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Abstract: In this paper we briefly overview the digital waveguide mesh method. It is a wave-based technique for room 
acoustic prediction operating in the time domain. The original technique suffers from direction dependent dispersion. In 
this paper we discuss couple of techniques that have been applied to overcome this problem. Firstly, the interpolated mesh 
structure, and secondly the frequency warping technique are presented. As a case study we present simulation results and 
visualizations obtained with two simple room geometries. In addition, the computational requirements of 3-D interpolated 
mesh are presented and possibility of real-time auralization is discussed.  
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1 INTRODUCTION 
The two main approaches for room acoustic modeling 

are the wave-based and the ray-based techniques. The ray-
based methods are most suitable for high frequencies where 
the assumptions of geometrical room acoustics are valid. 
Nowadays these techniques are widely used in room 
acoustic design, and they can be used to predict room 
acoustic attributes quite reliably. However, for the 
modeling of lowest frequencies some wave-based methods 
are required. These techniques are essential if knowledge 
of eigenfrequencies of a room are needed. 

In this paper we present one wave-based technique, 
the digital waveguide mesh. Originally the method was 
developed for physical modeling of 2-D musical 
instruments, but in this paper the main emphasis is on 3-D 
models that are most relevant from room acoustical 
viewpoint.  

This paper is organized as follows. In Section 2 
various digital waveguide mesh structures are presented 
and analyzed. In the next section the frequency warping 
technique and its application to the digital waveguide mesh 
is discussed. Two practical simulation examples and 
boundary conditions are elaborated in Sections 4 and 5, 
respectively. The computational complexity of the method 
is discussed in Section 6, and finally Section 7 concludes 
the paper. 

2 DIGITAL WAVEGUIDE MESH 
The digital waveguide mesh is a finite-difference 

time-domain (FDTD) technique, but its background is in 
digital signal processing. Originally the 2-D digital 
waveguide mesh was developed in 1993 for modeling of 2-
D musical instruments such as membranes of drums [1]. In 
this section we present the 3-D mesh and certain 
improvements designed to overcome the inherent 
dispersion error in the original rectangular method. 

2.1 Original 3-D Digital Waveguide Mesh 
Digital waveguides are bi-directional unit-delay 

elements [2], and their first application was physical 
modeling of 1-D musical instruments such as strings of a 
guitar. The digital waveguide mesh consists of digital 
waveguides that are perpendicularly connected to each 
other forming a rectangular grid as illustrated in Fig. 1a 
such that in the 3-D case each node has a connection to six 
neighbors [3]. The equation to govern the behavior of a 
mesh is quite simple: 
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in which p(n,x,y,z) is the sound pressure in node (x,y,z) at 
time step n. There are a couple of ways to derive Eq. (1), 
and it can be done either by starting from the principles of 
digital waveguides as was done by van Duyne et. al. [1], or 
by discretizing the wave equation. 

In a room acoustic simulation the space under study is 
divided into cubical elements, such that corners of the 
elements represent nodes of the mesh. Sound sources are 
placed in the mesh by forcing the sound pressures in 
corresponding nodes to desired values. The mesh has a 
certain update frequency dxcf s /3= , in which c is the 
speed of sound and dx is the distance between two 
neighboring nodes, i.e. the length of a side of a cube in the 
mesh. In each iteration of Eq. (1) the simulation is 
advanced by dt = 1 / fs. For example, when dx = 0.1 m and 
fs ≈ 5.9 kHz  then a simulation of 2 seconds requires 2 × fs 
≈ 12000 simulation steps. The theoretical upper frequency 
limit is fs / 4 since the magnitude response is aliased at that 
frequency. 

There is one major problem in the original mesh 
structure, and it is the direction dependent dispersion. This 
dispersion error can be analyzed by the Von Neumann 
analysis that is based on spatial Fourier transform of Eq. 
(1) [4]. The details of the analysis are out of scope of this 
paper, and the reader is referred to previous articles [1,5]. 
As a result of the analysis a relative frequency error (RFE) 
is obtained. 

