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Reflections at rough surfaces change the temporal structure of the reflected signal. This paper shows

how to incorporate this temporal behavior in geometric room acoustics modeling. Specifically, a

beam tracer is used for calculating the image sources and reflection paths. The roughness of the

surfaces is taken into account in post-processing. A single reflection is assumed to distribute the

energy according to an exponential function in time based on Biot’s rough surface modeling theory.

Multiple reflections are modeled with convolutions of exponential functions which are approxi-

mated as gamma functions. VC 2012 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4711013]
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I. INTRODUCTION

Specular reflections are widely used in room acoustic

modeling algorithms to model the interaction of sound waves

and room surfaces. The assumption of specular reflections is

valid when the surfaces are smooth. However, in reality,

room surfaces are often rough. Thus, the reflected sound is

spread, not only spatially, but also in time. Such reflections

are incoherent, since the phase and temporal envelope are not

preserved at the reflection. Lokki et al. (2011) have shown

that there is a significant perceptual difference between

coherent (specular) reflections and incoherent reflections.

In geometric room acoustics modeling, scattering from

rough surfaces is often modeled by using a random-incident

scattering coefficient (see definition in Vorländer and Mom-

mertz, 2000 or Cox et al., 2006). Sound energy is sent in

other than specular direction in the proportion determined by

that coefficient (see, i.e., Dalenbäck, 1996). While this

approach might be sufficient for modeling the spatial spread-

ing of sound, it is insufficient for modeling the temporal

spreading. Reflection via a single rough surface produces

single peak in a response. The rough surface must be divided

into several pieces to yield multiple peaks or a temporally

spread response. This, in most cases, violates the assumption

of geometric acoustics that the modeled wavelength must be

much less than the dimensions of the details.

It is possible to model the incoherent reflections by

using a digital filtering approach as in Huopaniemi et al.
(1997) and design a frequency-dependent filter for each

material (see, e.g., Savioja et al., 1999). However, there is

no obvious way to combine the effects of several sequential

reflections because it requires either applying filters multiple

times per reflection path or designing separate filters for

each combination of materials.

This paper presents one way to introduce incoherent

reflections in a beam tracer algorithm. It is assumed that

ka� 1, where a is a typical dimension of the roughness and

k is the wave number. The presented technique allows using

large surfaces in the modeling as assumed in geometric

acoustics. It also provides a simple formulation for the time

spreading behavior of rough surfaces that makes it easy to

combine multiple reflections.

A. Previous work

In areas other than room acoustics, there are several

approaches to modeling reflections from rough surfaces,

each of which makes different assumptions. Rayleigh (1945)

modeled corrugated surfaces with a periodic sinusoidal func-

tion. Perturbation techniques model the roughness as pertur-

bations of a smooth plane and require that the height

deviations are small compared to the modeled wavelength,

and that the gradient is small (see, e.g., Gilbert and Knopoff,

1960). The Kirchhoff approximation assumes that the sur-

face is sufficiently smooth so that there is no self-shadowing

and a reflection from a point can be approximated with a

reflection from its tangent plane (see, e.g., Eckart, 1953).

Basically, this means that the surface gradient must not

change too rapidly. An interested reader is advised to refer

to Ogilvy (1987) for more information.

In their basic forms, neither perturbation technique nor

Kirchhoff approximation take into account shadowing or

multiple scattering by different parts of the rough surface,

which is often the case in room acoustics. Thus, in this

paper, a model suggested by Twersky (1957) is chosen since

it accounts for these phenomena. This model is applicable to

all frequencies and it is in agreement with measurement data

as shown by Chu and Stanton (1990), although it is sensitive

to the surface parameters used.

The model was further developed by Biot (1957, 1958,

1968) and Tolstoy (1979, 1981, 1984). With the assump-

tion that the roughness dimensions are much smaller than

the modeled wavelength, the theory allows replacing the

roughness with a simple linear boundary condition for the

wave equation
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@2/
@x2
þ @

2/
@y2
þ @

2/
@z2
þ k2/ ¼ 0; (1)

at a corresponding smooth surface, z¼ 0, and it implicitly

models interaction between different parts of the surface.

