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Summary
The localization of acoustic reflections, i.e., the image-sources, is of interest when analyzing the acoustics of con-
cert halls and auditoriums. The location is needed, for example, in room acoustic studies, auralization, inference
of room geometry, or when estimating the acoustic properties of surfaces. This article studies the localization of
acoustic reflections from spatial impulse responses. The contribution of this article is threefold. First, the article
proposes a new method for localization that takes advantage of the time of arrival (TOA) estimation. Secondly,
it is proposed that TOA and time difference of arrival (TDOA) information, present in the spatial room impulse
responses, are combined in two novel ways. Thirdly, the performance of the proposed localization methods is
compared to the existing state-of-the-art localization methods in the acoustic reflection localization task. Theo-
retical performance is investigated and experiments using real and simulated data are conducted. The TOA-based
methods are found to achieve reasonably good performance in the reflection localization task. When TOA and
TDOA information is combined the performance clearly improves.

PACS no. 43.60.Hg, 43.60.Jn

1. Introduction

Location of acoustic reflections, i.e, the image-sources, is
a useful piece of information in room acoustic studies, au-
ralization, room geometry inference, and in-situ measure-
ment of acoustical properties of surfaces from room im-
pulse responses. The locations of the reflections can be
used together with the sound source location to deduce
the normals and the locations of the reflective surfaces
[1, 2, 3], that is, to infer the room geometry. In addition, the
location of the reflection is needed for accurate time win-
dowing of the reflection from the room impulse response
when estimating, for example, the absorption coefficient
of the surface from in-situ measurements [4, 5].
Localization of acoustic reflections is often performed

with methods developed for sound source localization. An
overall framework of the methods, considered in this ar-
ticle, is given in Figure 1 and in Table I. Many of the lo-
calization methods are based on time difference of arrival
(TDOA), which is the difference between the arrival times
of a wave front at two sensor positions. In addition, meth-
ods that are based on time of arrival (TOA), the time that
the wave front takes to travel from the source to the re-
ceiver location, have been presented for source localiza-
tion. TOA is available when the signal of the sound source
is known, for example, in a room impulse response. Re-
cently, methods that combine the measurements (CM) of
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TOA and TDOA have been introduced. In addition, some
methods that use directly the received signals exist.

The objective of this article is to evaluate which of the
localization methods are best applicable for the localiza-
tion of acoustic reflections from spatial room impulse re-
sponses recorded with compact microphone arrays. The
evaluation of the methods is done by theoretical compari-
son with Cramér-Rao lower bound (CRLB), Monte-Carlo
simulations, and real data experiments in two enclosures.

The contribution of the article is the following. First, a
new method for localization that takes advantage of TOA
estimation is proposed. Second, it is proposed that TOA
and TDOA information, present in the spatial room im-
pulse responses, are combined in two novel ways. In the
first combination approach, the TOA and TDOA estima-
tion functions are combined by addition in the spatial do-
main. In the second one, the estimation functions are first
considered as pseudo-likelihoods and then combined by
multiplication in the spatial domain. Third, the perfor-
mance of the methods is compared to the existing state-of-
the-art localization methods and studied in the reflection
localization task.

The rest of the paper is organized as follows. Research
related to the localization methods applied in this article
are presented in Section 2. The signal model for acoustic
reflection localization is presented in Section 3. Methods
for reflection localization are presented in Sections 4-6.
Theoretical limits are yielded in Section 7. Simulation and
real data experiments are conducted and discussed in Sec-
tion 8. Finally, section 9 concludes the paper.
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Figure 1. Overall scheme of the data flow in different localization
functions. Methods introduced in this article are presented with
gray background.

Table I. Contributions of the article and examples of the refer-
ences for each studied method. SRP: Steered response power,
MLE: maximum likelihood estimation, PL: Pseudo-likelihood,
LS: least squares, TOA: Time of arrival, TDOA: Time difference
of arrival, CM: Combined measurements of TOA & TDOA, S:
signal model, N/A: Not applicable, ∗ MLE-S, LS-S, SRP-TDOA,
and SRP-TOA will produce the same location estimate in theory,
when independent and identical errors are assumed.

Localization Method
Data MLE SRP PL LS

TDOA [6] [7]∗ [8] [9]
TOA [6] [10]∗ Here [11]
CM [12] Here Here [13]
S [14]∗ N/A N/A [15]∗

2. Related work on localization methods

2.1. TDOA estimation and TDOA-based localization

Considerable research efforts have been put to the TDOA
estimation problem over the last decades [16, 17, 18, 19,
20, 21, 22]. One of the most popular approaches is the
generalized correlation method (GCC) [21]. Other com-
monly used methods are based on average difference func-
tion [18]. The accuracy of TOA and TDOA based localiza-
tion is limited by the sampling frequency. In [23] parabolic
fit and in [24] exponential fit are proposed for interpolating
the TDOA estimate. The interpolation of the whole TDOA
estimation function using exponential and parabolic fits is
presented in [25].
The TDOA-based source localization combine the TD-

OA information spatially over several microphone pairs.
One of the simplest methods for localization is the maxi-
mum likelihood estimation (MLE) method, which is for-
mulated for TDOA in [6]. In MLE-TDOA, the TDOA es-
timation errors are given an error probability density func-
tion (PDF) and these PDFs, with TDOA estimates as their
means, are then combined spatially.

When independent and identically distributed errors are
assumed, MLE-TDOA can be presented as a least squares
(LS) problem. With these certain assumptions the LS so-
lution is also the best linear unbiased estimator (BLUE)
[26]. The TDOA LS problem has gained a lot of attention
in research [27, 9, 28, 29, 30, 6, 31, 32, 33, 34, 35], mostly
because the LS solution can be given in closed form by

making first some assumptions on the error or on the sig-
nal. Since the LS solutions are a special case of MLE, only
MLE is considered in the rest of this paper.

A popular approach for TDOA-based localization is the
steered response power (SRP), which has been studied
extensively [36, 37, 38, 7, 8, 39, 25, 10, 40] and it has
been followed by various modifications and optimizations
[38, 39, 40]. In the SRP-TDOAmethod the TDOA estima-
tion functions are combined spatially by addition. There-
fore, there is no requirement for error PDF in SRP-TDOA
as there is in MLE-TDOA. It has been shown that the SRP-
TDOA leads to an equal localization function as the energy
of the delay-and-sum beamformer when GCC is used as
the TDOA estimation function [10, 41].

Quite recently, pseudo-likelihood (PL) methods for the
TDOA estimation functions have been proposed in speech
source localization [41, 8]. In PL-TDOA, the TDOA esti-
mation functions are combined spatially by multiplication,
as opposed to addition used in SRP-TDOA. As in SRP-
TDOA, there is no need for the error PDF. That is, PL-
TDOA is a non-parametric method as is SRP-TDOA. It is
shown in [8], that PL-TDOA achieves better performance
in the speech source localization task than SRP-TDOA.

2.2. TOA estimation and TOA-based localization

In addition to TDOA-based source localization, source lo-
calization methods based on time of arrival (TOA) esti-
mation have been presented in the past. TOA is often also
referred to as time of flight.

The most direct method for TOA estimation is a simple
peak-picking algorithm [42, 43, 44]. Also, it has been pro-
posed that statistical features, such as kurtosis, can be used
to detect peaks [45]. Other methods are based on correla-
tion or some other similarity measure and they require a
priori knowledge on the signal [44, 43]. These methods are
then very similar to TDOA estimation methods. Moreover,
in principle also the onset detection methods used in music
signal analysis could be used for TOA estimation [46]. The
performance of TOA estimation is not widely studied un-
der additive noise to the knowledge of the present authors.
In addition, TOA estimation accuracy can be improved by
basic Fourier-interpolation or by assuming a shape for the
TOA estimation function, similarly as in the TDOA esti-
mation.

As with TDOA, also for TOA theMLEmethod has been
proposed [6]. In the MLE-TOA method, the error PDF
is assumed for the TOA estimation error, instead of the
TDOA estimation error used in the MLE-TDOA method.

The MLE method for TOA can also be formulated into
a LS problem. Closed form solutions for the LS problem
for TOA have been presented [11, 47, 48, 49]. Again, since
the LS solutions are a special case of MLE, only MLE is
considered in the rest of this paper.

Yet another method that uses the TOA-model is the en-
ergy of the delay-and-sum beamformer [10]. In the fre-
quency domain, with continuous signals, such as speech,
this method produces the same location estimate as the
SRP-TDOA when cross correlation is used as the TDOA
estimation function [10].
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2.3. Combination of TOA and TDOA-based localiza-
tion

More recently, the TOA and TDOA information have
been proposed to be combined in the MLE framework
[50, 13, 12, 51]. In [12] it was shown that it is advan-
tageous to combine the TOA and TDOA information for
source localization from room impulse responses. Also,
LS solutions have been presented for the combination of
TOA and TDOA data [13].

2.4. Maximum likelihood methods for signal and
error models

In addition to MLE-TDOA and MLE-TOA, MLE solu-
tions have been proposed for different signal and error
models [15, 52, 53, 38, 54, 14]. These methods solve the
maximum likelihood estimate of the location with respect
to the assumed signal model and noise model which may
include a model of the environment. In particular, MLE
methods for reverberant conditions [54], and conditions
where the microphones or source have different charac-
teristics [15, 52, 53, 38, 14] have been presented. When
independent and identically distributed errors are assumed
for each receiver, and the microphone and source directiv-
ities are omnidirectional, the MLE can be presented as a
LS problem [15]. In theory, the LS solution is the same as
the one given by SRP-TOA or SRP-TDOA [15].

