and avoid dependent fetches
whenever possible. L1 is slow and
beneficial only for traversal stacks
and ray fetches.

Persistent
threads

Doubles performance. Not beneficial due to a better hard-
ware work distributor.

Can replace all terminated rays once
fewer than 60% of the warp’s lanes
have work. Favors incoherent rays,
+10%.

Speculative
traversal

Nearly always useful. A small win for incoherent rays and
large scenes.

One or two-slot postpone buffer is
beneficial for incoherent rays.

VMIN,
VMAX

Not available. A trivial +10%. Less useful than on Fermi because of
lower throughput, +5%.

Table 2: Summary of differences in traversal and intersection kernels for Tesla, Fermi, and Kepler.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

GTX285 GTX480 GTX680

Peak FLOPS

Memory bw

Diffuse

AO

Primary

779 GFLOPS
159 GB/s

1344 GFLOPS
179 GB/s

3090 GFLOPS
192 GB/s

Summary

• Our recommendations are summarized in Table 2
• Extended version is available as technical report

NVR-2012-02 at http://research.nvidia.com
• Optimized kernels are available at

http://code.google.com/p/understanding-the-
efficiency-of-ray-traversal-on-gpus/

Conference, 283K tris Fairy, 174K tris Sibenik, 80K tris San Miguel, 11M tris

Ray type
Tesla Fermi Kepler Tesla Fermi Kepler Tesla Fermi Kepler Tesla Fermi Kepler
[AL09]

Measured
Primary 142.2 272.1 432.6 74.6 154.6 250.8 117.5 243.4 388.2 – 76.9 131.7

(MRays/s)
AO 134.5 284.1 518.2 92.5 163.6 317.6 119.6 244.1 441.2 – 94.5 187.9
Diffuse 60.9 126.1 245.4 40.8 73.2 156.6 46.8 94.7 192.5 – 33.3 58.8

× previous
Primary 1.91 1.59 2.07 1.62 2.07 1.59 1.71

architecture
AO 2.11 1.82 1.77 1.94 2.04 1.81 1.99
Diffuse 2.07 1.95 1.79 2.14 2.02 2.03 1.77

Table 1: Performance measurements in MRays/sec for Tesla (GTX285), Fermi (GTX480) and Kepler (GTX680) using the setup
from [AL09]. The San Miguel scene is from PBRT. The scaling between generations is visualized above.

• Large portion of BVH traversal is ray-box tests

− Most of ray-box is min and max instructions

• Fermi and Kepler have two esoteric instructions:
− vmin.max(a,b,c) = max(min(a,b),c)

− vmax.min(a,b,c) = min(max(a,b),c)

− Exposed through PTX [NVI12b]

− Only integer data types supported

• Fermi
− Has L1 and L2 caches

− L1 services only one cache line per clock

· Fetch instruction replayed until all threads of a warp serviced

− Divergent accesses bottlenecked by L1 → SM

· Even with high hit rate and abundant memory bandwidth

· Speculative traversal is less useful than on Tesla

− Texture units are not fast enough to handle all traffic

· Split workload between L1 and texture

• Kepler

− Significant upgrade to FLOPS and texture units

− Same L1 and L2

− L1 is useful only for coherent, low-priority accesses

· Rays, traversal stacks

− Fetches through texture cache are divergence-tolerant

· Latency is high, dependent fetches should be avoided

· Speculative traversal is useful again

− It is beneficial to replace terminated rays when SIMD
utilization drops below a threshold

· As speculated in [AL09]

· We use a threshold of 60%