The velocity potential is denoted with / and k¼ 2p f/c is the

wave number for frequency f and speed of sound c.
The first model by Biot (1957, 1958) models the rough

surface as a distribution of hemispherical bosses on a flat

surface. Although this model is not very realistic for most

rough surfaces, it provides an interesting insight. The rough

surface can be modeled with a distribution of dipoles on the

surfaces. Biot provides equations for the dipoles depending

on the boss size and density. The dipole distribution can then

be represented with a distribution of image sources on a line

perpendicular to the surface and below the flat surface image

source. The amplitudes of those image sources decay expo-

nentially along the depth.

Later, in Biot (1968), the model was extended to more

general types of rough surfaces. The generalized model

includes boundary conditions for various shapes of rough-

ness, nonuniform distributions of the roughness, and aniso-

tropic properties. The rough surface is modeled as a

distribution of dipole and monopole sources on the flat sur-

face. Also Tolstoy (1979, 1981, 1984) utilizes the Biot

model to study various phenomena related to the rough

surfaces, such as scattering of spherical pulses, energy trans-

mission into shadow zones, and boundary waves caused by

the surface roughness. However, the present work is limited

to the far field effects of the reflected signal.

II. THEORY

In this paper, the most relevant part of the work by Biot

is the representation of a rough surface as a distribution of

image sources below the flat surface image source. As long

as the more general boundary conditions, as in Biot (1968),

have the same linear form as the boundary condition in Biot

(1957), i.e.,

@/
@z
¼ �A

@2/
@z2
� Bk2/; (2)

with any real A and B, the logic presented in Biot’s first

paper (1957) can be applied. For hemispherical bosses,

A¼B¼ 1/2r, where r¼ 2pNa3, N is the number of bosses

per unit area, and a is the radius of the bosses. As shown in

Biot (1968), representing the rough surface with monopoles

and dipoles, instead of only dipoles as in Biot (1957), does

not change the form of the boundary condition. It is possible

to model interacting bosses and bosses of different shapes by

only changing A and B.
This approach has some limitations. The modeled wave-

length must be larger than the dimensions of the roughness.

In addition, the surface is assumed to be hard. Nonuniform

roughness and anisotropic roughness require different

boundary conditions (see, e.g., Biot, 1968).

In the following, Biot’s theory is briefly reviewed. The

same derivation can be found in Biot (1957), but here the

boundary conditions are slightly more general. The theoreti-

cal contribution of this paper is to explicitly derive the expo-

nential decay approximation in the time domain assuming

the given boundary condition.

The total sound field can be expressed as a sum of three

components

/ ¼ us þ ui þ u; (3)

where us is the incident field emitted by the source, ui is the

field reflected specularly, or equivalently emitted by the

image source, and u is the field caused by the roughness of

the surface.

The source is assumed to be a monopole

us ¼ D
e�ikRs

Rs
; (4)

where D is the magnitude of the source, and Rs is the dis-

tance from a surface point (z¼ 0) to the source. It can be di-

vided into components

Rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðz� hÞ2

q
;

r2 ¼ x2 þ y2;
(5)

where r is the distance along the flat surface to the point

closest to the source on the surface and h is the perpendicular

distance from the source to the surface. The image source is

defined similarly, but h is replaced with �h. Figure 1 illus-

trates the setup.

The source (and image source) can be expressed with

the Sommerfeld integral as

us ¼ D

ð1
0

1

l
e�l z�hj jJ0ðlrÞldl; (6)

where l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � k2
p

and J0 is the zeroth order Bessel func-

tion of the first kind. Thus, when �h< z< h, the sum of the

incident and ideally specularly reflected field is

us þ ui ¼ D

ð1
0

1

l
J0ðlrÞe�lhðelz þ e�lzÞldl: (7)

To solve u, the scattered field is written as a similar kind of

integral with an unknown spectral function F(l)

u ¼
ð1

0

1

l
FðlÞJ0ðlrÞe�lðzþhÞldl: (8)

This is a solution to the wave equation, Eq. (1), and it fulfills

the Sommerfeld radiation condition in the positive half-space

above the specular image source. Then, the total field, as in

Eq. (3), is calculated from Eqs. (7) and (8). This is substituted

in the boundary condition, Eq. (2), and setting z¼ 0 yields

FðlÞ ¼ �2D
ðA� BÞl2 þ Bl2

ðA� BÞl2 � lþ Bl2
: (9)