2.5. Localization of reflections and room geometry
estimation

A relevant topic to the localization of reflections is the
localization of the reflective surfaces, or the blind esti-
mation of room geometry. Namely, the estimation of re-
flective surfaces is equivalent to localization of first or-
der reflections. The localization of reflection, and esti-
mation of room geometry from room impulse responses
have been studied in several research articles [55, 56, 57,
3, 58, 59, 60, 61, 62, 1, 2, 63, 64, 65, 66, 67]. The ap-
proaches are based on TOA, TDOA, and direction of ar-
rival (DOA) estimation. The TOA estimation requires that
the loudspeakers and microphones are time-synchronized,
and the TDOA and DOA based methods do not require
synchorinization.
In [59, 60] a technique called the spatial impulse re-

sponse rendering (SIRR) is developed. The analysis part
of SIRR inspects the direction of arrival of the reflection
and the diffuseness of the sound field. Since the analysis is
done in short time windows, the location of the reflections
can be deduced using the a priori knowledge of speed of
sound, the time of arrival and the estimated DOA which is
calculated from sound intensity vectors.
A spherical microphone array with an integrated video

camera is used in [55, 56, 57] for visually inspecting the
reflections. The energy of the spherical beamformer output
applied to an impulse response that is divided into short
time windows is overlayed on top of a panorama video
image from the center of the microphones. The location
of the reflection is then inspected visually for each frame.

The maximum of the beamformer output corresponds to
the DOA of the reflection and the distance to the reflection
is calculated from the time stamp of the current frame.

In [58] the reflections are localized using TDOA esti-
mation with a microphone array that consists of 8 micro-
phones. The method is demonstrated in an auditorium.

In [3] the room geometry is estimated by rotating a B-
format microphone around a loudspeaker, directed towards
the microphone. The estimation is based on the TOA and
the DOA of the first arriving reflection in each direction.
The DOA estimates is calculated from the sound intensity
vectors. For each direction, a single TOA and DOA esti-
mate is obtained. In the post-processing phase, the TOA
and DOA measurements are grouped using hierarchical
clustering to avoid estimating the same plane multiple
times.

The tracing of reflections using highly directive loud-
speaker, a compact microphone array, and localization
methods is proposed in [67]. The localization is based on
detecting when the reflections arrive to a microphone ar-
ray based on the statistical features of the sound field and
estimating the DOA based on sound intensity vectors.

A general framework localizing the reflections using a
small microphone array and a loudspeaker is presented in
[68]. In addition, a comparison of the performance of SRP-
TDOA based methods and sound intensity vector based
methods in the direction estimation task reveals that SRP-
based methods should be preferred.

In [1], the reflecting plane parameters are estimated by
rotating an omni-directional microphone around a loud-
speaker which is directed towards a microphone. The im-
pulse responses are transformed into an acoustic local-
ization map from where the local maxima correspond to
the plane locations. The acoustic localization map is cal-
culated using the delay-and-sum beamformer with direct
TOA mapping. As the source position is known, the plane
parameters can be calculated.

In [2] the reflecting plane parameters are estimated with
a common tangent algorithm in two dimensional space.
The problem is first formulated into quadractic equation
that describes the relation between the TOAs and plane
parameters and source location. For a single reflection the
solution of this quadratic equation provides the parame-
ters of a single plane. The solution is called the common
tangent algorithm (COTA). For multiple planes, the esti-
mated TOAs are first grouped using the generalized Hough
transform and then the plane for each group is solved us-
ing the COTA. The generalized Hough transform detects
the TOAs that describe the same plane. The approaches
in [2] are extended to three dimensions in [65]. Moreover,
a closed form solution for the plane parameter estimation
from the quadratic equation is presented in [66].

In [63], the COTA is applied for the estimation multi-
ple plane parameters in two dimensional space. Whereas
in [2] the grouping was done with the generalized Hough
trasnform in [63] the grouping is done with an iterative
search. The iteration proceeds as follows. First the param-
eters of the closest plane are estimated. Then the TOAs
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associated with the first plane are removed and the search
is performed again. This iteration is performed as many
times as there are a priori known planes.

In [64] a closed form solution to the above mentioned
quadratic equation that describes the relation between the
TOA and plane parameters is presented for the 2-D case.
In the solution, two planes are selected where the cost
function is inhomogeneous. Then, the gradients of the cost
function on these planes are solved analytically. The min-
imum of the obtained solutions corresponds to the plane
parameters. Moreover, the generalized Hough transform is
applied to improve the estimation of the parameters of a
single plane.

Acoustic imaging for finding room geometry and other
acoustic properties of enclosure is applied in [61, 62].
Acoustic imaging is based on the inverse extrapolation of
the Kirchoff-Helmholtz and Rayleigh integrals. An acous-
tic image can be created by measuring multiple impulse
responses, for example, on a line grid with B-format mi-
crophone [61, 62].

In [69] a circular microphone array is used around a
loudspeaker to estimate the room geometry. A constrained
room model and L1-regularized least-squares method is
used to obtain the locations of walls. This method can be
considered as semi-blind since it requires the knowledge
of the number of walls.

The room geometry has also been estimated from con-
tinuous signals [70, 71, 69, 72, 73, 74]. The advantage of
these approaches is that there is no need for controlled
source signals. This paper only considers the localization
of reflections from room impulse responses. Therefore, the
approaches that localize the reflective surfaces or reflec-
tions from continous signals are no longer considered.

2.6. Theoretical performance

The theoretical performance of the estimation methods can
be studied by using Cramér-Rao lower bound (CRLB)
[26]. In CRLB, first the error PDF is assumed on the mea-
surements. Then, the Fisher information is obtained by
squaring and deriving the error PDF with respect to the pa-
rameter to be estimated. CRLB is the inverse of the Fisher
information.

3. Preliminaries and Signal Model

3.1. Impulse Response and Reflection Signal Model

In a room environment, the sound ps(t), emitted from the
sound source at position s, and received at microphone n at
position rn, is affected by the impulse response h(t; rn, s)

p(t; rn, s) = h(t; rn, s) ∗ ps(t) + w�(t), (1)

where ∗ denotes convolution and, w�(t) is the measurement
noise, independent and normally distributed for each mi-
crophone. For simplicity, the impulse response measured
at microphone n is noted with hn(t) through the rest of the
paper. Furthermore, the number of microphones is denoted
withN .
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Figure 2. Impulse response in the time-domain (upper) and in
the time-frequency-domain (lower). The early reflections studied
here appear before the late reverberation starts.

A room impulse response can be roughly divided into
three parts, the direct sound, the early reflections, and the
late reverberation. Figure 2 illustrates these three cate-
gories in principle. The early reflections should be iden-
tifiable until the so-called mixing time1.

In this paper, the impulse response is considered as

hn(t) =
K!
k=1

hkn (t) + w(t)

=
K!
k=1

�π
0
Hk

n (ω)e
jωt dω + w(t), (2)

where ω is the angular frequency, hkn (t) are the impulse-
like reflection signals, k = 1, . . . , K indicated the index of
each reflection and w(t) is measurement noise, indepen-
dent, and identically distributed with normal distribution
for each microphone.

Each of the impulse-like reflection signals hkn (t) consists
of the impulse response of the loudspeaker s(t) and atten-
uation factor akn via

hkn (t) = akns
�
t − tkn (x)

�
+ wn(t), (3)

where tkn (x) is the TOA related to the distance of the path
of a reflection k at location xk,

tkn (xk)
�
= t(rn; xk) = c−1
rn − xk
, (4)

and c is the speed of sound. The location of the reflection
x refers to the image source location [78], see Figure 3
for further explanation. In the frequency domain the signal
model is given as

Hk
n (ω) = Ak

n (ω)S(ω)e
−jωt1(x) +Wn(ω) (5)

1 One definition of the mixing time is given in [75] and several ad-hoc
methods for its estimation in [43, 76, 77].
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Figure 4. G.R.A.S. sound intensity vector type 50VI microphone
array used in this paper. The distance between a microphone pair
on each axis is 100mm.

where the attenuation, source, noise, and received signal
have spectral densities Ga,a(ω), Gs,s(ω), Gwn,wn

(ω), and
Ghn,hn (ω), respectively. For clarity the index k is omitted
from hereon.
The attenuation factorAn(ω) is dependent at least on the

properties of the surface and air absorption, the distance
from the source to the microphones, and the directivity of
the source and of the microphones. Although in real situa-
tions the phase of the reflection depends on the frequency,
especially if the surface is uneven, the analysis of the room
impulse responses assumes that with early reflections the
phase is frequency independent, i.e.A(ω) ∈ R. Thus, ideal
specular reflections are assumed. In addition, the analysis
does not differentiate between diffraction and reflections,
but all the events are considered to be reflections.
The analysis in this article is done for spatial impulse

responses measured with a compact microphone array. An
example of the microphone array setup is shown in Fig-
ure 4. The array has N = 6 microphones and the spac-

ing between the two microphones on an axis is 100mm.
Other microphone arrays can also be used with the pre-
sented methods, however, all the results are presented here
are for this setup.

The processing of the spatial impulse response mea-
sured with a compact microphone array is usually done in
short time windows [55, 56, 59, 60, 67, 68]. Based on pre-
vious knowledge [79, 59, 60, 67], a good window size for
the analysis of early reflections is from 1ms to 4ms. Here,
the time indexes, i.e. the starting and ending points of the
analysis time window are denoted with tstart ≤ t ≤ tend.

It is further assumed that there is only one specular re-
flection present per analysis window. This is generally true
in the early part of the impulse response for the first order
reflections, especially if a short analysis window is used,
large spaces, such as auditoriums or concert halls are under
investigation, and the length of the reflection signal s(t)
is less than the length of the analysis window. Theoreti-
cal limitations for the analysis window size can be derived
trivially from the echo density, which is given e.g. in [80,
p. 92].

Since the microphone array is compact, it is assumed
that the attenuation factor is equal for all microphones and
a single reflection An(ω) = A(ω). In addition, all the other
spectral densities are also assumed to be independent of
the microphone for the same reason. If the intra-sensor dis-
tances would be large this assumption could not be made.
With the assumption of only one specular reflection per

analysis window, the relation between the measurement
noise and the signal energy and attenuation factor define
the signal-to-noise ratio (SNR). A recognizable feature of
the room impulse response, also shown in Figure 2, is the
fact that the SNR decreases as the time increases. Thus,
the reflections that arrive later in time have a lower SNR.
The SNR of each reflection in the impulse response mea-
surement is defined here as

SNR =
E
�
h2(t)

�tend
tstart

E
�
w2(t)

� , (6)

where E{·} is the expected value.