The wave fronts propagate ideally in diagonal 
directions of the mesh, but in all the other directions there 
is dispersion. The situation is the worst in axial directions 
in which the wave propagation speed is decreased at the 
highest useful frequencies (0.25 × fs) as much as 24 % of 
the ideal speed. In practice this means that, e.g., the 
eigenfrequencies of a room can be significantly distorted. 
Therefore the valid frequency band of the original mesh is 
only a fraction of the theoretical maximum. For the 
frequency band [ ]10/0 sf�  the maximum relative 
frequency error is only 3.4%. The RFE curves for the 
original mesh are shown in Fig. 2a). 

2.2 Interpolated 3-D Digital Waveguide Mesh 
The reason for the direction dependent dispersion in 

the original rectangular mesh is caused by the fact that each 
node is connected only to its six axial neighbors. There are 
several techniques to overcome this problem. One way is to 
apply some non-rectangular mesh structure such as a 
tetrahedral mesh [6,7]. Another possible technique is the 
interpolated mesh structure [8,9,10]. The main advantages 
of the interpolated structure over the non-rectangular 
meshes are the ease of tessellation and simple 
implementation and for this reason we focus here only on 
the interpolated digital waveguide mesh. 

In the interpolated structure nodes have connections 
also to 2-D diagonal and 3-D diagonal directions as 
illustrated in Fig. 1b). However, these connections are not 
of same length as the axial connections. To implement 
these connections fractional delays are applied such that in 
each non-axial connection the sound pressure is divided 
between the nodes that form the cube inside which the 
connection lies. Therefore the equation to govern this 
structure is a bit more complicated than Eq. (1): 

(b) (c)(a)  
Fig. 1. Different versions of the digital waveguide mesh: a) the original rectangular mesh, b) the full interpolated 
structure with 27 connections, c) a sparse structure having 19 connections. 
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Fig. 2. Relative frequency error in the digital waveguide 
mesh a) in the original structure, and b) in the optimally 
interpolated mesh. 
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Due to symmetry in the structure only four 

interpolation coefficients are required such that 
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There are various techniques to find out the 
interpolation coefficients, but in this case the best results 
have been obtained by numerically optimizing the 
coefficients. The goal in the optimization has been to reach 
wave propagation characteristics that are as uniform as 
possible in all directions. In Fig. 2(b) there are RFE curves 
for the optimally interpolated structure. The applied 
interpolation coefficients are listed in the following: 
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2.3 Sparse Mesh Structures 
In the full interpolated structure each node has 27 

connections: 6 axial, 12 2-D diagonal, and 8 3-D diagonal 
neighbors, and one delayed connection to the node itself. 
This number of connections makes the interpolated 
structure nearly five times heavier than the pure rectangular 
mesh from a computational point of view. For this reason 
we have investigated the possibility to reduce the number 
of connections by creating sparse structures in which some 
of the coefficients are set to zero. One efficient structure is 
achieved when 03 =Dh . It is nearly as accurate as the full 
interpolated structure but the computational load is reduced 
by one fourth. There are also other possible combinations 
that can be utilized, but they are less accurate, although 
they are even more efficient. 

3 FREQUENCY WARPED DIGITAL 
WAVEGUIDE MESH 
As can been seen from Fig. 2(b) there is still 

dispersion in the optimally interpolated mesh. Fortunately, 
the error is now nearly direction independent. This makes it 
possible to compensate the error up to certain degree. The 
technique we have applied for this is called frequency 
warping, and it is discussed in the following [11,12,4]. 

3.1 Frequency Warping 
Frequency warping is a method to distort the 

frequency axis of a signal [13]. There are two principally 
different ways of warping a given signal, 1) time-domain 
and 2) frequency-domain warping. In practice, warping in 
the time-domain is accomplished using a chain of first-
order digital allpass filters. The allpass filter parameter, or 

coefficient, will have the same value for all filter sections. 
The decision of this parameter, which is called the warping 
factor, determines how the frequency axis is warped. There 
will be a tap with a multiplying coefficient in the delay line 
between every two allpass filters. These coefficients will be 
assigned to the sample values of the signal to be warped. 
When a unit impulse, i.e., a digital signal consisting of a 
single '1' and an endless sequence of zero samples, is fed 
into the allpass filter chain, the output signal obtained as a 
sum of all tap outputs yields the warped version of the 
signal. Both the frequencies and the durations of all events 
in the signal are changed. 