The result can be interpreted by considering the total

reflected field

J. Acoust. Soc. Am., Vol. 131, No. 6, June 2012 Siltanen et al.: Modeling incoherent reflections 4607

Downloaded 15 Jun 2012 to 130.233.46.247. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



ui þ u ¼D

ð1
0

1

l
J0ðlrÞe�lðzþhÞldl

þ
ð1

0

1

l
FðlÞJ0ðlrÞe�lðzþhÞldl

¼D

ð1
0

1

l
GðlÞJ0ðlrÞe�lðzþhÞldl; (10)

where

GðlÞ ¼ lþ ðA� BÞl2 þ Bl2

l� ðA� BÞl2 � Bl2

¼ lþ Al2 þ Bk2

l� Al2 � Bk2
: (11)

Equation (10) can be split into three parts by presenting G(l)
as partial fractions

GðlÞ ¼ �1þ C1

lþ l1

þ C2

lþ l2

; (12)

where

l1 ¼ �
1

2A
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ABk2
p� �

;

l2 ¼ �
1

2A
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ABk2
p� �

;

C1 ¼ 1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ABk2
p ;

C2 ¼ 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ABk2
p : (13)

It is clear that the first term of G(l) corresponds to the nega-

tive image source. The two other terms, which produce inte-

grals of the form

u1 ¼ DC1

ð1
0

1

l
1

lþ l1

J0ðlrÞe�lðzþhÞldl (14)

are examined next. Formulas are shown only for index 1, but

the same logic applies to index 2. First, an image source, at

depth h1 below the reflecting plane is written as

e�ikR1

R1

¼
ð1

0

1

l
J0ðlrÞe�lðzþh1Þldl;

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðzþ h1Þ2

q
: (15)

It is possible to multiply both sides with e�l1h1 yielding

e�l1h1
e�ikR1

R1

¼
ð1

0

1

l
J0ðlrÞe�lze�ðlþl1Þh1ldl: (16)

This can be integrated with respect to h1 from h to1
ð1

h

e�l1h1
e�ikR1

R1

dh1¼
ð1

0

1

l
J0ðlrÞe�lzldl

ð1
h

e�ðlþl1Þh1 dh1

¼ e�l1h

ð1
0

1

l
1

lþl1

J0ðlrÞe�lðzþhÞldl: (17)

The last line resembles Eq. (14). Thus, multiplying

this equation (without the intermediate form) with DC1el1h

gives

DC1

ð1
h

e�l1ðh1�hÞ e
�ikR1

R1

dh1 ¼ u1: (18)

In other words, the extra two terms in the reflected field can

be represented as a continuous distribution of image sources

below the specular image source where the amplitude of the

image sources is scaled exponentially with depth, i.e.,

e�u1 h1�hð Þ.

A. Far field approximation

In the far field, Eq. (18) can be simplified. First, distance

R1 is written with the help of the reflection angle h and the

ideal image source distance Ri by using the law of cosines

R2
1 ¼ R2

i � 2Riðh1 � hÞ cosðp� hÞ þ ðh1 � hÞ2: (19)

Then R1 is written as

R1 ¼ Ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2h2

Ri
cos hþ h2

2

R2
i

r
; (20)

where h2 ¼ h1 � hð Þ.
Since the most significant contributions from the line of

image sources as in Eq. (18) come when h2 is small, an

assumption is made that h2=Ri � 1 in the far field.

The expression below the square root is close to unity

and first order Taylor series approximation is used

FIG. 1. Sound from a source is reflected via a rough plane to a listener. The

specular image source as well as a line of image sources distributed below it

are shown. The xy-plane is along the horizontal direction and the z-axis is

along the vertical direction.
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R1 � Ri 1þ h2

Ri
cos hþ h2

2

2R2
i

� �
: (21)

Since h2=Ri � 1, it is assumed that h2
2=R2

i � 0 and the sec-

ond order term is discarded

R1 � Ri þ h2 cos h: (22)

Substitution of Eq. (22) into Eq. (18) yields

u1 ¼ DC1

ð1
0

e�l1h2
e�ikðRiþh2 cos hÞ

Ri þ h2 cos h
dh2: (23)