4. Time difference of arrival estimation

TDOA (Time difference of arrival) is the time difference
between two TOAs and it is calculated with spherical wave
propagation model as

τi,j(x)
�
= τ(ri, rj; x) = t(ri; x) − t(rj; x) (7)

= c−1
�
ri − x
 − 
rj − x
�.

In 3-D, a TDOA is presented by a paraboloid.
In the TDOA estimation, the task is to estimate the time

delay τi,j = ti − tj between two received signals hi(t) and
hj(t). The maximum argument of the estimation function
Rhi,hj (τ) is the TDOA estimate, i.e.,

τ̂i,j = argmax
τ

�
Rhi,hj (τ)

�
. (8)
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Here GCC [21] and average squared difference function
(ASDF) [18] are used for TDOA estimation in the reflec-
tion localization task. Due to the measurement noise w(t),
a TDOA is corrupted by an additive noise component,

τ̂i,j = τi,j + εTDOA, (9)

where ·̂ denotes estimate. The error components are as-
sumed to be normally distributed with zero mean, εTDOA ∼
N (0, σ2

TDOA), where σ
2
TDOA is the variance of the TDOA

error component εTDOA.

4.1. Generalized correlation method

The most commonly used TDOA estimation method is
the generalized correlation method [21]. The generalized
cross correlation (GCC) function between two received
impulse responses hi and hj is calculated as [21]

RGCC
h1,h2

(τ) = F−1�W (ω)Gh1,h2 (ω)
�
, (10)

where W (ω), F−1, and Ĝh1,h2 (ω) are the weighting func-
tion, inverse Fourier transform, respectively, and cross
spectral density between hi and hj .

4.1.1. Maximum likelihood weighting
The maximum likelihood weighting for the GCC function
is given as [21]

WML
h1,h2

(ω) =
1""Gh1,h2 (ω)

"" Ch1,h2 (ω)�
1 − Ch1,h2 (ω)

� (11)

where

Ch1,h2 (ω) =

""Gh1,h2 (ω)
""2

Gh1h1 (ω)Gh2h2 (ω)
(12)

is the magnitude squared coherence function. For the
derivation of ML weighting function see [21]. Since the
noises are assumed to be uncorrelated the true spectral
densities can be written as [21]

Gh1,h2 (ω) = Ga,a(ω)Gs,s(ω)e−jωτi,j , (13)

Gh1,h1 (ω) = Ga,a(ω)Gs,s(ω) + Gw1,w1 (ω), (14)

Gh2,h2 (ω) = Ga,a(ω)Gs,s(ω) + Gw2,w2 (ω). (15)

Then, by using these equivalences in equation (11), one
has [21]

WML
h1,h2

(ω) =


Ga,a(ω)Gs,s(ω)

�

Gw1,w1 (ω)Gw2,w2 (ω) (16)

+ Ga,a(ω)Gs,s(ω)(Gw1,w1 (ω) + Gw2,w2 (ω))
�−1

.

In practical situation, since the signal is an impulse re-
sponse, it is easy to estimate the noise auto power spec-
tral density Gw1,w1 (ω) from the beginning of the impulse
response. Then, the auto spectral density of the source sig-
nal and the attenuation is given by the inverse of equation
(14), e.g., Ga,a(ω)Gs,s(ω) = Gh1,h1 (ω) − Gw1,w1 (ω).
If the noise can not be estimated, the first version of the

ML weighting in equation (11) can be used, but the coher-
ence should then be estimated using for example Welch’s
approach [81, 82]. Coherence estimation can be problem-
atic for non-stationary signals [17]. In addition, since it in-
cludes additional computational load it is not used in this
article.

4.1.2. Other weighting functions

Two weighting functions of GCC that do not require the a
priori knowledge of the auto power spectral densities are
considered. These weighting functions are called as the di-
rect cross correlation (CC) weighting [21]

WCC(ω) = 1 (17)

and phase transform (PHAT) [21]

WPHAT
hi,hj

(ω) = 1/
Ghi,hj (ω)
. (18)

4.2. Average square difference function

Similar to the generalized correlation method are the dif-
ference function based methods [18]. In these approaches,
two signals are subtracted from each other, while the other
signal is delayed by the TDOA. Here, the absolute squared
difference function is also tested [20, 18],

RASDF
hi,hj

(τ) =
�T/2
−T/2

�
hi(t) − hj(t − τ)

�2
dt, (19)

where T is the length of the integration window. With
ASDF, instead of the maximum, the minimum argument
of the estimation function is the TDOA estimate

τ̂i,j = argmin
τ

�
RASDF
hi,hj

(τ)
�
. (20)

5. Time of arrival estimation

TOA is given by equation (4). In TOA estimation, the time
delay tn of a signal is estimated. In a short time window the
maximum argument of the TOA estimation functionDn(t)
is the TOA estimate

t̂n = tstart + argmax
t

�
Dn(t)

�
, (21)

where t is limited by the starting point, and the ending
point of the time window, i.e., tstart ≤ t ≤ tend.
A TOA is corrupted by an additive noise component due

to the measurement noise w(t),

t̂n = tn + εTOA, (22)

Also for TOA, the error components are assumed to be
normally distributed with zero mean, εTOA ∼ N (0, σ2

TOA),
where σ2

TOA is the variance of the TOA error component
εTOA.
Since the problem in TOA estimation is similar to

TDOA estimation, the TDOA estimation methods intro-
duced above can also be applied for TOA estimation, given
that the source signal s(t) is known a priori. Next the GCC
estimation methods are presented for the TOA estimation
and a simple peak picking method is reviewed. The ASDF
for TOA estimation is the same for TDOA estimation, with
the exception that the other received signal is replaced by
s(t).
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5.1. Auto-correlation method

This method requires a priori information on the sound
source used. First a reference s(t) is measured for the ap-
plied sound source in free-field conditions: in an anechoic
chamber, or windowed from an in-situ impulse response.
The reference represents the waveform of the emitted im-
pulse response from the source. The reference is then cor-
related with the impulse response

DAC
s,h1

(t) =
�T/2
−T/2

s(ξ)h1(ξ − t) dξ, (23)

where AC denotes auto-correlation.
Defrance et al. use similar auto-correlation approach for

detecting reflections from a single impulse response [42,
43]. In addition, similar auto-correlation method has been
used to detect the TOA of a reflection as a preliminary task
before absorption coefficient calculations [83].

5.1.1. Maximum likelihood weighting
The auto-correlation function can be given in the fre-
quency domain as the generalized correlation function

DAC
s,h1

(τ) = F−1�Ws,h1 (ω)Gs,h1 (ω)
�
. (24)

By definition, the maximum likelihood weighting also for
this method is given by equation (11). Since the other sig-
nal is the true signal without noise the spectral densities
can be written as

Gs,h1 (ω) = A1(ω)Gs,s(ω)e−jωt1 , (25)

Gh1,h1 (ω) = Ga,a(ω)Gs,s(ω) + Gw1,w1 (ω). (26)

Then, the ML weighting for the auto-correlation method is
given as

W ML−AC
s,h1

(ω) =
1""Gs1,h1 (ω)

"" Cs,h1 (ω)�
1 − Cs,h1 (ω)

�
=

A1(ω)
Gw1,w1 (ω)

(27)

where Cs,h1 (ω) is the magnitude squared coherence be-
tween s and h1.
The problem with the AC method is that, a real loud-

speaker emits different impulse responses to different di-
rections. Thus, as a priori knowledge, the AC method re-
quires the impulse response of the loudspeaker to each di-
rection. This can be artificially done using the sparse im-
pulse response technique [67], where a directional loud-
speaker is spanned to all different directions. Then each
emitted impulse response is ideally the same.

5.2. Maximum absolute pressure

Peak detection is a straightforward method for TOA esti-
mation. It is assumed that the arriving sound wave intro-
duces an impulse, a local maximum or minimum, that can
be detected. The maximum argument is then the estimated
TOA

t̂n = argmax
t

�|hn(t)|�. (28)

Windowing or filtering may be applied to the impulse re-
sponse prior to maximization.

5.3. Other methods

The statistical features of impulse response differ when
there is a reflection present in the analysis window [76, 79,
84, 45]. One way of measuring the statistical difference is
the kurtosis [45]. Another option is to detect the peak from
a local absolute pressure ratio between the current abso-
lute pressure and its surroundings [79]. These statistical
approaches are not used in this article.

6. Localization functions

This section presents localization methods from earlier re-
search that are applied in this article for the localization
of reflections. Also three novel localization methods for
reflections are proposed.
For each method, the maximum argument of the local-

ization function P (x) is the location estimate, i.e.

x̂ = argmax
x

�
P (x)

�
. (29)

For notational convenience, a TDOA is denoted by τm(x),
where m = {i, j} = 1 . . .M is a tuple, and M is the
number of microphone pairs. Morever, the TDOA esti-
mates are denoted with τ̂m, and the TDOA estimation func-
tion Rhi,hj (τ) with Rm(τ). In this article, the number of
microphones is N = 6, and the number of microphone
pairs is M = 15. Then, the microphone pairs m from
1 to 15 are {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 3},
{2, 4}, {2, 5}, {2, 6}, {3, 4}, {3, 5}, {3, 6}, {4, 5}, {4, 6},
{5, 6}}.
6.1. Maximum likelihood estimation for time of ar-

rival and time difference of arrival based local-
ization

The MLE function for TDOA is given as the joint proba-
bility density function [6]

PMLE-TDOA(x) =
M�
m=1

p
�
τ̂m; τm(x)

�
(30)

=
exp
� − 1

2

�
τ̂ − τ(x)

�
Σ−1�τ̂ − τ(x)

�T�
(2π)(M)/2

 
det(ΣTDOA)

,

where p(τ̂m; τm(x)) is the normal error probability density
function for a TDOA estimate,

τ̂ =
�
τ̂1, τ̂2, . . . , τ̂M

�
, (31)

τ(x) =
�
τ1(x), τ2(x), . . . , τM (x)

�
, (32)

ΣTDOA = Iσ2
TDOA, (33)

and I is the identity matrix, σTDOA is the error standard
deviation and τm(x) is given by equation (7).

