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The room acoustic radiance transfer method is a solution to recently presented room acoustics rendering
equation which formulates the mathematical basis for all the ray-based (geometrical) room acoustic
modeling algorithms. The basic acoustic transfer method gives as accurate results as the state-of-the-art
commercial room acoustic modeling software. However, the basic method still lacks, e.g., diffraction
modeling and modeling of complex reflections from surfaces. In this paper we extend the room acoustics
rendering equation with diffraction kernel. In addition, we present one diffraction modeling method
which can be used with the acoustic radiance transfer method. The method is a Biot-Tolstoy-based
solution and it is shown to given accurate results in a case study.

1 Introduction

Geometric modeling of acoustics uses the laws of op-
tics to trace the sound paths in the medium. Rays
can be used to present wave fronts propagating perpen-
dicular to them. This is a relatively safe assumption
when the modeled wave length is much smaller than
the dimensions of the bounding objects. However, at
lower frequencies, the premise of the geometrical acous-
tics breaks.

The acoustic field can be described by a set of equa-
tions. In the most simple form, the wave equation for
pressure p might be written as

∂2p

∂t2
− c2

0∇2p = 0, (1)

where t is time and the constant c0 depends on the
medium. It is obvious that the pressure field must be
continuous. However, this is not true in the “shadow”-
boundaries in the geometric modeling approach. Thus,
without diffraction modeling the results are inaccurate,
in particular at low frequencies.

Siltanen et al. presented the room acoustics ren-
dering equation which models energetic behavior of all
the effects of geometrical acoustics [1]. Also, based on
that model, an acoustic radiance transfer method, which
is capable of modeling arbitrary reflections in complex
environments, has been implemented. However, non-
geometrical effects such as diffraction cannot be mod-
eled. In this paper, our goal is to improve that model
by attaching diffraction modeling to it.

2 Related Work

Many approaches to diffraction modeling have been pre-
sented. Some works concentrate in finding analytical
solutions for certain cases while others aim at practical
approximations which can be easily utilized.

The most relevant related work in diffraction mod-
eling regarding this paper are the models based on the
Biot-Tolstoy solution [2]. Biot and Tolstoy derived an
accurate analytical solution for an infinite wedge or cor-
ner of a perfectly specularly reflecting material. Later,
Medwin et al. interpreted their solution according to
Huygens’ principle as a total contribution from infinitely
many point sources along the edge and used that view
as a basis for deriving the corresponding solution for fi-
nite wedges or corners [3]. Svensson et al. presented
this model in a form suitable for room acoustics model-
ing and discussed the practical details of the numerical
evaluation of the integrals in the model [4]. The numer-
ical stability of the evaluation in the case of singularities

in the formulas was further improved by Svensson and
Calamia [5].

Other approach to the diffraction modeling is Kirch-
hoff diffraction approximation [6], which, however, has
been shown to be inaccurate in certain cases [7, 8]. The
geometrical theory of diffraction [9] has also been used in
acoustics, e.g., with the radiative transfer method [10].

3 Extending the room acoustics
rendering equation

The room acoustics rendering equation [1] is based
on the assumptions of geometric acoustics. The sound
is assumed to behave like rays in optics. The acoustic
attributes are defined on the surfaces of the model. The
equation is

�(x′, Ω) = �0(x′, Ω)

+
∫
G

R(x, x′, Ω)�(x,Ωx→x′)dx, (2)

where �0 is the primary radiance from the surface, the
integral is over the whole geometry G, �(x,Ωx→x′) is the
radiance arriving at surface point x′ from another sur-
face point x, and R is the reflection kernel which takes
into account the visibility between the two points, prop-
agation delay, attenuation due to distance, and reflec-
tion from the material. Effects of medium absorption
can be handled separatelly and taken into account in
the detection.