Further assuming that 1/(Riþ h2 cos h) � 1/Ri in the far field,

the integral can be rearranged and solved

u1 � DC1

e�ikRi

Ri

ð1
0

e�ðl1þik cos hÞh2 dh2

¼ DC1

l1 þ ik cos h
e�ikRi

Ri
: (24)

Then the total reflected field as in Eqs. (10) and (12)

becomes

ui þ u ¼ D �1þ C1

l1 þ ik cos h
þ C2

l2 þ ik cos h

� �
e�ikRi

Ri

¼ DSðkÞ e
�ikRi

Ri
; (25)

where

SðkÞ ¼ i cos h� ðA cos2 h� BÞk
i cos hþ ðA cos2 h� BÞk : (26)

Obviously, the magnitudes of the numerator and denomina-

tor in the expression S(k) multiplying the source are equal.

Basically, this means that there is a frequency- and angle-

dependent phase shift while the intensity is the same as for

the ideal reflection. Energy is thus preserved as it should be,

but the reflection is incoherent.

B. Time domain response

In the following, given an impulse-like source signal,

the shape of the reflected signal is examined in the time

domain. Beginning with Eq. (25), the time domain signal is

obtained by Fourier transform. First, the phase shift factor is

divided into two parts

SðkÞ ¼ i cos h
i cos hþ ðA cos2 h� BÞk �

ðA cos2 h� BÞk
i cos hþ ðA cos2 h� BÞk

¼ S1ðkÞ þ S2ðkÞ: (27)

The inverse Fourier transform of this is denoted as

s(t)¼ s1(t)þ s2(t). The transform is simple

s1ðtÞ ¼ qHðtÞe�qt; (28)

where H(t) is the Heaviside step function and

q ¼ c cos h
B� A cos2 h

: (29)

It is easy to see that S2(k)¼ S1(k) � 1. Thus the inverse Fou-

rier transform becomes

s2ðtÞ ¼ qHðtÞe�qt � dðtÞ; (30)

where d(t) is the Dirac delta function. The total field is thus

sðtÞ ¼ 2qHðtÞe�qt � dðtÞ: (31)

Integrating s(t) from zero to infinity produces unity, which is

an indication that energy is preserved as it should be.

The approximation presented above leads to a model

where the rough surface produces an exponentially decaying

tail in the time-domain response. This is utilized in the

following as the practical aspects of modeling multiple

rough surfaces in a room are considered.

III. MODELING WITH BEAMTRACER

The rough surface model presented above can be used

with any geometric acoustic algorithm that creates image

sources. However, a beam tracing algorithm is considered in

this paper because of its efficiency (Funkhouser et al., 2004).

Beam tracing is an algorithm for finding specular reflec-

tion paths in a room. A beam tracer finds the same set of valid

image sources as the basic image source method (Allen and

Berkley, 1979; Borish, 1984). However, ideally, it does not

have to separately validate the paths since only valid paths

are generated. This is achieved by tracing volumes that must

contain the valid paths. These volumes are called beams.

In an image source method, the number of all image

sources grows exponentially as the reflection order increases.

By limiting consideration to only valid image sources at

each reflection order, beam tracing effectively reduces the

base number of the exponentiation.

There are versions of the beam tracer algorithm that do

not construct accurate beams and thus require path validation

(see, e.g., Laine et al., 2009). They can still be faster than accu-

rate beam tracers when modeling early reflections since they

can avoid the cost of accurate volume clipping and use special

optimization techniques to avoid most of the validation costs.

The beams are cones that are defined with the help of

image sources (or the source at first) and polygons that con-

stitute the room model. Each image source acts as an apex

point. Planes that contain the image source and edges of the

polygon bound the volume. The beams intersect some of

the polygons that define the room. They are split such that

the intersection areas with each of the polygons become

defining polygons for the next level of beams. The beams

are stored in a hierarchical tree structure, where the split

beams are children of the original beams. By finding in

which beams the receiver position lies, it is possible to con-

struct specular reflection paths by traversing the tree upward.

A. Visibility issues

The challenge is to adapt the beam tracing algorithm to

the rough surface model, where, instead of a single image
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source, there is a line of image sources. Figure 2 illustrates this

in two dimensions. Obviously, the beams are different for

image sources at different distances below the reflecting plane.