The MLE function for TOAs, assuming normally dis-
tributed errors is given as [6]

PMLE-TOA(x) =
N�
n=1

p(t̂n; tn(x)) (34)

=
exp
� − 1

2

�
t̂ − t(x)

�
Σ−1�t̂ − t(x)

�T�
(2π)(N)/2

 
det(ΣTOA)

, (35)
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where p(t̂n; tn(x)) is the normal error probability density
function for a TDOA estimate,

t̂ =
�
t̂1, t̂2, . . . , t̂M

�
, (36)

t(x) =
�
t1(x), t2(x), . . . , tM (x)

�
, (37)

ΣTOA = Iσ2
TOA, (38)

with σTOA as the error standard deviation and τm(x) is
given by equation (4).
For combining the TOA and TDOA information with

MLE an assumption is made, that the TDOA and TOA
have independent errors. Then, the MLE function for com-
bined measurements (CM) is given as the multiplication of
MLE-TOA and MLE-TDOA functions [12],

PMLE-CM(x) = PMLE-TOA(x, σTOA)
· PMLE-TDOA(x, σTDOA). (39)

If different error variances σ2
TOA and σ2

TDOA are assumed
for TOA and TDOA, respectively, the MLE-TOA and
MLE-TDOA functions have different weightings. In [12],
it is found that σ2

TOA = σ2
TDOA is a reasonable choice.

6.2. Maximum likelihood estimation for the signal
model

Earlier, the maximum likelihood estimation was formu-
lated with respect to TOA and TDOA estimates. It is also
possible to formulate the MLE directly with respect to the
signal and noise models [54]

PMLE-S(x) =
�
ω

p
�
H (ω); x

�
=
�
ω

�

exp
� − 1/2

�
H (ω) −D(ω, x)A(ω)S(ω)

�
Q−1(ω)

�
H (ω) −D(ω, x)A(ω)S(ω)

�
)
�

·


(2π)N/2

 
det(Q(ω))

�−1	
, (40)

where

H (ω) =
�
H1(ω),H2(ω), . . . ,HN (ω)

�T
, (41)

D(ω, x) =
�
e−jωt1(x), e−jωt2(x), . . . e−jωtN (x)�T, (42)

Q(ω) = Iσ2
F . (43)

where σ2
F = Gw,w (ω),∀ω is the expected variance of the

measurement noise w(t).

6.3. Steered response power

A popular family of TDOA-based acoustic source local-
ization functions is the SRP methods. In these methods,
the acoustic source localization likelihood is evaluated as
a spatial combination of cross correlation functions Rm(τ)
for each location candidate, denoted with x [7],

PSRP-TDOA(x) = 1/M
M!
m=1

Rm

�
τm(x)

�
. (44)

The SRP using generalized correlation method with GCC-
PHAT function is commonly referred to as SRP-PHAT
function.

The signals can be similarly steered using TOAs as the
TDOA estimation functions are steered using TDOAs. In
steered beamforming the signals are artificially steered
by delaying them towards a location. The delay-and-sum
beamformer is considered as the most basic case of beam-
forming [85]. When the delay-and-sum beamformer out-
put is squared the output is SRP [10]

PSRP-TOA(x) =
� """1/N N!

n=1

hn
�
t − tn(x)

�"""2 dt. (45)

This function implements MLE-S in equation (40) in time
domain without the noise or signal model. However, if
equation (45) is implemented in the frequency domain,
the TOA information is lost, since SRP-TOA becomes the
same as SRP-TDOA with an additional (constant) energy
term [41, 10].

Since the room impulse responses are already directly
mapped into the TOAs, the time variable becomes t = 0.
The time integral over dt then has no effect on the local-
ization function and equation (45) is written as

PSRP-TOA(x) =
"""1/N N!

n=1

hn
�
tn(x)

�"""2. (46)

The TOA and TDOA information can be both used to
measure the position of a reflection. Intuitively, the next
step is to combine both TOA and TDOA information. The
SRP function, when TDOA and TOA information are both
used, is here proposed to be calculated as

PSRP-CM(x) = (1 −W )PSRP-TOA(x)
+WPSRP-TDOA(x), (47)

where W ∈ (0, 1) is a weighting factor, included in
this function since the steered response is effectively used
twice in SRP-CM. The weight W then emphasizes either
the TDOA functions or TOA functions.

6.4. Pseudo-likelihood

Recently it was shown in [8] and [86] that the use of
multiplication instead of addition is advantageous when
combining the TDOA estimation function. This leads to a
pseudo-likelihood function [41, 8, 86]

PPL-TDOA(x) =
M�
m=1

Rm

�
τm(x)

�
, (48)

where PL stands for pseudo-likelihood. It should be noted
that thresholding and shaping has to be done for the TDOA
estimation functions so that they are non-negative pseudo-
likelihoods [70]. It is straightforward to show that, if the
maximum of each TDOA estimation function Rm(τ) is
modeled with a PDF, PL-TDOA and MLE-TDOA meth-
ods are the same methods.
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Figure 5. Examples of acous-
tic source localization functions
for a grid of (x, y, z)-locations
with z = 1.5m in the case of no
noise. The microphone array at
(0,0,0) m is denoted with a star,
and the reflection at (2,11,1.5) m
is denoted with a circle.

Here it is proposed that the PL function for TOA is
formed by multiplying the individual TOA estimation
functions, i.e.,

PPL-TOA(x) =
N�
n=1

Dn

�
tn(x)

�
. (49)

Thresholding and shaping can be done for the TOA es-
timation functions so that they are non-negative pseudo-
likelihoods. In the most simplest case, the function TOA
estimation function is the absolute maximum of the room
impulse response

PPL-TOA(x) =
N�
n=1

""hn�tn(x)�"". (50)

The analogy between PL-TOA and MLE-TOA is the same
as the analogy between PL-TDOA and MLE-TDOA. If
only one maximum is selected in PL-TOA from the im-
pulse response, and the corresponding TOA is modeled
with a PDF, PL-TOA and MLE-TOA are the same meth-
ods.

The proposed combination of the PL functions is
formed by multiplying the individual PL-TOA and PL-
TDOA functions

PPL-CM(x) = PPL-TOA(x) PPL-TDOA(x). (51)

Again, if the TOA and TDOA estimation functions max-
ima are modeled with PDFs, then PL-CM is equal to the
MLE-CM function.

Note that in PL-CM the weighting of PL-TOA or PL-
TDOA similarly as SRP-TOA and SRP-TDOA in SRP-
CM has no effect, since the weighting will not change the
maximum of PL-CM. However, although the PL-CM can
not be weighted, the logarithmic version of it can be, i.e.,

λPL-CM(x) = (1 −W ) log
�
PPL-TOA(x)/N

�
+W log

�
PPL-TDOA(x)/M

�
, (52)

where W ∈ (0, 1) and the log-pseudo-likelihoods of TOA
and TDOA are normalized withN andM , respectively.

6.5. Examples of the localization maps

Examples of the localization maps with different methods
are provided in Figure 5. The data is a simulated perfect re-
flection with no noise at (2,11,1.5) m, and the microphone
array is located at (0,0,0) m. As can be seen from Fig-
ure 5, the TDOA based methods provide good information
about the direction whereas the TOA based methods seem
to work well in the distance estimation. When the TOA
and TDOA are combined a better localization method is
made. As seen from Figure 5 SRP localization maps have
more “ghosts” than other methods, i.e., local maxima that
do no correspond to the true reflection location.

In this example the simplest method for the search of
the maximum is presented. That is, the maximum can be
found using a predefined grid of locations. However, this
is often not very efficient, therefore some other methods
for the search of the maximum are discussed next.
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6.6. Search of the extremum

Basically any global optimization method can be used
for the search of the extremum. In general, there is no
way of ensuring that the global optimization method will
converge to the global extremum since localization with
spherical wave propagation model is a non-linear problem.
Therefore there is usually a need for Monte-Carlo simu-
lations to validate the optimization method for a certain
problem. Since the literature on the optimization methods
is extensive, only some selected methods used for local-
ization are discussed here.

The most naive and straightforward method for the
search of the maximum is to use a (predefined) grid of
location candidates as in Figure 5. The drawbacks of this
approach is the slowness of the computation when the grid
size is large. Namely, in a 3-D grid of a volume of say a
concert hall, the number of data points is very large, espe-
cially if the spacing between the grid points is small. Thus
the estimation meets the curse of dimensionality. However,
since the evaluation of the ASL function is the same at
each selected time instant for any data point, the process
can be parallelized as in [87]. Using parallel computation
decreases the used time for the evaluation in total, but re-
quires special implementation considerations and special
equipment, such as the general purpose graphic process-
ing unit.

In this article, the well-known Nelder-Mead method is
used to find the extremum in the ASL functions [88]. The
Nelder-Mead method requires a proper initial guess for the
source location.

6.7. Computational complexity of the localization
methods

Although reflection localization within the framework of
this article is always an offline task, some comparison
between the complexity of the methods is provided. The
complexity is compared with the ’Big O notation’, O(·).
For basic beamforming the complexity is built up from

the number of ASL function evaluations E, the length of
the signal L, and the number of the microphones N . For
cross correlation, the complexity of the estimation func-
tion is O(L log{L}) and since all the microphones are
used twice in the calculation of the ASL function the com-
plexity increases by O(N2). [70]

Moreover, the complexity of the TOA estimation with
the simple peak picking method isO(L). For TOA estima-
tion with AC approach the complexity isO(L log{L}), but
that approach is not used here. Since the MLE-S method
calculates the localization function over frequency band,
its complexity is increased by the number of frequencies
used O(F ).
Table II lists the computational complexity of the meth-

ods introduced in this section. The TOA-based methods
have lower computational complexity than the other meth-
ods since the room impulse responses are directly mapped
into the TOAs.
As the number of evaluations increases, the compu-

tational complexity and time of MLE-S increases. This

Table II. Computational complexity of the localization meth-
ods in the reflection localization task. E: Number of localization
function evaluations, L: Length of the signal, N: Number of the
microphones, and F : Number of frequency bins.