Sound sources that cannot be modeled as surfaces
(e.g. point sources) are taken into account by project-
ing their radiation on the surfaces, using the reflection
model, i.e. acoustic BRDF, to compute the outgoing
radiance, and conceptually taking the once-reflected ra-
diance as primary radiation of the surface.

The final detection (d) is defined as a sum of the
detection from the non-surface-like sources (dD) and the
detection from the surfaces (d�):

d(t) = dD(t) + d�(t). (3)

This presentation of the acoustic radiance captures all
the effects that can be modeled by geometrical acoustics.

However, diffraction, by definition, cannot be mod-
eled by using geometrical acoustics. Let us assume that
diffraction occurs in connection to the singularities in
geometry (points where the surface normal is not un-
ambiguously defined) and that it can be modeled by
some unknown method. The detection becomes:

d(t) = dD(t) + d�(t) + dF (t), (4)

i.e., the detected field is the sum of direct field, reflected
field, and diffracted field (dF ). The rendering equation
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needs also to be modified so that the singularities (de-
noted hereafter ∂G) are included in G and if x′ ∈ ∂G R is
replaced by the diffraction kernel Dω which depends on
the type of the singularity and the modeled frequency.
That is:

�(x′,Ω) = �0(x′,Ω)

+
∫
G

Dω(x, x′,Ω)�(x,Ωx→x′)dx,

when x′ ∈ ∂G. (5)

The presented framework is very flexible since any rea-
sonable diffraction model can be used as Dω.

Finally, let us define the detection functions:

dD(t) =
∑
xs

Δ(Ωxs→xr ,HV(xs, xr)
Sr

4πr2
Ps(Ωxs→xr ))

d�(t) =
∫
G\∂G

Δ(Ωx→xr ,HV(x, xr)

Sr

r2
�(x,Ωx→xr

)max(nx · ux→xr
, 0)dx

dF (t) =
∫

∂G
Δ(Ωx→xr

,HV(x, xr)

Sr

r2
�(x,Ωx→xr

)dx, (6)

where H is an operator presenting medium absorption
effects. V is a visibility function which equals one when
the points given to it as attributes are visible to each
other and zero otherwise. Ps is the power of the source.
Sr is the delay operator for distance r between the two
points in each equation. n and u are normal and unit
direction vectors, respectively. Finally, Δ is a function
which maps the incoming radiance to observed sound
pressure.

4 Applying Biot-Tolstoy-Medwin
model

Since the original acoustic rendering equation already
describes an energy balance, adding a new term to the
equation could potentially shake that balance and lead
to an unphysical model. Handling the singularities as
special cases allows the emitted energy to blead into
shadow-zones. For the singularities having only an in-
fitesimal area, they cover a zero solid angle of the angu-
lar space, seen from any point, and receive zero energy.

The diffraction term should be seen as a correction
term to the geometrical acoustics solution. Thus, it can
be negative in some cases. This is necessary for conserv-
ing the energy.

4.1 Separating reflection and visibil-
ity discontinuity components of the
diffraction model

The original Biot-Tolstoy model is an exact solu-
tion for diffraction of a point source from an infinite
wedge [2]. Later, Medwin et al. interpreted the given
solution as a summation of secondary sources along the
edge [3]. This interpretation allows derivations of the
solution for finite edges. Svensson et al. derive such a

model as a line-integral [4]. They give an expression for
pressure p:

pdiffr(t) = − ν

4π

∫ z2

z1

q

[
t− m(z) + l(z)

c

]

×β[α(z), γ(z), θS , θR]
m(z)l(z)

dz, (7)

where t is time (the impulse is emitted when t = 0), ν
equals π/θw (θw is the opening angle of the wedge), z1

and z2 are the end points of the edge in a coordinate
system where z-axis is along the edge, q is the emitted
signal, c is the speed of sound, and angles θS and θR

are directions of the sources and receiver, respectively,
around the z-axis. Variable m(z) is the length of the
paths of diffraction from the source to the edge point z
and variable l(z) is the length of the rest of the path to
the receiver. Angles α(z) and γ(z) are the angles be-
tween these paths and a line perpendicular to z-axis on
a plane defined by the path and the edge. Let us set
z = 0 for the source and z = zR for the receiver, and
let rS and rR be the direct distances from the z-axis to
the source and receiver, respectively. Then, using basic
trigonometry, we get

m(z) =
√

r2
S + z2 (8)

l(z) =
√

r2
R + (z − zR)2 (9)