If the warping obtained with one pass through the 
allpass filter chain is insufficient for moving the 
frequencies where one wants them, a special trick must be 
used. It does not help to warp the signal multiple times with 
different warping factors, because any series of first-order 
warping operations is equivalent to a single warping with a 
certain factor. However, if the sampling rate of the signal is 
changed between consequtive warping stages, it is possible 
to obtain different warping functions than with single 
warping. In that case, the choice of the warping and 
sampling-rate-conversion factors for each stage becomes a 
non-trivial optimization problem, but the method becomes 
more flexible and powerful. We call this multiwarping 
[11]. 

Warping in the frequency domain refers to a process 
of resampling the spectrum of a signal and computing the 
corresponding temporal signal using the inverse discrete 
Fourier transform. This method is prone to numerical 
inaccuracies, because in general the frequency points where 
the new spectral samples should be read, are between the 
original spectral data points. High-resolution spectral 
computation with zero-padding and a long FFT is helpful, 
but additionally it may be necessary to use polynomial 
interpolation to determine the spectral values between the 
original points. An advantage of the frequency-domain 
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Fig. 3. Relative frequency error in the interpolated 
structure after frequency warpings: a) with two-stage 
multiwarping, and b) with warping in the frequency 
domain.  



warping is that there are no principal restrictions for the 
warping function: any unique mapping of the frequency 
axis is possible. 

 
 

3.2 Applying Frequency Warping with Digital 
Waveguide Mesh 
Frequency warping is a process in which typically the 

whole signal is required before processing. Therefore it can 
be applied with digital waveguide mesh as a postprocessing 
operation. In practical simulations both the excitation 
signal and the simulation results should be frequency 
warped. The most accurate results can be obtained with 
warping in the frequency domain, but also the time-domain 
approach is possible. Figure 3a) presents RFEs in the 
optimally interpolated mesh with a two-stage multiwarping 
in the time domain, and in Fig. 3b) shows the RFEs after 
frequency-domain frequency warping. In the first case the 
maximal RFE is 2.0% and in the second one it is only 
0.47%. For a typical room acoustic simulation this 
accuracy is enough. 

4 SIMULATION RESULTS 
This section presents two separate case studies. The 

goal of the first one is that the eigenfrequencies are 
correctly detected in a simple rectangular room that is easy 
to solve also analytically. The second case shows visually 
how diffraction is automatically included in the digital 
waveguide mesh method. 

4.1 Case 1: Rectangular room 
To show the accuracy of the digital waveguide mesh 

method a simple rectangular room (8 × 8 × 8=512 nodes) 
was both simulated and solved analytically. All the 
boundaries are ideal with reflection coefficient –1. The 
value is not physical in 3D room acoustics, but it was 
chosen since by that means fewer eigenmodes are visible in 
the magnitude response when compared to reflection 
coefficient 1. The source was located near one corner, and 
the receiver at the opposite corner. Figure 4a) shows the 
simulation result with the original structure. The results 
presented in Figs. 4b) and 4c) are obtained with the 
optimally interpolated structure applying coefficients 
shown in Eq. (4). In Fig. 4b) the result was frequency 
warped in the time domain, and in 4c) the warping was 
performed in the frequency domain. All the results are in 
good accordance with the theoretically obtained RFEs 
illustrated in Figs. 2a), 3a), and 3b), respectively. The 
frequencies shown in the figure are relative to the update 
frequency. If dx = 0.5 m the dimension of the room would 
be (4 m × 4 m × 4 m), and the relative frequency 0.25 
would correspond to 300 Hz. 