Data Method Complexity

TOA MLE-S O(EL log{L}NF )

TOA SRP, PL, & MLE O(NL +NE)

TDOA SRP, PL, & MLE O(N2L log{L} + EN2)

TOA & SRP, PL, & MLE O(NL +NE
TDOA SRP, PL, & MLE +N2L log{L} + EN2)

results was also pointed out by Korhonen for the time-
domain beamformer [70]. However, when the number of
evaluations increases, the computational complexity of the
time domain beamformer presented here (SRP-TOA) does
not increase as rapidly as the computational complexity of
the conventional time-domain beamformer. This is due to
direct mapping of impulse responses to TOAs, which does
not add any computational complexity.

7. Theoretical performance

The positions of the sensors and the source, as well as
the signal and the noise have an effect on the localization
variance. These effects can be theoretically measured with
Cramér-Rao lower bound (CRLB) [26] analysis, which is
given by the inverse of the Fisher Information matrix [26,
Ch. 3]

cov(θ̂) ≥ J(θ)−1. (53)

The Fisher information matrix is defined as the squared
derivative of the log-likelihood of the estimate probability
density function [26, Ch. 3]

J(θ) = E

��
∂λ(χ(θ); χ̂)

∂θ

� �
∂λ(χ(θ); χ̂)

∂θ

�T�
. (54)

The theoretical boundaries given in this section use the as-
sumption that the source signal and noise signals are white
Gaussian noise. This assumption is necessary and required
to make the signal model in equation (3) mathematically
tractable [21, 82].

7.1. Time difference of arrival estimation

The Fisher information for TDOA estimation is given as
[82, 89]

J (τ) =
2T
2π

�∞
0
(ω)2

Ch1,h2 (ω)
1 − Ch1,h2 (ω)

dω (55)

where the magnitude squared coherence is related to the
SNR via [82]

Ch1,h2 (ω)
1 − Ch1,h2 (ω)

=
SNR2(ω)

1 + 2SNR(ω)
, (56)
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where

SNR(ω) =
Ga,a(ω)Gs,s(ω)

Gw,w (ω)
(57)

Setting the power spectral densities flat and assuming

Ga,a(ω)Gs,s(ω) =


Ga,aGs,s

if |ω| ∈ �ωc − B
2 , ωc + B

2

�
0 otherwise

(58)

with center frequencyωc, frequency bandB, and assuming
that the noise spectral densities are equal, i.e. Gw1,w1 (ω) =
Gw2,w2 (ω) = Gw,w (ω), the Fisher information formulates
into [89]

J (τ) =
SNR2

1 + 2SNR
T

π
(Bω2

c + B3/12). (59)

This analysis is valid only for T � 2π/B and for suffi-
ciently large SNR values, for details, see [90, 89].

7.2. Time of arrival estimation

The derivation of CRLB for TOA estimation can be done
by following the steps given for TDOA estimation in [82].
The derivation of the AC function in equation (24) with
ML weighting in equation (27) gives

J (t) =
T

π

�∞
0
(ω)2

Cs,h1 (ω)
1 − Cs,h1 (ω)

dω (60)

with magnitude squared coherence equal to

Cs,h1 (ω)
1 − Cs,h1 (ω)

=
Ga,a(ω)Gs,s(ω)

Gw,w (ω)
= SNR(ω) (61)

With the same assumptions on the frequency band and
noise as with above with TDOA in equation (58), the
Fisher information formulates to

J (t) = SNR
T

π

�
Bω2

c + B3/12
�
. (62)

Since SNR > 0, it can be seen that the CRLB is always
smaller for TOA estimation since the Fisher information
in TOA estimation is higher.

7.3. Localization

The log-likelihood of the localization with respect to sig-
nal model is given by equation (40). The Fisher informa-
tion matrix is formulated as [15, 52, 91]

J(x) = 2�[H(D(ω, x))HQ−1H(D(ω, x))], (63)

where

H(ω,D(x)) =
�
∂A(ω)S(ω)D1(ω, x)

∂x
, . . . ,

. . .
∂A(ω)S(ω)DN (ω, x)

∂x

�
= A(ω)S(ω)

�
∂e−jωt1(x)

∂x
, . . . ,

∂e−jωtN (x)

∂x

�
.

For a single microphone and frequency, the differential
with respect to location x is given by

∂A(ω)S(ω)e−jωtn(x)

∂x
= −A(ω)S(ω)jω∂tn(x)

∂x
e−jωtn(x),(64)

where
∂

∂x
tn(x) = c−1

� x − rn


x − rn

�
. (65)

When assuming independent errors and equal error vari-
ances, the Fisher information matrix can be expressed as

J(x) =
�

2
2π

�∞
ω=0

(ω
A(ω)S(ω)
)2 dω
�

· �HT
TOA

�
t(x)
�
Q−1HTOA

�
t(x)
��

(66)

where a design matrix is given for TOAs as

HTOA(t(x)) =


∂
∂x t1(x)
∂
∂x t2(x)

...
∂
∂x tN (x)

 (67)

Moreover, when constant spectral densities for noise and
signal are assumed on a certain frequency band B and
within some time window of length T , the Fisher infor-
mation formulates into

J(x) = SNR
T

π

�
Bω2

c + B3/12
�

· �HT
TOA(t(x))HTOA(t(x))

�
. (68)

7.4. Time difference of arrival based localization

The probability density function for TDOAs is given in
equation (30). The Fisher information matrix for TDOA is
given by [86, 9]

J(x) = HT
TDOA

�
τ(x)
�
Σ−1
TDOAHTDOA

�
τ(x)
�
, (69)

where

HTDOA(τ(x)) =


∂
∂xτ1(x)
∂
∂xτ2(x)

...
∂
∂xτM (x)

 (70)

is a matrix including the partial derivatives of equation (7),

∂

∂x
τm(x) = c−1

�
x − ri


x − ri

− x − rj


x − rj


�
. (71)

The minimum variance that TDOA estimation can achieve
is given by equation (59). By assuming independent errors
the covariance matrix is given by

Σ−1
TDOA =

1

σ2
TDOA

I = J (τ)I (72)

which then gives:

J(x) = J (τ)HT
TDOA

�
τ(x)
�
HTDOA

�
τ(x)
�

(73)

as the Fisher information matrix for TDOA based localiza-
tion.
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7.5. Time of arrival based localization

The probability density function of the error is given in
equation (34). The calculation of CRLB for TOA proceeds
as previously for TDOAs. The difference is that the partial
derivation in equation (71) for TOAs has the form given
in equation (65). The partial derivatives are re-formulated
into a matrix, which has the form given in equation (67).
The minimum variance of the TOA estimation given in

equation (62). When independent errors are assumed the
covariance matrix is given by

Σ−1
TOA =

1

σ2
TOA

I = J (t)I. (74)

The Fisher information matrix for TOA-based localization
formulates into

J(x) = J (t)HT
TOA

�
t(x)
�
HTOA

�
t(x)
�

(75)

which is identical to equation (68). That is, in theory local-
ization using MLE-TOA, SRP-TOA, or MLE-S function
have the same performance.

7.6. Combination of time difference and time of ar-
rival information based localization

When the errors are independent the inverse of the mini-
mum covariance matrix for the combination of TOA and
TDOA estimates is given as

Σ−1
CM = diag

�
1

σ2
TOA

, . . . ,
1

σ2
TOA

,
1

σ2
TDOA

, . . . ,
1

σ2
TDOA

�
= diag(J (t), . . . , J (t), J (τ), . . . , J (τ)) (76)

where the first values are TOA variances and the rest are
TDOA variances.

For notational convenience, it is of use to define a vector
including both TOA and TDOA values
χ = [χ1, χ2, ...χN+M ] = [t1, t2, . . . , tN , τ1, τ2, . . . , τM ].
That is, the first six values of the vector are TOAs and the
rest TDOAs. Then the combined design matrix is given as
[68]

HCM(χ(x)) =


∂
∂xχ1(x)
∂
∂xχ2(x)

...
∂
∂xχN+M (x)

 =



∂
∂x t1(x)
∂
∂x t2(x)

...
∂
∂x tN (x)
∂
∂xτ1(x)
∂
∂xτ2(x)

...
∂
∂xτM (x)


(77)

The Fisher information matrix is then given by

J(x) = HT
CM

�
χ(x)

�
Σ−1
CMHCM

�
χ(x)

�
. (78)
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7.7. Theoretical experiments

7.7.1. Comparison of the performance of the localiza-
tion methods

In this theoretical comparison, the frequency and the
temporal parameters are fixed to ωc/(2π) = 12 kHz,
B/(2π) = 24 kHz, T = .004 s. This corresponds to a situ-
ation where full bandwidth at 48 kHz sampling frequency
and 4ms time window is used in the analysis. The idea is to
compare the localization methods in the same conditions.
Figure 6 presents the CLRB for TOA and TDOA against

SNR, calculated using equationsd (62) and (59), respec-
tively. In addition, CRLB for TDOA that is calculated as
the difference of two TOA estimates is presented. TOA es-
timation has smaller CLRB than TDOA estimation. The
CRLB of the traditional TDOA estimation approaches the
CRLB of the TDOA estimation which is calculated as the
difference of two TOAs, as expected from their equations.
In Figure 7, CRLB for TOA, TDOA, and CM, calcu-

lated with equations (75), (73) and (78), respectively, are
shown with parameters at location (10.5, 8.2, 2) m. As
shown in equation (75) and (68) the TOA-based localiza-
tion and direct localization have the same CRLB. This is
noted in Figure 7 with TOA/SM. The microphone array
has the same geometry as the one given in Figure 4 with
dspc = 100mm and is located at (0,0,0) m. As mentioned
the CRLB for signal model is the same as CRLB for TOA.
Clearly, CM has the smallest CRLB and TOA the second
smallest. Interestingly, around -25 dB, TOA and CM have
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the same performance. This is caused by the increment in
the variance of TDOA estimation shown in Figure 6.

