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Abstract

We propose a deep learning method for 3D volumetric reconstruction in low-dose
helical cone-beam computed tomography. Prior machine learning approaches
require reference reconstructions computed by another algorithm for training. In
contrast, we train our model in a fully self-supervised manner using only noisy 2D
X-ray data. This is enabled by incorporating a fast differentiable CT simulator in
the training loop. As we do not rely on reference reconstructions, the fidelity of
our results is not limited by their potential shortcomings. We evaluate our method
on real helical cone-beam projections and simulated phantoms. Our results show
significantly higher visual fidelity and better PSNR over techniques that rely on
existing reconstructions. When applied to full-dose data, our method produces
high-quality results orders of magnitude faster than iterative techniques.

1 Introduction

Computed tomography (CT) is a versatile medical imaging technique for producing tomographic
images of body tissues from two-dimensional X-ray projections. Modern systems reconstruct a 3D
volume instead of individual 2D slices, so that various cross-sections can be examined easily. For
medical CT scans, the most popular mode of acquisition is moving a point-like radiation source and a
2D X-ray detector along a helical trajectory. Reconstructing tomographic volumes from such helical
cone-beam (CB) data is a challenging inverse problem whose difficulty is further exacerbated by the
increased noise inherent to scans taken using low radiation doses. Yet, as CT uses ionizing radiation,
minimizing the dose is of paramount importance when operating with living subjects.

There has been increasing interest in applying machine learning methods to the reconstruction
problem. Yet, previous approaches all share a potentially significant shortcoming: They rely on
the results of traditional reconstruction algorithms as training targets (“process the input so that
it matches this reference reconstruction”), and often also as model inputs (“improve this existing
reconstruction”). Clearly, if the targets contain systematic errors, the model will inherit those errors.

We present a deep learning method for CBCT reconstruction with an unprecedented combination
of desirable properties: It has the same benefits as other machine learning methods, including high
inference speed and the ability to learn from data, but at the same time, it avoids the need for reference
reconstructions through the use of a novel simulator-based self-supervised training scheme.

Similar to prior work, we base our method on the classical weighted filtered backprojection algorithm
(wFBP) [1] and introduce learned components in crucial points to enable the use of data-driven priors
for reducing noise and correcting any remaining approximation errors. Our model reconstructs a full
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3D volume in a single forward pass based on the thousands of raw 2D X-rays (i.e., the sinogram)
taken from it, guaranteeing tomographic consistency along all axes and improving the quality of
coronal and sagittal cross-sections. As no iterative refinement is required, the technique is very fast.

In a crucial step beyond prior work, we train our model to maximize data consistency in the 2D
projection domain. This is enabled by incorporating a differentiable CT simulator in the training loop:
Intuitively, the output volume is good when simulated X-rays from it look similar to real held-out
X-rays from the respective training data scan. The training process is self-supervised in the sense
that it requires no reference data besides the noisy 2D projections. This means that the achievable
output quality is not limited by the quality of, e.g., clean reference data or a reference reconstruction
method. While projection consistency is often employed by iterative methods (e.g., [2, 3]), it has, to
our knowledge, not been utilized as a training objective in learned end-to-end reconstruction before.
This may be due to the formidable memory and computation requirements posed by the training-time
backpropagation through the processing of thousands of input X-rays in each iteration. Indeed, one
of our contributions is to show that this is possible in the first place through gradient checkpointing,
sparse backpropagation, custom CUDA kernels, etc.

We present a suite of results that demonstrates clear benefit from the self-supervised training of the
full sinogram-to-volume model, as opposed to using classical reconstructions as training targets
and/or inputs. The benefits are further corroborated by considerable PSNR improvements on synthetic
phantoms where a ground truth volume is available. Although our main focus is on low-dose inputs,
our method can be applied to full-dose data as well. In these cases, our method produces high-quality
solutions orders of magnitude faster than iterative techniques.