α(z) = tan−1 z

rS
(10)

γ(z) = tan−1 z

rR
. (11)

For infinitely hard surfaces β-function is defined as

βhard(α, γ) = β++(α, γ) + β+−(α, γ) +
β−+(α, γ) + β−−(α, γ) (12)

β±±(α, γ) =
sin[ν(π ± θS ± θR)]

cosh[νη(α, γ)]− cos[ν(π ± θS ± θR)]
(13)

η(α, γ) = cosh−1 1 + sin α sin γ

cos α cos γ
. (14)

Then the boundary condition is:

u · n = 0, (15)

where u is the total particle velocity at the surface and n
is the surface normal. In effect, the incoming wave is to-
tally reflected on the surface and its phase (considering
particle velocity) is shifted by 180 degrees.

On the other hand, the β-function can be defined
for soft or pressure-release surfaces and the expression
given by Kinney et al. [11] is

βsoft(α, γ) = −β++(α, γ) + β+−(α, γ) +
β−+(α, γ)− β−−(α, γ), (16)

where the boundary condition is simply

p = 0, (17)

where p is the pressure at the surface. Again, the wave
is totally reflected on the surface, but its phase is not
shifted.
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Now the diffraction pressure can be separated to the
diffraction caused by the reflection and to the diffrac-
tion caused by visibility discontinuities. Let there be
two wedges or corners with exactly the same geometry,
but different materials. The first one is of infinitely hard
material and the second one has the pressure-release
property. The acoustic fields for the pressure can be
described in both cases as:

ptotal,hard/soft = pdir+prefl,hard/soft+pdiffr,disc+pdiffr,hard/soft,refl,
(18)

where the pressure terms are for the total field, direct
field, reflected field, and diffracted field for discontinu-
ities and reflection, respectively. The sum of the diffrac-
tion components equals the result of the (modified) Biot-
Tolstoy model, presented above:

pdiffr,hard/soft = pdiffr,disc + pdiffr,hard/soft,refl (19)

Now, let us add the fields together:

ptotal,hard + ptotal,soft = 2pdir + 2pdiffr,disc, (20)

where the reflection terms have disappeared since they
were otherwise equal, but there was a 180-degree phase
shift, so the reflected wave fields annulled each other.
Then, we have one of the diffraction components sepa-
rated:

pdiffr,disc =
1
2

(ptotal,hard + ptotal,soft)− pdir

=
1
2

(pdiffr,hard + pdiffr,soft) . (21)

Since integration is a linear operator and the integrand
is linear in relation to the β-functions, we can write a
same kind of relation also for them:

βdisc =
1
2

(βhard + βsoft)

=
1
2

(β++(α, γ) + β+−(α, γ)

+β−+(α, γ) + β−−(α, γ)
−β++(α, γ) + β+−(α, γ) +
β−+(α, γ)− β−−(α, γ))

= β+−(α, γ) + β−+(α, γ). (22)

Inserting this βdisc into the expressions for the pressure,
the result is a diffracted field without the reflection com-
ponent (for hard surface)

βrefl = β++(α, γ) + β−−(α, γ). (23)

This separation allows us to formulate the reflected diffrac-
tion for surfaces with arbitrary specular reflection coeffi-
cients by weighting the βrefl coefficient accordingly. The
weighting factor can be set to zero if there are no spec-
ular reflections or other kinds of diffraction components
can be used for other kinds of reflections which cause
discontinuities to the acoustic field, while the βdisc com-
ponent remains the same.
4.2 Continuity on zone boundaries

There would be four zones in the diffracted field. Fig-
ure 1 shows these zones in relation to the source and the
wedge. Usually only three zones are given, but since the

Source

Zone IV

Zone I
Zone II

Zone IIIWedge

Figure 1: Zones in the diffracted field in relation to the
source and the wedge.

reflection model can contain also non-specular compo-
nents a new zone must be introduced. If only specular
reflections are used, Zones II and III are merged to one
zone.