7.7.2. Cramér-Rao lower bound versus noise level, dis-
tance, and loudspeaker direction

As shown earlier, the CLRB is affected by the SNR. Here
the effect of noise level, distance, and the power response
of the loudspeaker are studied for a perfectly specular re-
flection with absorption coefficient of 0 for all frequencies.
Here, only the performance of MLE-TOA is considered.
The microphone array is located at (0,0,0) m and the re-
flection is at (d, 0, 0) m from the microphone array where d
is the distance. Thus, the reflection in the direction of nor-
mal incidence of a surface at the distance of d/2 is stud-
ied. Air absorption filtering is implemented with a finite
impulse response filter with 96 coefficients according to
the specifications given in [92]. The sound pressure is set
to 1 at 1 meter distance from the center of the microphone
array. Moreover, attenuation according to the 1/r-law is
assumed. Then, the signal-to-noise ratio is given as

SNR(ω) =
Gs,s(ω, θs)
Aa(ω)
2/d2

Gw,w (ω)
, (79)

where Aa(ω) is the air absorption filter and Gs,s(ω, θs) is
the loudspeaker energy response (spectral density) at the
direction θs. In this example a popular loudspeaker, Gen-
elec 1029A, is studied. The energy response of it is shown
in Figure 8. The measurements were taken at every 10 de-
grees in azimuth angle. When the loudspeaker is facing
the measuring microphone the azimuth angle is θs = 0. As
previously, the sampling frequency is set to 48 kHz, and
the time interval to T = 4ms.

The results of the experiment are shown for eight octave
bands and for the full band from 0 to 24 kHz in Figure 9a–
c. For (a) and (b) the loudspeaker is directly facing the
surface, for (b) and (c) the distance is 5m from the loud-
speaker to the reflection, and for (a) and (c) the noise level
is −60 dB.
It is evident from Figures 9a–b that as the noise level

and distance increase the performance decreases. Since the
noise level and the distance directly affect the SNR the re-
sult is expected. Moreover, it is noticed that as the center
frequency of the octave band increases the performance
increases. This increment is caused by the widening of the
frequency band, i.e., as the center frequency doubles the
frequency band also doubles. The only exception in this
behavior is the 16 kHz octave band, and the full band (0–
24 kHz). At those frequency bands the average signal en-
ergy is lower on average than at 8 kHz octave band, there-
fore also the performance is weaker. Thus, as shown in
equation (60), the Fisher information is integrated over a
frequency band; the more the SNR and the wider the fre-
quency band, the better the performance.
As shown in Figure 9c the lack of energy at the direc-

tions θs ∈ (−180,−50)∪ (50, 180), i.e., the back and sides
of the loudspeaker, at 1, 2, 4, 8, and 16 kHz octave bands
results in the decrement in the performance when com-
pared to the performance at θs = 0 direction.
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Figure 8. Energy response of Genelec 1029A measured in octave
bands at every 10 degrees on the horizontal plane. Linear 2-D
interpolation is used for the data in the visualization.

125 Hz

250 Hz

500 Hz

1 kHz

2 kHz

4 kHz

8 kHz

16 kHz

0 - 24 kHz

5 10 15 20 25 30
-6

-4

-2

0

2

4

lo
g

Distance [m]

1
0
(t
ra

ce
C
L
R

B
(x

)
)[

lo
g

1
0

m
2
]

(a)

(b)

-80 -70 -60 -50 -40 -30 -20 -10 0
-6

-4

-2

0

2

4

6

8

Noise level [dB]

lo
g

1
0
(t
ra

ce
C
L
R

B
(x

)
)[

lo
g

1
0

m
2
]

(c)

-150 -100 -50 0 50 100 150
-3

-2

-1

0

1

2

Azimuth [degrees]

lo
g
1
0
(t
ra

ce
C
L
R

B
(x

)
)[

lo
g

1
0

m
2
]

Figure 9. Cramer-Rao lower bound versus (a) distance, (b) noise
level, and (c) the direction of the loudspeaker with respect to the
normal of the surface. The loudspeaker used in this experiment is
Genelec 1029A. As the distance and noise level increase the per-
formance decreases. In addition, when the loudspeaker is directly
facing the surface, best performance is achived.
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8. Experiments

Simulation and real data experiments are conducted to
study the performance of TOA, TDOA, and CM-based lo-
calization methods. The CRLB for each estimation task is
also presented.

8.1. Error metrics

The performance of the methods is measured here with
mean squared error (MSE)

MSE(θ̂) = E
�
θ̂ − θ
2�. (80)

The other used error metric is the anomaly percentage,
which is defined as the ratio between anomalous estimates
and total number of estimates, i.e,

AN(θ̂) = E
�
1
�
θ̂ − θ
 > ε

��
(81)

where 1{·} = 1 if the condition is true and 0 otherwise.

8.2. Monte-Carlo simulations

The reflection signal model applied in the following Mon-
te-Carlo simulations is of exponential form

sn(t|tn(x), σ2) = e−(t−tn(x))
2/σ2 . (82)

Throughout the simulations the ’variance’ parameter of the
reflection signal is set to σ = 2/fs, where fs = 10, 000 Hz
is the sampling frequency. The TOA tn(x) is calculated as-
suming the spherical wave propagation model. The analy-
sis window length in all the simulations is set to T = 4ms.
For simplicity, the attenuation factor is set to A(ω) =
1,∀ω in the simulations.
Since the assumed reflection signal is exponential, the

exponential fitting for the TDOA and TOA estimates [24]
and for TDOA and TOA estimation functions [25] are ap-
plied. As an example, in the case of no noise, the direct
cross correlation of two exponential functions is an expo-
nential function. This result is well known for the example
with normal distributions.

8.3. Time difference of arrival estimation

Time difference of arrival estimation methods, introduced
in Section 4 are compared against signal-to-noise-ratio.
The TDOAs are randomized from a uniform distribution
between -1 and 1ms, i.e. U (−1, 1) ms.
The results of 10,000 Monte-Carlo samples are pre-

sented in Figure 10. As expected, the MLE is the most
robust against noise having the smallest number of anoma-
lous estimates. ASDF has the smallest number of anoma-
lous estimates when SNR < 20 dB, but this is due to its
limitations in the TDOA estimation. That is, the maximum
TDOA error with ASDF is half of that of the other meth-
ods.
The most accurate method is MLE when SNR <60 dB.

When 60 dB < SNR <80 dB CC and ASDF, are the most
accurate and when SNR >80 dB, ASDF is the most accu-
rate.
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Figure 10. Results for TDOA estimation against signal to noise
ratio. (a) Variance, (b) Anomaly.

As shown in Figure 10, ASDF and GCC-CC achieve
CRLBwhen 25 dB< SNR< 75 dB.Moreover, GCC-MLE
is lower than the CLRB when 15 dB < SNR < 55 dB.
This result indicates that the GCC-MLE TDOA estima-
tion is biased. The bias is a result of the exponential fitting.
With very high SNR values the CRLB does not predict the
MSE of the methods. This behavior was also noticed in
[20]. The reason for this behavior is the truncated window
size [20]. The two different windows include two differ-
ent peaks that have different samples [20]. True zero delay
value can therefore only be achieved with auto-correlation
and zero noise level.
Direct cross correlation (CC) is the most reasonable

selection for TDOA estimation for reflection localization
since it does not require a priori information about the
noise as MLE. Moreover, CC performs well when com-
pared to the other methods and in addition the calculation
of it is straightforward and computationally light. For these
reasons CC is used as the TDOA estimation method in the
following experiments.

8.4. Time of arrival estimation

Time of arrival estimation methods, introduced in Section
5 are tested against signal-to-noise-ratio. The TOAs are
randomized from a uniform distribution between −1 and
1ms, i.e. U (−1, 1) ms.
The results of 10,000 Monte-Carlo samples are pre-

sented in Figure 11. The simple peak picking method
is noted with argmax{h(t)} in the results of Figure 11.
ASDF and CC are the most accurate methods for the
TOA estimation. MLE is the most robust against noise,
but loses accuracy, due to the fact that the exponential fit
does not describe the MLE function shape. The peak pick-
ing method, that does not require any a priori knowledge,
performs in general better than PHAT and has smaller vari-
ance than MLE when SNR > 20 dB. As in TDOA estima-
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Figure 11. Results for TOA estimation against signal to noise
ratio. (a) Variance, (b) Anomaly.

tion, also here the maximum TOA errors for ASDF are
half the of the maximum error of the other methods.

As shown in Figure 11, ASDF and AC-CC achieve
CRLB when 15 dB < SNR < 75 dB. When SNR < 15 dB,
the estimation is saturated as the large number of anoma-
lies suggests. As with the TDOA estimation, also here the
MSE of the methods does not achieve CRLB with very
high SNR values. The explanation for this behavior is the
same as earlier for TDOA estimation.
The TOA estimation with GCC-MLE is not realistic

since it would require the knowledge of both source and
noise signals. Since the peak picking method is the only
blind method, i.e. it does not require the knowledge on
the source or noise signal, and has a performance that is
comparable to the other methods, it is the most reasonable
choice in the general case for the estimation of TOAs. For
these reasons, it is used as the TOA estimation method in
the following experiments.

8.5. Localization

The reflection location is drawn 1,000 times from a 3-D
uniform distribution between −20 and 20m, i.e.

x ∼ U (−20, 20) m, y ∼ U (−20, 20) m,
z ∼ U (−20, 20) m.

The microphone array is set to the origin (0,0,0) and the re-
flection signal is windowed with 4ms time window around
the TOA between the reflection location and the origin.
Nine different localization methods are tested. In detail,

SRP, MLE, and PL with TOA, TDOA, and CM data are
used for localization of reflections. The formulation for the
methods is given in section 5. Direct cross correlation and
direct peak picking methods with exponential fitting pro-
vided in sections 3 and 4 are used for TDOA and TOA es-
timation, respectively. Since MLE-S will lead to the same
localization result as SRP-TDOA, as shown in [10], it is
not tested here.
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Figure 12. Optimization results against weighting parameter κ
with signal-to-noise ratio of 60 dB and with 1,000 Monte-Carlo
Samples for each SNR condition.

The reflection signal model is the one presented in equa-
tion (82). The location is searched from the localization
function using the Nelder-Mead simplex method imple-
mented in MATLAB function fminsearch. The initial lo-
cation value for the optimization method is set to the vicin-
ity of the true location.