Project page with supplemental results is available at https://users.aalto.fi/~kosomao1/
self-sup-ct/

2 Previous work

Mathematically exact tomography reconstruction algorithms for helical CBCT are known only
in the limit of infinitely fine discretization and perfect sampling [4]. In the practical case, all
known feedforward methods are approximate. This has given rise to a large family of iterative
techniques that directly optimize the volume to minimize a projection consistency loss — difference
between synthetic X-rays computed from the volume and the input X-rays — employing sophisticated
regularization to deal with the severe ill-conditioning [2, 3]. Unfortunately, iterative techniques are
orders of magnitude slower than feedforward methods.

FBP and wFBP. Most non-iterative methods in wide use are based on filtered backprojection
(FBP) [5] and particularly its weighted variant (wFBP) [1]. The basic idea is to “pull” the input
X-ray projections back from the sensor onto the voxel grid along straight lines — the origin of the
term “backprojection” — and average the results, after first applying a linear ramp filter to counteract
the overrepresentation of low frequencies that the average would otherwise exhibit. To handle the
challenging CBCT case, methods in this family rebin and reweight the projections to approximate
a more tractable projection geometry. Despite the much greater efficiency compared to iterative
techniques, these approximations cause characteristic artifacts. We seek a feedforward method as
efficient as wFBP but without its flaws, and therefore concentrate on prior feedforward methods.

Machine learning methods. A growing body of research applies machine learning to CT recon-
struction. To our knowledge, all prior work on feedforward reconstruction is based on supervising a
model with the result of an existing (non-learned) technique, typically wFBP. Many techniques take
an existing low-quality volume and attempt to remove artifacts and noise from it by a neural network
that is trained to match a high-quality reference volume (e.g., [6, 7]). The input and target volumes
are typically obtained by running wFBP on matching low-dose and full-dose scans, respectively.
Another branch of techniques operates directly on the raw input projections, but still supervises the
reconstruction by a wFBP reference (e.g., [8, 9]). Some previous works employ the Noise2Noise
principle [10] in an attempt to mitigate the lack of ideal, noise-free target volumes [11, 12, 13]. This
entails splitting the input projections into two sets and computing the wFBP target from projections
that are not used as model inputs. Some techniques employ adversarial losses to mitigate the blurring
caused by minimizing MSE [14, 15, 16]. The apparent increase in detail comes at the risk of introduc-
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Figure 1: Our pipeline, consisting of a combination of learned (green) and �xed-function (blue)
components, reconstructs a 3D voxel volume directly from a set of raw cone-beam projections.

(a) Geometric setup (b) Training

2D network input 2D network output

3D network input 3D network output

(c) Inputs & outputs of the learned networks

Figure 2: (a) The scanner travels along a helical trajectory, capturing cone-beam projections at regular
intervals with the positions of the X-ray source depicted by the blue dots. During inference, we
reconstruct the full volume using all projections. (b) For training, we randomly choose a smallz
range (gray) corresponding to a single a rotation of the scanner, and use the projections that intersect
it as either inputs (blue) or targets (orange). (c) The 2D network turns the log-space projections into
feature maps for further processing. The 3D network outputs the �nal reconstructed volume.

ing spurious features not actually present in the input data. All these techniques share the common
shortcoming that the systematic errors in the wFBP training targets limit the �delity of the results.

Simulator-based supervision. Using explicit simulation of the physical process that produces
the measurements, many classical inverse problem solvers — including iterative CT reconstruction
methods — seek a solution that gives rise to the same measurements under the simulation as those
observed in reality. We note that this concept has also been applied in other branches of deep learning.
For example, neural radiance �elds (NeRF) [17] make use of differentiable volume tracing operations
to seek a view-dependent 3D volume that explains the observed photographs. Similar ideas have
been applied to, e.g., material appearance and illumination recovery [18, 19, 20], neural control of
physical simulations [21, 22], neural image restoration through differentiable image corruptions [23],
and joint design of optics and neural image reconstruction [24].