The image source lines can also be reflected like the

image sources. However, when reflected several times via

non-parallel planes, the lines become areas, and the areas

become volumes bounded by more and more planes as the

reflection order increases. Tracking these volumes in the

beam tracing algorithm becomes cumbersome. A reasonable

approximation is to consider only those image sources that

are near the specular image source. There are two reasons

for this: (i) amplitude of the image sources decays exponen-

tially when moving away from the specular image source,

and (ii) many of the higher order non-specular image sources

are invalid, since they correspond to reflection paths that are

outside the beams. Thus, contributions of the image source

far from the specular image source can be neglected. This is

in line with the approximations made in Sec. II A.

The model is simplified such that only the specular

image sources are calculated in the beam tracer. However,

the impulse response corresponding to the reflection is not

an impulse, but the impulse is followed by a rapidly decay-

ing tail of reflections which corresponds to the contributions

from the line of image sources. As shown in Sec. II B, that

tail has the shape of an exponential function.

B. Modeling energy vs pressure

The beam tracing model presented here calculates the

room responses with energies in time domain. Using com-

plex pressures would be possible if the sampling rate of the

room impulse response were infinite. However, with non-

infinitesimal sample sizes, there is the possibility that two

reflections arrive at different times but fall into the same

sample. This causes errors when those contributions are

summed up since energy is not preserved. Using energy

responses instead of complex impulse responses avoids this

problem since energy is well-defined for time intervals, and

thus summing up contributions from different reflections

into a single sample is physically correct.

The downside of modeling with energies is that phase

information is effectively lost. The phase shifts introduced

by the rough surfaces still affect the outcome of the compu-

tation through the exponential decay curves. Otherwise the

limitations of geometric acoustic modeling apply.

The shape of the decay curve is still exponential when

modeling energies since energy is proportional to the square of

the pressure, and the square of an exponential function is still

an exponential function, but with an exponent twice as large.

C. Multiple reflections

In practical modeling applications an efficient handling

of higher order reflections is preferred. Based on the theory

revised in the previous section, a single reflection is assumed

to produce an exponentially decaying tail of reflections after

the specular reflection. The decay can be modeled with the

help of an enveloping energy function, i.e.,

fiðtÞ ¼
Rie
�ait for t � 0

0 for t < 0;

�
(32)

where fi(t) is the time-dependent energy curve, Ri is the

reflection coefficient, and ai is the decay coefficient, all of

which for material indexed i. Here, ai is directly proportional

to the factor q as in Eq. (29).

The coefficient can be calculated with the theory or

approximated from measured data. Given an impulse

response of a reflection from a rough surface, the approxima-

tion can be performed as follows. An impulse response is

element-wise squared and integrated as advised by

Schroeder (1965) in the case of room reverberation time cal-

culation. Analogically, a single reflection can be character-

ized by a local reverberation time. The decay coefficient is

related to the local reverberation time, obtained by fitting a

line to the Schroeder-integrated energy curve corresponding

to the measured impulse response, as follows:

ai ¼ �
1

T60;i
lnð10�6Þ: (33)

Local reverberation times obviously depend on the scale of

the roughness and the incident angle.

FIG. 2. (Color online) Source S produces a second-order reflection to lis-

tener L via polygons P1 and P2. The reflection path is the thick line. Beam

tracer has created beam B defined by source S and polygon P1, beam B0

which is beam B reflected at polygon P1, and beam B00 which is beam B0

reflected at polygon P2. The listener must be inside the beams for there to

be a valid reflection path. Image source IS(1) is source S mirrored with poly-

gon P1 and image source IS(1, 2) is image source IS(1) mirrored with poly-

gon P2. The lines of image sources are illustrated with a finite number of

discrete sources, although in reality the distributions are continuous and con-

tinue to infinity.
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When several reflections occur, their combined effect

on the impulse can be calculated as a convolution of the

exponential functions corresponding to the reflecting surfa-

ces. The form of the convolution of exponential functions

depends on ai; i 2 Nþ. If they are all different, i.e., ai 6¼ aj,

i 6¼ j, the convolution is calculated as follows:

f1ðtÞ � f2ðtÞ � � � � � fnðtÞ

¼
Pn
i�1

Qn
j¼1

Rj

Qn
j¼1; j 6¼i

ðaj � aiÞ
e�ait for t � 0

0 for t < 0:

8>>>>><
>>>>>:

(34)

If they all have the same value, i.e., ai ¼ a 8i, the result is

f1ðtÞ � f2ðtÞ � � � � � fnðtÞ ¼ Aðn;aÞgðt;n;aÞ

¼

Qn
i¼1

Rit
n�1

ðn� 1Þ! e�at for t� 0

0 for t< 0:

8>><
>>:

(35)

This is a gamma function scaled with the reflection coeffi-

cients. The gamma function can be denoted as g(t, n, a), where

n is the order of the gamma function that corresponds to the

reflection order of the path, and A(n, a) is a scaling function

such that the function can be written in the standard form

gðt; n; aÞ ¼ an

CðnÞ t
n�1e�at; (36)

where C nð Þ ¼ n� 1ð Þ! since n is a positive integer. Thus,

Aðn; aÞ ¼

Qn
i¼1

Ri

an
: (37)

There is an analytic solution for the convolution in Eq. (34)

where the a’s are a mixture of the same and different values

(Akkouchi, 2008). However, the gamma function is faster to

calculate and an approximation is proposed here. Since the

a’s are close to each other in typical cases, their geometric

average is used for calculating the gamma function. This

approximation leads to a small error, which is examined next.

D. Validation of the approximation

Figure 3(a) shows a case where exponential functions

are convolved. The corresponding decay times are typical

for a surface with roughness sizes of a few centimeters. The

convolution is performed exactly and also with the gamma

approximation. It can be seen that the approximating curve

is slightly higher at the peak level and its tail then decreases

more rapidly than the tail of the curve for the exact solution.

The same phenomenon can be seen in the case of three con-

volved exponential functions as in Fig. 3(b).

The total error in the approximation is relatively small.

The normalized root mean square errors in the test cases

mentioned above are 0.0289% and 0.1286% for the two

response and three response convolutions, respectively. The

error increases when the local reverberation times (and thus

a’s) differ much from each other. When there are more

convolutions, the errors accumulate, which can be seen in

Fig. 3(c). Normalized root mean square error is already

0.9954% in this case. However, these correspond to reflec-

tions via multiple surfaces and later in the reverberant tail of

the response, where single reflections are not that important.

E. Modified beam tracing algorithm

The constructed reflection model can easily be incorpo-

rated into a beam tracing algorithm. The algorithm calculates

the reflection paths as usual, and records the surfaces that are

hit along each path. In a regular beam tracing algorithm each

reflection path corresponds to a peak in the impulse

response. The time of the peak equals the path length, r,

divided by the speed of sound. The amplitude of the peak is

multiplied by 1/r, when operating with pressures, and by all

the reflection coefficients of the surfaces hit along the path.

When using the reflection model described above, each

reflection path corresponds not to a peak, but to an

FIG. 3. (Color online) The dotted curves are produced with exact convolu-

tion and the solid ones with the gamma function approximation. (a) Convo-

lution of two exponential functions with T60,1¼ 0.8 ms and T60,2¼ 1.2 ms

(dashed curves). (b) Convolution of three exponential functions with

T60,1¼ 0.8 ms, T60,2¼ 1.2 ms, and T60,3¼ 1.8 ms (dashed curves). (c) Convo-

lution of eight exponential functions. The local reverberation times are 0.5,

0.8, 1.2, 1.5, 1.8, 2.1, 2.4, and 2.7 ms (dashed curves).
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attenuating series of peaks in the impulse response since the

reflections are spreading in time. To get the attenuating

series of peaks for a reflection path, the enveloping function,

i.e., the function that determines the attenuation, must be cal-

culated. This is calculated in energy, not in pressure. This

time-dependent energy function is calculated as a convolu-

tion of exponentially decaying energy functions, which cor-

respond to the time-spreading of the reflections along the

path. The function can be approximated with the gamma

function as explained in Sec. III C.

After the enveloping energy function has been calcu-

lated, the impulse response is obtained from it as in Kuttruff

(1993). The response must follow the enveloping function

and have the correct energy. One approach would be to take

white noise and multiply it with the envelope.