8.5.1. Optimization of the parameters

The weighting parameters for the combined methods are
optimized. The question is, which weight produces the
best result for each method? For MLE the weighting factor
κ is defined as the relation between the TOA and TDOA
variance, as

κ =
σTDOA
σTOA

(83)

This selection sets the following limitations [12]:

lim
κ→∞

PMLE-CM(x) = PMLE-TOA(x), (84)

lim
κ→0

PMLE-CM(x) = PMLE-TDOA(x). (85)

For PL-CM and SRP-CM the weighting is limited to 0 <
W < 1. This gives the following obvious limits for SRP-
CM function

lim
W→0

PSRP-CM(x) = PSRP-TOA(x), (86)

lim
W→1

PSRP-CM(x) = PSRP-TDOA(x). (87)

and for PL-CM

lim
W→0

λPL-CM(x) = log{PPL-TOA(x)/N}, (88)

lim
W→1

λPL-CM(x) = log{PPL-TDOA(x)/M}. (89)

The weight factor κ is given the values according to
log10{κ} = −10, . . . , 10. For MLE-CM the variance of
the TOA error is set to σ2

TOA = 1, and the variance of the
TDOA error is altered as σTDOA = κσTOA. The weight for
SRP-CM and PL-CM is W ∈ (0, 1), and it is calculated
through κ asW = 1/(10κ + 1).
The results of this experiment are shown in Figure 12.

All the combined methods achieve equally good perfor-
mance with some weighting.
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e) BSE, CM methods f) Anomalies, CM methods Figure 13. Results for localization against sig-
nal-to-noise ratio (SNR) from 1,000 Monte-
Carlo samples. MSE and percentage of ano-
malies are presented for TOA-based methods
in a) and b), for TDOA-based methods in c)
and d), and for CM in e) and f). In each sub-
figure the CRLB for TOA, TDOA, and CM is
presented. In overall, the CMmethods have the
best performance.

As shown in Figure 12, the optimal weight for SRP-
CM is W ∈ (1/(10−6 + 1), 1/(10−1.2 + 1)), for PL-CM
W ∈ (1/(10−7 + 1), 1/(10−1.4 + 1)), and for MLE-CM
log10{κ} ∈ (−3.4,−0.2). A reasonable choice for MLE-
CM weighting factor is log10(κ) = −2 since it is close to
the middle region of the optimal values. For MLE-CM this
means that TOA variance is about 100 times the TDOA
variance. As shown in Figure 12, for SRP-CM, and PL-
CM the value W = 1/(10−2 + 1) = 0.99 for the weight
is a reasonable choice. This means that SRP-TOA has a
weightW = .01. and the SRP-TDOA has the weightW =
0.99. The same applies for PL-TOA and PL-TDOA in the
PL-CM method. These optimized values are used in the
following experiments.

8.5.2. Simulation results for localization methods

Results from simulations with the localization methods
are presented in Figure 13a–f. As can be seen from Fig-
ure 13, and as expected from the theoretical point of
view, the CM-based methods have smaller MSE than
TOA or TDOA-based methods. In overall, MLE-CM has
the smallest and SRP-CM the highest MSE, out of the
combined data methods. At 15 dB MLE-CM has smaller
MSE than SRP-CM or PL-CM. TOA based methods have
clearly smaller MSE than TDOA based methods. MLE-
TOA has the smallest MSE and SRP-TOA the highest out
of the TOA-based methods. As shown in Figure 13, the
methods achieve CRLB for TOA but not the CRLB for
CM. As with TOA and TDOA estimation, the CRLB is
best achieved when 15 dB < SNR < 75 dB.

8.5.3. Discussion

The reason why, for example, MLE-CM performs better
than MLE-TOA or MLE-TDOA in the experiments is that
the TOA and TDOA errors do not correlate with the se-
lected TOA and TDOA estimation methods. Then com-
bining these two pieces information, TOA and TDOA es-
timates, increases the overall information. If the selected
TOA estimation method would be AC-CC, ASDF, or AC-
MLE, MLE-TOA would also achieve the CLRB for lo-
calization with TOA. The aforementioned TOA estimation
methods require knowledge of the source and noise signal.
If these pieces of information are available, then it is bene-
ficial to use MLE-TOAwith AC-CC, since it is the compu-
tationally most efficient method and achieves the CRLB.
As mentioned, this article focuses on the blind estimation
methods, where it is assumed that the source and the noise
signals are unknown.

If MLE-CMwould be used with AC-CC and, say, GCC-
CC, the performance would be the same as with MLE-
TOA with AC-CC. This is due to the fact that the errors of
AC-CC and GCC-CC estimations correlate highly. There-
fore, the theoretical CRLB for CM can never be achieved
in practical situations with the current setup, unless the
measurement for TOA estimation and TDOA estimation is
done separately. The maximum Fisher information avail-
able in six microphones is already used in theory in CRLB
for localization with TOA. Nevertheless, the theoretical
CRLB for CM is a useful tool for investigating the perfor-
mance when the TOA and TDOA errors do not correlate.
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8.6. Real data experiments

Real data experiments were conducted in two different en-
closures, a class room, and an auditorium to study the per-
formance in real conditions. The methods that are solely
based on TDOA data are not tested here due to their poor
performance in the simulations.

8.6.1. Test setups

The first experiment was conducted in a shoebox-shaped
class room (7.09m×9.35m×3.76m) stripped of chairs
and tables. A skeleton model of the room is shown in Fig-
ure 14. As illustrated in Figure 14, there was a closet on
the west wall (WW), an extrusion, a window, and a door
on the south wall (SW), and a whiteboard and a door on
the east wall (EW). The walls of the room are of painted
sheet rock and the floor (FL) is concrete covered with a
plastic mat. These materials have a reasonably low absorp-
tion coefficient and it is expected that they produce clearly
identifiable reflections to the impulse responses. However,
lamps, ventilation, and other equipment typical for a mod-
ern class room are hanging from the ceiling (CE), which
reduce the number of localizable reflections from the ceil-
ing.
The loudspeaker was located in the back and the mi-

crophone array in front of the room. The experiment was
repeated four times with different locations for the loud-
speaker and the microphone array. The microphone ar-
ray was the G.R.A.S microphone array, introduced in sec-
tion 2.2, with dspc = 100mm spacing. Moreover, to have
different conditions for the reflections, the loudspeaker
was rotated around its z-axis between every 10 degrees
from 0 to 360 degrees. The height of the loudspeaker and
array was from 1m to 1.5m. For each different condition
(36 × 2 × 2) six reflections and the direct sound are local-
ized leading to a total of 1008 location estimates for each
of the localization methods.

The second experiment is done in an auditorium. The
floor plan of the auditorium is shown in Figure 15. The
auditorium has a volume of 1800m3, with an inclination
of about 10◦ in the audience area. The loudspeakers were
located in 4 different positions at 1.5m height. The micro-
phone array used in this experiment was a custom made
microphone array (TKK-3D, see [93] for details), with 6
electret microphones. The same dimensions, i.e., geomet-
rical setup was used for this array as for the G.R.A.S array.
The microphone array, was located every 20 cm in 45 dif-
ferent positions, as shown in Figure 15.

Four reflections, two side wall reflections, one floor, and
one ceiling reflection, are localized from the data mea-
sured in the auditorium. These surfaces can be considered
to be reasonably flat and rigid. The floor is made of con-
crete and is covered with hard-wood, the ceiling is painted
concrete and the walls are wood material, which has circu-
lar holes of size 5mm between every 2 cm. The ceiling of
the auditorium is flat at the stage area. In the audience area
the ceiling is made of reflectors that are about 2m by 13m
in area that are in a saw-waveform-shaped arrangement.

3760mm

7090mm

9350mm

Microphone array

Genelec 1029A

9050mm

Figure 14. Experimental setup in the class room.

Figure 15. Experimental setup in the auditorium.
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Figure 16. Time domain impulse response of Genelec 1029A at
5m in front of the loudspeaker. A typical impulse response of
Genelec 1029A has two peaks.

For each condition (4 × 45), the direct sound and four re-
flections are localized leading to 900 estimations for each
method.

In all the experiments, the impulse responses were mea-
sured with the sine-sweep technique from 40 Hz to 24 kHz
at 48 kHz [94]. Moreover, the loudspeaker used in all the
experiments was of type Genelec 1029A. Some parame-
ters describing the experimental setups in more detail are
shown in Table III. The speed of sound was estimated in
both experiments based on temperature and humidity and
the analysis window size was set to T = 1.3ms.

8.6.2. Compensation of the loudspeaker impulse re-
sponse

An impulse response of the loudspeaker used in the ex-
periments, Genelec 1029A, measured directly in front of
the loudspeaker at 5m, is shown in Figure 16. This two-
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Table III. Conditions, parameters, and some quantities used in
different experimental setups. The reverberation time is calcu-
lated for wide band from 500Hz to 24 kHz. Gen.: Genelec.

Parameter Classroom Auditorium

Speed of sound c [m/s] 345.2 344.6
Volume [m3] 250 1800
Analysis window size [ms] 1.3 1.3
Sampling frequency [kHz] 48 48
Microphone array G.R.A.S TKK-3D
Loudspeaker Gen. 1029A Gen. 1029A
No. of measurements 144 180
No. of localized reflections 1008 900
Reverberation time [s] 1.4 1.2

peaked impulse response is typical for the loudspeaker
used in the experiments and the shape of the impulse
response stays similar to directions ±50 degrees from
the center plane of the loudspeaker. The two peaked im-
pulse response of Genelec 1029A is caused by two issues.
Firstly, the loudspeaker consists of two elements that are
separated by approximately 10 cm. This causes some dif-
ferences in the delays for low and high frequencies, de-
pending on the direction of the loudspeaker with respect
to the microphone. Secondly, the low-frequency-element
of the loudspeaker has a higher mass, and it does not re-
spond to the voltage changes in the coil as quickly as the
tweeter, thus causing the low frequencies to be delayed.
Due to the two-peaked impulse responses, the reflections
do not introduce sharp peaks in the localization function,
and the intersection of the spheres is “blurred”.