3 Our reconstruction pipeline

We combine the ef�ciency of wFBP with the high �delity of iterative techniques through a careful
combination of learned and �xed-function components, trained with a differentiable CT simulator to
encourage synthetic projections from the reconstructed volume to match the actual input projections.
Coupled with simple augmentations and a randomized leave-out strategy, this gives rise to consistent,
high-quality reconstructions without relying explicit volume priors. We will �rst walk through our
pipeline in detail, and then describe our self-supervised training setup in Section 4.

The overall structure of our reconstruction pipeline, illustrated in Figure 1, is shared with wFBP (cf.
Section 2). There are four major deviations: a 2D pre-processing neural network for the raw 2D X-ray
images, a learned linear ramp �lter, a differentiable CB backprojection operator, and a 3D neural
network to produce the �nal volume. A key bene�t of our design is that it can be easily adapted to any
acquisition setup with variable number of projections, spacing of the helical trajectory, and radiation
doses, with the learned components complementing the �xed backprojection in a data-driven manner.
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3.1 Pipeline walkthrough

Geometric setup. We target the standard CBCT setting, illustrated in Figure 2a, where a radiation
point source and a sensor grid travel along a helical trajectory. They capture a sequence of 2D
projections that measure the attenuation along each ray within the cone as it penetrates the volume.
In our experiments, each scan consists of 9,000–15,000 projections stored at 736� 64 resolution, so
that each volume reconstruction is based on roughly half a gigapixel of X-ray images.

2D network. Given a set of projections as an input, we �rst feed each of them through a learned
2D neural network that outputs a single-channel feature map in the same spatial resolution as the
input. While the network has no other task than to prepare the projections for subsequent processing,
we observe that it learns to perform 2D denoising to the inputs (Figure 2c). We visualize the resulting
feature map in false color, as it is not guaranteed to be in interpretable units. While we could output a
higher number of feature maps from the model, we have observed no bene�t in doing so.

Learned ramp �lter. Next, to prepare for the backprojection operator that transfers the projection
information from 2D to 3D, we �lter the projections along the cone-beam rows using a learned ramp
�lter. This is implemented as a convolution with a one-dimensional kernel that is twice as wide as the
input projections. The �lter taps are initialized to the inverse Fourier transform of the desired ramp
frequency response, following wFBP, but they are treated as learnable parameters during training.
This allows the pipeline to adjust the frequency spectrum of the projections to facilitate the later
operations; in practice, we have observed that the ramp �lter changes very little during training.

Differentiable backprojection. To transfer the 2D feature maps into the 3D volume, we pass
each of them to a �xed-function differentiable backprojection operator that accumulates log-space
attenuation to all voxels intersected by the cone-beam in question. In contrast to wFBP, we perform
backprojection directly using cone-beam geometry — i.e., along lines that connect sensor pixels with
the radiation source — without rebinning to parallel beam projections �rst.

The backprojected value for a voxel is obtained by �rst projecting its center onto the 2D sensor
using the radiation source as the center of projection, and then interpolating along the sensor's pixel
grid. The projection lines converge onto the radiation source, which causes the local frequency
content of the backprojected signal to vary signi�cantly: Close to the source, the projection lines are
packed densely, while near the sensor their spacing is sparser. As using a voxel grid �ne enough
to capture the densest beam bundles is impractical, we carefully anti-alias the result to ensure the
backprojected signal can be represented by the voxel grid faithfully, following the standard Shannon–
Nyquist sampling and reconstruction theory [25]. In practice, we ef�ciently approximate the required
pre-�ltering throughmipmapping[26], a technique common in computer graphics. Further details
are given in Appendix C. Following Stierstorfer et al. [1], we apply a cosine-tapered weight function
to detector rows and normalize each voxel by dividing the accumulated value by the total weight of
contributing backprojections. Compared to wFBP, our wider taper (Q = 0 :8) and lack of rebinning
results in stronger spiral artifacts, but we �nd them to be easily corrected by subsequent processing.

Learned 3D processing. As the �nal step of the reconstruction pipeline, we pass the volume
through a learned 3D network that outputs a voxel grid in log-attenuation space (Figure 2c). As
its receptive �eld is relatively large, it can correct for blur, spiraling, and other artifacts caused
by the earlier stages. In practice, the voxel resolution of our �nal reconstruction varies between
576� 576� 272 and 1024� 1024� 644, depending on the case.