4.2 Case 2: Stagehouse 
To study the edge diffraction we have made a simple 

model of a stage house. The sound source is located on the 
stage as illustrated in Fig. 5a). Figures 5b) and 5c) show 
two different visualizations corresponding to later time 
instants. The diffraction is most visible in the first order 
reflections from the sidewalls of the stage. Note the smooth 
attenuation of the reflected wavefront after the specular 
reflection part. Modeling of this phenomenon is difficult 
with the ray-based techniques, but in the wave-based 
methods it is inherent. Diffraction has crucial impact on 
geometrically complex spaces. One practical example is a 
typical opera house in which the orchestra is playing in the 
pit, and on the floor the audience hears only diffracted 
components of the direct sound. 

5 BOUNDARY CONDITIONS 
The development of the digital waveguide mesh has 

been going on for nearly ten years. At this point, the sound 
propagation in air is modeled quite efficiently and 
accurately. But this is not enough for practical room 
acoustic simulations.  The wall materials have crucial 
affect on room acoustics, and therefore the boundary 
conditions of a mesh should correspond to real materials. 
Unfortunately, this issue has not yet been studied enough, 
and only some preliminary suggestions have been made 
[14], but a thorough survey on the topic is required. 
Currently, it is possible to have frequency independent 
reflection coefficients in a mesh, but only the coefficient 
value –1 is accurate. Thus all the physically relevant 
reflection coefficients in room acoustics are only 
approximations. 
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Fig. 4. A magnitude response of a cubic space calculated 
(a) with the original rectangular mesh, (b) with the 
optimally interpolated mesh applying multiwarping, and (c) 
with the optimally interpolated mesh using warping in the 
frequency domain. The solid line represents the simulation 
result and the dashed line is the analytical solution. 



6 COMPUTATIONAL EFFICIENCY AND 
AURALIZATION 
Current room acoustic auralization systems are 

typically based on geometrical acoustics, and therefore they 
are not accurate at the lowest frequencies. Digital 
waveguide mesh is one eligible candidate for this purpose 
since it is computationally efficient when compared to 
other wave-based techniques such as FEM (finite-element 
method) and BEM (boundary element method). Another 
advantage is that it is a time-domain technique, and the 
simulation results are easy to auralize. 

Although the digital waveguide mesh is efficient, the 
computational load is still a severe problem, especially 
from a viewpoint of real-time auralization. Let us study an 
example with the pure rectangular mesh without 
interpolation. If we study a room of size 5 m × 10 m × 3 m 
with grid spacing of 0.2 m we have 25 × 50 × 15 = 18 750 
nodes. For each node 19 additions and three multiplication, 
altogether 22 operations, are required. This means that each 
time sample takes 412 500 instructions. With 0.2 m grid 
spacing the sampling frequency will be 3 kHz thus 
resulting in 1237 MIPS (millions of instructions per 
second). The valid frequency range for auralizations 
depends on the application, but at most it is one fourth of 
the sampling rate. In this case the auralizations up to 750 
Hz could be achieved with the given computational load. 
The load is still quite heavy, but computers get faster all the 
time, and in the future it should be possible to apply the 
technique in real-time at the low end of the frequency band. 
One advantage of the digital waveguide mesh is that the 
algorithm is easy to parallelize and thus it can gain benefit 
from multiprocessor computers [7]. 

7 CONCLUSIONS 
The 3-D digital waveguide mesh is a wave-based 

method for room acoustic simulation. The method is a DSP 
oriented finite-difference time-domain technique. It has 
been under development for nearly ten years, and lots of 
the early problems have been solved. The direction-
dependent dispersion of the original rectangular method is 
not a problem anymore since in the non-rectangular or 
interpolated rectangular mesh structures the direction 

dependence is negligible. The effect of remaining 
dispersion error can be remarkably reduced by frequency 
warping techniques. In the future, the most important 
research topic should be the boundary conditions. 
Currently, only simple wall materials can be simulated but 
to be a practical tool for room acoustic design frequency 
dependent reflection characteristics should be incorporated 
into the digital waveguide mesh method. 
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