The fact that the impulse response consists of more than
one peak, makes localization using this particular loud-
speaker difficult, since in additive noise either of the peaks
might be the absolute maximum. Therefore, the shape of
the impulse response is compensated for. The compensa-
tion is done by deconvolving the measured room impulse
response with the loudspeaker impulse response measured
in front of the loudspeaker. This is an intermediate com-
pensation for the loudspeaker impulse response. With this
approach at least the reflections that are in the most promi-
nent direction of the loudspeaker should be more identi-
fiable. The compensation of the loudspeaker impulse re-
sponse to all directions would require the knowledge of the
orientation of the loudspeaker and the directions of each
arriving sound wave. If this can be done, then one can use
the MLE-TOA with AC-CC, ASDF, or AC-MLE TOA es-
timation methods, for localizing the reflections, since they
take into account the impulse response of the source.

8.6.3. Results

The results of the experiments are shown in Table IV and
in Table V. Two figures are presented in the results, the
number of non-anomalous estimates (K) and the root of
the mean squared error (RMSE) of non-anomalous esti-
mates.
In the class room experiment, the reflections from the

floor, which produces shortest paths from the loudspeaker

to the microphone array and has a low absorption coeffi-
cient, is the easiest to localize. Other walls have similar
absorption coefficients and they are on average at approx-
imately equal distance from the array. Therefore the lo-
calization of the reflections from them has similar perfor-
mance. The pieces of equipment hanging from the ceiling
make the localization of the reflections from it more diffi-
cult than other surfaces in the enclosure.
In the auditorium experiment, the reflections from the

closest surface, the north wall are the easiest to localize.
Although the south wall is made of same material as north
wall, the reflections from it are more difficult to localize
since the path length via it is longer than that of the north
wall. The reason why the floor of the auditorium is more
difficult to localize than the walls is that the chairs of the
audience area obstructing parts of the direct path from the
floor reflection to the microphones. The localization of the
reflections from the ceiling is made difficult by the reflec-
tors that might diffract some parts of the sound, and there-
fore obstruct a direct reflection from the ceiling.

As can be seen from the results, in favorable conditions,
i.e., for the direct sound and the for the first reflections PL-
CM and PL-TOA have the most non-anomalous estimates
and are the most accurate. That is, they are the most robust
methods in good conditions. However, SRP-CM performs
the best in overall in both of the experiments. PL-CM does
not have the same advantage over PL-TOA as SRP-CM
has over SRP-TOA. This can be explained with the dif-
ferences between PL-CM and SRP-CM. PL-CM, even if
only one TOA or TDOA estimation function fails, i.e. pro-
duces likelihood that is close to 0 to the true location, the
whole estimation fails. In SRP-CM, this kind of failure in
the TOA or TDOA estimation functions does not corrupt
the whole localization function. In other words, SRP-CM
is more robust against the individual errors in the TOA or
TDOA estimation than PL-CM.

MLE-TOA and MLE-CM have the worst performance
in the real experiments in overall. These methods only use
the maximum of the TOA and TDOA estimation functions
for localization. Since the other methods use the whole
TOA and TDOA estimation functions for localization, it
seems that they also include some additional informa-
tion. Moreover, since only the maximum is selected in the
MLE-TOA andMLE-TDOA from the TOA and TDOA es-
timation functions it is possible that the wrong maximum
is selected.

8.6.4. Discussion
One probable reason for the errors in the localization with
all the methods is the fact that there are other acoustic phe-
nomena, e.g., diffraction from the chairs in the auditorium,
disturbing the localization.

The case where there are more than one reflection
present within one analysis window was not studied in this
article. The situation where the reflections arrive during
the same analysis window occurs for example when the
microphone array and the loudspeaker are placed on the
center longitudinal section of the room. Since the micro-
phones of the microphone array are in spatially different
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Table IV. Results from the class room experiments. K is the number of estimates that have RMSE < 1m. SRP-CM performs the best
in overall. DS: Direct sound, FL: Floor reflection, SW: South wall reflection, EW: East wall reflection, WW: West wall reflection, NW:
North wall reflection, CE: Ceiling reflection.

Measure DS FL SW EW WW NW CE Total

PL-TOA
K 142 128 72 64 64 56 28 554

RMSE [m] 0.06 0.07 0.11 0.08 0.15 0.14 0.43 0.11

PL-CM
K 142 128 72 64 64 56 28 554

RMSE [m] 0.06 0.07 0.11 0.08 0.15 0.14 0.42 0.11

SRP-TOA
K 142 128 72 63 66 57 31 559

RMSE [m] 0.06 0.06 0.12 0.07 0.17 0.17 0.40 0.11

SRP-CM
K 143 128 72 63 66 58 34 564

RMSE [m] 0.06 0.06 0.12 0.07 0.17 0.16 0.40 0.11

MLE-TOA
K 144 125 82 62 60 53 22 548

RMSE [m] 0.07 0.05 0.16 0.08 0.13 0.14 0.57 0.11

MLE-CM
K 144 125 82 62 60 53 22 548

RMSE [m] 0.07 0.05 0.16 0.08 0.13 0.14 0.57 0.11

Table V. Results from the auditorium experiments. K is the number of estimates that have RMSE < 1m. SRP-CM performs the best in
overall. DS: Direct sound, FL: Floor reflection, SW: South wall reflection, NW: North wall reflection, CE: Ceiling reflection.

Measure DS NW SW FL CE Total

PL-TOA
K 180 177 125 90 58 630

RMSE [m] 0.19 0.33 0.48 0.35 0.47 0.34

PL-CM
K 180 176 125 91 57 629

RMSE [m] 0.19 0.33 0.48 0.35 0.46 0.34

SRP-TOA
K 180 172 130 91 60 633

RMSE [m] 0.19 0.32 0.48 0.36 0.42 0.33

SRP-CM
K 180 171 132 98 68 649

RMSE [m] 0.19 0.32 0.49 0.38 0.42 0.34

MLE-TOA
K 180 168 117 85 33 583

RMSE [m] 0.19 0.33 0.46 0.36 0.40 0.32

MLE-CM
K 180 168 117 85 33 583

RMSE [m] 0.19 0.33 0.46 0.36 0.40 0.32

locations the different reflections arrive to them at different
time. In theory and practice, the localization of two reflec-
tions that arrive within the same analysis window is the
same problem as the multi-source localization problem.
Some of the methods used for multi-source localization
problem, e.g. the one presented in [95], are applicable also
for the multi-reflection localization problem. The MLE
method presented in this article can not be directly applied
for the multi-reflection localization problem. However, the
SRP and PL methods are directly applicable. Therefore in
the future work the PL and SRP methods are preferred.
Since the SRP-CM adds the squared impulse responses

and TDOA estimation functions it is possible that the true
reflection location gets less evidence than a “ghost” or a
competing reflection. This behavior is recognized in the
speech source localization [8]. However, the problem was
not present in the experiments of this paper.
One reason for the anomalous estimates with all the

methods is that the arriving sound wave from the direc-
tion of the reflection is not as “impulse-like” as the sound

wave in front of the loudspeaker. Thus, the magnitude of
the emitted sound wave in the direction of the reflections
is lower, and does not contain as much high frequency en-
ergy as the impulse in front of the loudspeaker.

One possibility to get around the problems related to
the loudspeaker non-idealities is to use only the phase in-
formation of the signal. However, this decreases the SNR
in the frequencies that have a low magnitude and as a re-
sult decreases the performance, as seen in the simulations
with PHAT which uses only the phase information.

Another possibility to obtain more accurate TOA infor-
mation is to measure the impulse response of the loud-
speaker to a grid of directions in free-field conditions.
Then the impulse response of the loudspeaker can be com-
pensated for in the room impulse response by deconvolv-
ing the reflection with the corresponding direction free-
field impulse response. This however would require a large
data set of a priori measurements of the loudspeaker and
the knowledge of the locations of the reflections.
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As mentioned, TOA estimation can be also improved by
applying the sparse impulse response technique presented
in [67]. The higher the directivity of the loudspeaker is, the
better the TOA estimation can be achieved with the sparse
impulse response technique.

Summarizing the above notes on the loudspeaker direc-
tionality and impulse responses, there is a requirement for
a loudspeaker or a sound source that can produce close to
perfect dirac impulses. Preferably, the loudspeaker should
also be perfectly omni-directional or then have a infinitely
narrow directivity.

9. Conclusions

Localization of reflections is a pre-task for example in es-
timation of the geometry of the enclosure or the acoustic
properties of the reflective surfaces. This paper presented
a framework for localizing reflections and several methods
were compared with theoretical, simulation, and real data
experiments.

Three different localization functions for TDOA, and
TOA were studied. In addition, it was proposed that by
combining both TDOA and TOA information a better lo-
calization result can be achieved. For the proposed com-
bination also three localization functions were tested. This
leads to a total of nine different localization functions.

It was shown by theoretical developments that it is ad-
vantageous to use both TOA and TDOA information to
localize the reflection. Simulations also verified this find-
ing. Moreover, out of the three localization methods, MLE,
SRP, and PL, the MLEmethod that combines the TOA and
TDOA information were found to achieve the best perfor-
mance. The TDOA-based methods had the worst perfor-
mance in the simulations.
Real data experiments included localization of reflec-

tions in two enclosures. The real data experiments verify
the observations of the theoretical development and simu-
lation results. When the TOA and TDOA information are
combined, the best performance is achieved. Out of the
methods that combine TOA and TDOA information, the
worst performance in the real situations was with the MLE
method. This was found to be due to the fact that in the
MLE methods only the maximum of the TOA and TDOA
estimation functions are used, whereas in other methods
the whole estimation functions are considered. The best
performance was with the SRP method that combine the
TOA and TDOA information.
In some applications, computational efficiency might

be a more important aspect than robustness against noise.
Then the use SRP-TOA is recommended since it is com-
putationally lighter than SRP-CM, and the performance of
it is only slightly worse than that of SRP-CM.
Future work includes integrating the localization meth-

ods with the sparse impulse response measurement tech-
nique [67] to estimate the locations of the reflective sur-
faces. In addition, the estimation of the absorption coeffi-
cient using the introduced methodology and the localiza-

tion of the reflective surfaces in all kind of rooms is left as
the future work.
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