3.2 Network details

We use U-Nets [27], i.e., autoencoders with skip connections, for the 2D and 3D networks as they
have been shown to perform well on a variety of tasks including denoising and removal of image
artifacts [28]. Our 2D network architecture matches the one used by Lehtinen et al. [10]. The 3D
network is similar, except that the intermediate channel counts have been halved to conserve memory,
and 3� 3 convolution kernels have been replaced with 3� 3� 3 kernels to enable volume processing.
Network weights were initialized using He initialization [29].
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Figure 3: We employ a self-supervised training setup that does not require reference data. In each
iteration, we select a handful of target projections from a randomly chosen rotation of the scanner
and feed the remaining ones as inputs to our pipeline (Figure 1). Based on the resulting volume, we
simulate projections from the same locations as the targets, and minimize their weighted difference.

4 Training

We now turn to training the learned 2D neural network, ramp �lter weights, and 3D neural network.
We train the pipeline in an end-to-end fashion, meaning that only the �delity of the �nal reconstruction
provides the signal that guides the components to a joint optimum. We describe the overall architecture
of the self-supervised loss function and training loop in Section 4.1, deal with photon noise in the
training data in Section 4.2, and discuss projection simulation and the remaining challenges in
Section 4.3. The training process is illustrated in Figure 3.

4.1 Simulator-based self-supervision

To enable training without known reference 3D volumes, we combine a projection consistency loss,
similar to many iterative reconstruction techniques, with a leave-out strategy that resembles cross
validation: A volume reconstruction is considered faithful if left-out real X-rays look the same as
simulatedX-rayscomputed using the same scanner position. A key bene�t of this approach is that it
requires no reference data in either 2D or 3D.

Each training iteration begins by selecting a random slab of the volume from a scan in the dataset, and
identifying the set of X-rays whose backprojections overlap with the slab. The set is then randomly
split into a large set ofinput projectionsand a small set oftarget projections(Figure 2b). The input
projections are fed to our reconstruction pipeline, resulting in a 3D volume. We then compute, for
each target projection, a virtual X-ray using the known positions of the radiation source and sensor
using a differentiable X-ray simulator (Section 4.3). The �nal loss function is the mean squared
error between the simulated projections and left-out target projections. As all components in the
pipeline are differentiable, the gradients of the learnable parameters are computed using standard
backpropagation, and used to train the networks with the Adam [30] optimizer.

4.2 Noisy target projections

A subtle point not addressed in the discussion above is that as we train with real X-ray data, we do not
have noise-free projections at hand, i.e., the target projections contain all forms of noise inherent to
X-ray imaging. Fortunately, this noise ful�lls the requirements for theNoise2Noiseprinciple [10] to
apply: It is zero-mean and uncorrelated between the inputs and outputs, as noise realizations between
different X-ray images are independent. Accordingly, the noise “averages out” when the model is
trained with the noisy targets andL 2 loss, and given enough data, the model converges to the same
optimum as though it were trained with clean targets.

The requirement that the noise in the model inputs must be uncorrelated with training targets is also
the reason behind the leave-out strategy of not using target projections as model inputs. If this is not
met, the quality of the results deteriorates dramatically, as we demonstrate in Appendix B. While
the leave-out strategy leaves gaps in the set of input projections during training, we have found the
impact of these gaps to be negligible as long as the number of target projections is kept small. For
each training iteration, we use approx. 7000 input projections and 12 target projections.

An important detail to consider is that the noise in the acquired 2D projections is zero-mean in photon
intensity, but not in log-attenuation because of the nonlinear transformation. As such, to use noisy
training targets, we must compute theL 2 loss in photon intensity space. This, however, has the severe
problem that pixels with high photon counts, i.e., low attenuation, have exponentially larger effective
weight in the overall loss function than highly attenuated pixels, which is at odds with the practice of
viewing the results in log-attenuation space. Therefore, we scale the photon-intensityL 2 loss so that
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