The response in Zone I consists of the direct
field, specularly and non-specularly reflected fields, and
diffracted field. From Zone II onwards the specularly re-
flected field does not contribute to the response. From
Zone III onwards also the non-specular part of the re-
flected field seizes to affect the result. And, in Zone
IV, the direct field disappears, thus leaving only the
diffracted field.

The diffraction components assure continuity of the
field on two of the boundaries: I-II and III-IV. Since the
diffracted field is continuous over II-III boundary, the
only discontinuity might come from the fact that the
non-specular component suddenly becomes zero when
moving from Zone II to Zone III. However, the non-
specular part of the BRDF is weighted by the cosine
of the angle between the surface normal and the outgo-
ing direction. Thus, it can be shown that if the angu-
lar dependency of the non-specular reflection model has
zero derivative on the zone boundary, the wave equa-
tion holds and there is no discontinuity between zones
II and III. This is true in the case of ideal diffuse reflec-
tion. If the derivate would be non-zero on the boundary,
a diffraction component corresponding to that reflection
model should be added to the solution.

4.3 Singularities at boundaries

The β-function has singularities when the denominator
of at least one of the β±±-functions equals zero. This
can happen only when both cosh[νη(α, γ)] and cos[ν(π±
θS ± θR)] equal one, since cosh x ≥ 1 and cos x ≤ 1 with
any real-valued x. A closer examination of the cosine
term shows that this is possible only on the boundaries
of the shadow (Zone IV) and specular regions (Zone I).
Even then, α and γ must equal zero. The singularities
can easily be handled as special cases when evaluating
the integrals [5].

4.4 Energetic approach and pressures

Since Biot-Tolstoy-Medvin diffraction model is given for
pressures, it cannot be directly applied to the rendering
equation which uses an energetic model. In an ideal
case, intensity of the diffracted field can be computed
as

Idiffr =
|pdiffr|2

ρc
. (24)

The intensity is thus proportional to the square of pres-
sure. Also the differential quantities, such as radiance
and irradiance, have the same kind of dependency on
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pressure. However, the expression always produces pos-
itive values. Thus, if the intensity produced by the
the geometrical acoustics is directly added up with the
diffracted intensity, the result is that more energy is
brought to the system which is physically incorrect.

By examining the behaviour of the diffracted field, it
can be seen that near the specular boundary the pres-
sure response has a negative amplitude in Zone I and
positive amplitude in Zone II so that they are equal on
the boundary if the absolute value of the amplitude is
half the amplitude of the specular field. Correspond-
ingly, there are negative and positive amplitudes with
the half of the absolute value of the amplitude of the
direct field in Zones III and IV near the shadow bound-
rary. Signs can be assigned to the energies so that near
the boundary the sign is negative in Zones I and III,
and positive in Zones II and IV. By integrating over
the whole open angle, it can be shown that the total
diffracted energy sums up to zero, thus preserving the
energy.

5 Results

The modified Biot-Tolstoy model explained in the pre-
vious section was implemented to the acoustic radiance
transfer method. To model the diffraction by an edge,
it has to be split into short segments. The incoming
radiance is computed for each segment separately and
the diffracted radiance is computed by the Biot-Tolstoy
model. The diffracted radiance is stored into the seg-
ments as “diffraction BRDFs”, presenting the contribu-
tion by the source to all the outgoing directions. This
corresponds to the “initial shoot” phase in the acoustic
radiance transfer method [1]. Then, when computing
the diffracted response received at a certain point, the
contributions of the segments to that direction can be
read directly from the BRDF. The total response is a
sum of all visible segments to the receiver. This cor-
responds to the “final gathering” phase in the acoustics
radiance transfer method. When evaluating the integral
in the Biot-Tolstoy model, the value of the integrand is
computed using the values of the integrand at the end
points of a segment and the trapezoid rule. In the time
domain, the contribution is usually spread over several
samples in the response and the energy is equally di-
vided among them.