However, in the presented implementation, a computa-

tionally more efficient technique is used. Instead of introduc-

ing randomness into amplitudes, it is added into arrival times

of reflections. The enveloping function is sampled with the

stratified sampling approach such that there is one random

sample per a small time window. The magnitude of each

sample is adjusted so that it corresponds to the energy of the

function integrated over the time window. The integration of

the energy over the time window is performed numerically

with the trapezoid rule.

Eventually, summing up contributions from all the

reflection paths yields a room impulse response that models

the time-dependent nature of the wall reflections.

The proposed procedure does not increase the run time

of the beam tracing algorithm itself, but only adds a post-

processing step that takes little additional time since evaluat-

ing the analytic expressions of Eq. (35) is straightforward.

Thus, the proposed modeling approach is much faster than

calculating the convolutions of the reflected impulse

responses during the beam tracing process.

F. Discussion with examples

The effects of the time spreading model can be easily seen

by showing an example. The purpose of this discussion is not to

validate the model as such because the theoretical work is based

on solid physical foundation within the assumptions given.

The proposed extension to the beam tracing model was

tested with two simple geometries. The three-dimensional

polygon models are quite simple since the emphasis is on

modeling materials and simple models allow higher order

reflections to be modeled. The first geometry consists of two

cubic rooms that are overlapped over one edge. The other

geometry is a large auditorium. The dimensions of the model

and the source and receiver positions are shown in Fig. 4.

FIG. 4. Models used in the simulation (a) double cube, and (b) auditorium.

In (a) the source is at position (9.0; 3.0; 5.4) m and in (b) at position (17.36;

13.76; 2.0) from the leftmost bottom corner. In (a) the receiver is at position

(15.0; 18.0; 5.4) m and in (b) at position (4.1; 5.08; 3.3) from the leftmost

bottom corner.

FIG. 5. Local reverberation times used in reflection modeling for a single

rough surface.

FIG. 6. (Color online) Responses calculated with (a) traditional beam trac-

ing and (b) beam tracing spreading the reflections in time.
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The materials were set in both cases so that the absorp-

tion coefficient is constant a¼ 0.3. The number was chosen

to get reasonable reverberation times, while the emphasis is

on modeling time spreading. The angle dependent decay

times were calculated from Eqs. (31) and (33) assuming

ai¼ 2q because energy is related to the square of the pres-

sure. The dimensions of the roughness were chosen to be

0.01 m. Figure 5 shows the local reverberation times calcu-

lated in this case. For the model to be valid, the assumption

ka� 1 must be true. Here, the model is valid up to about

500 Hz. Above that frequency, a different scattering model

must be used for accurate results.

The simulation was run with both the traditional beam

tracing and the beam tracing with reflections spreading in

time. The beam tracing was performed up to eighth order

after which the late reverberation was modeled with the

acoustic radiance transfer technique (Siltanen et al., 2007).

Thus, the late reverberation tail was the same regardless of

the version of beam tracing used.

The early parts of the resulting impulse responses in the

auditorium model are shown in Fig. 6. Tables I and II list

standard room acoustic parameters calculated from the

responses in the double cube model and auditorium model,

respectively.

The acoustics parameters and energy curves, calculated

from the impulse responses produced with the traditional

and the proposed beam tracing, are very similar. All the

acoustics parameters are within the just noticeable difference

limens. However, informal listening tests reveal clear differ-

ences between the responses convolved with a dry sound

stream. Lokki et al. (2011) showed that this should be the

case. Further tests are required to confirm the perceptual sig-

nificance of incorporating time spreading in specular reflec-

tion modeling.

IV. CONCLUSIONS

A theoretical model for temporally distributed diffuse

reflections when ka� 1 is introduced. A single reflection is

assumed to consist of a specular reflection followed by an

exponentially decaying tail of non-specular reflections.

Higher order reflections, requiring convolutions of the single

reflection responses, are modeled with gamma functions. In

the beam tracer, it is only necessary to record the local rever-

beration times of the reflecting room surfaces. Those can be

used for calculating the decay curve which acts as an enve-

lope for the noise-like reflections.

Previous room acoustic models offer representations for

diffuse reflections with energies, but the use of Biot’s theory

of reflections from rough surfaces makes it possible to model

diffuse reflections with pressures.
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