Results were computed in the case of a simple hard
wedge with a 270 degree opening angle, see Fig. 2. The
edge is situated along the z-axis and extends from -10
meters to +10 meters. The other half-plane limiting the
solid part of the wedge is along the xz-plane (x > 0),
and the other plane is that plane rotated by 270 degrees
around the z-axis. The source is placed at distance of
1 meter from the edge and rotated 30 degrees from the
first plane around the z-axis, and 1.5 meters from the
origin in the z-direction. The receivers are placed at a
distance of 2 meters from the edge with varying rotation
angles around the z-axis, with the same z-coordinate as
the source.

The comparison is done to the results produced by
the model of Svensson et al. [4]. The analytical results
are computed for each sample in the response, which

is 100 ms long with a sampling frequency of 44100 Hz.
In the case of the first sample, the approximations by
Svensson and Calamia [5] are used to avoid numerical
instability due to singularities in the Biot-Tolstoy for-
mulas.

5.1 Discussion

Figure 2 shows that the diffraction model implemented
to the acoustic radiance tranfer method produces quite
similar results to the Svensson et al. model as expected,
since they both use the Biot-Tolstoy model. The first
spike seen in figures with a receiver angle of 30-210 de-
grees is the direct sound. The second spike in figures
with a receiver angle of 30-150 degrees is the specu-
lar reflection. The diffraction tail forms the rest of the
responses. There is an obvious step in the otherwise
smooth response at approximately 2200 samples, the ef-
fect of the shorter half of the edge disappearing. The
diffraction tail ends a little before 3000 samples, where
the effect of the other half of the edge seizes too.

The segmentation of the edge causes little steps to
the response. Increasing the number of segments im-
proves the results and when the segment length is so
short that each segment contributes to only one sam-
ple, the steps disappear. To improve the results with-
out increasing the number of segments can be done by
computing the sample range which is affected by each
segment and using the analytical model for each sample
in that range. This approach would be more time con-
suming and it does not improve the directional accuracy
of the model, which is dependent on the discretization of
the edge. Finding ways to improve the accuracy of the
diffracted response is still a topic of future research. The
techniques introduced by Calamia and Svensson could
be utilized [12].

The results show that the model works with a single
edge. Since the diffraction model is formulated so that
it fits to the acoustics radiance transfer method [1], arbi-
trarily complicated models, within the limits of compu-
tational resources, can be modeled without changes in
the presented model. Since the contributions are stored
in the BRDFs attached to edge segments, the computa-
tion can be broken apart into iterative steps. Future
research may show how to attach these steps to the
iterative propagation in the acoustic radiance transfer
method so that the computation converges.

6 Conclusion

The room acoustics rendering equation, representing all
the effects of the geometrical acoustics, is generalized so
that also diffraction can be taken into account. This is
done by adding a general correction term to the equa-
tions. The choice of the diffraction model is free, but in
this paper a Biot-Tolstoy-based solution is given. The
results produced by this model in a case of a simple
wedge are compared to those produced by the model
of Svensson et al. [4]. In general, the agreement be-
tween the results is good, with minor exceptions caused
by discretization error in the acoustic radiance transfer
method. The method can be used in the case of more
complicated models also.
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Figure 2: The results evaluated at several receiver points. The blue curve is prodoced by the acoustic radiance
transfer method and the green curve by the Svensson et al. model. The figures for the receiver angles from 30

degrees to 240 degrees with a 30-degree step.
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