Deterministic subgraph detection in broadcast CONGEST

Janne H. Korhonen · Aalto University
Joel Rybicki · University of Helsinki
1. Introduction
Introduction:

CONGEST model

- CONGEST model
 - n nodes, connected by communication links
 - unique identifiers, synchronous communication
 - unlimited local computation
 - message size $O(\log n)$ bits/round
 - time measure: number of rounds
Introduction:

CONGEST model

- CONGEST model
 - n nodes, connected by communication links
 - unique identifiers, synchronous communication
 - unlimited local computation
 - message size $O(\log n)$ bits/round
 - time measure: number of rounds

- Upper bounds: broadcast CONGEST
- Lower bounds: unicast CONGEST
Introduction:

Subgraph detection

- H-subgraph detection problem
 - given a fixed pattern graph H on k nodes
 - does the network G contain H as a subgraph?

- triangle detection, cycle detection, clique detection, …
Introduction:

Subgraph detection

• Detection:
 • if node belongs to a copy of H, output one copy of H

• Listing/enumeration:
 • all copies of H are a part of some node’s output
Introduction:

Subgraph detection

- H has constant size k
 - In LOCAL: $O(1)$ for any H trivially
 - In CONGEST: trivial upper bound $O(n^2)$
Introduction:

Prior work

• Upper bounds
 • triangle finding in $\tilde{O}(n^{2/3})$ rounds [Izumi & Le Gall, PODC 2017]
 • triangle enumeration in $\tilde{O}(n^{3/4})$ rounds [Izumi & Le Gall, PODC 2017]
 • 4-cycle finding in $O(n^{1/2})$ rounds [Drucker, Kuhn, Ostmann, PODC 2014]
 • clique enumeration in $O(n)$ rounds (trivial)

• Lower bounds
 • k-cycles (k even) $\tilde{\Omega}(n^{2/k})$ rounds [Drucker, Kuhn, Ostmann, PODC 2014]
 • k-cycles (k odd, $k \geq 5$) $\tilde{\Omega}(n)$ rounds [Drucker, Kuhn, Ostmann, PODC 2014]
 • triangle enumeration $\tilde{\Omega}(n^{1/3})$ rounds [Izumi & Le Gall, PODC 2017]
Prior work, DISC 2017

Appearing together as *Three notes on distributed property testing*, DISC 2017.

- tree detection in $O(1)$ rounds
Our Results: Overview
Results 1:

Finding Trees and Cycles

- **Upper bounds**
 - k-trees in $O(1)$ rounds*
 - k-cycles in $O(n)$ rounds
 - k-pseudotrees (tree + 1 edge) in $O(n)$ rounds

- **Lower bounds**
 - k-cycles (k even) require $\Omega(n^{1/2}/\log n)$ rounds
Results 1:

Finding Trees and Cycles

• Upper bounds
 • k-trees in $O(k2^k)$ rounds*
 • k-cycles in $O(k2^kn)$ rounds
 • k-pseudotrees (tree + 1 edge) in $O(k2^kn)$ rounds

• Lower bounds
 • k-cycles (k even) require $\Omega(n^{1/2}/\log n)$ rounds
Results 1:

Finding Trees and Cycles

• Some tight results…
 • trees in $O(1)$ rounds
 • odd cycles are $\tilde{\Theta}(n)$

• …and some not tight
 • gap for even cycles between $O(n)$ and $\tilde{\Omega}(n^{1/2})$
Results 2:

Enumeration in sparse graphs

- does it help if the input graph G is sparse?

- notion of sparseness: bounded degeneracy
 - input graph G with degeneracy d
 - degeneracy \approx arboricity
Results 2:

Enumeration in sparse graphs

- **Upper bounds**
 - k-cliques and 4-cycles in $O(d + \log n)$ rounds
 - 5-cycles in $O(d^2 + \log n)$ rounds

- **Lower bounds**
 - finding 4-cycles and 5-cycles requires $\tilde{\Omega}(d)$ rounds
 - bounded degeneracy does not help with 6-cycles
 - need $\tilde{\Omega}(n^{1/2})$ rounds on graphs with degeneracy 2
Our Results:
Finding Trees and Cycles
Technical tool:

Representative families

• Well-known algorithmic technique
 • used in centralised fixed-parameter algorithms for subgraph detection
 • running times of type $2^{O(k)} \cdot \text{poly}(n)$
 • compare with other FPT techniques: colour-coding, polynomial sieving,…

• Pierre Fraigniaud, Pedro Montealegre, Dennis Olivetti, Ivan Rapaport, and Ioan Todinca.
explicit construction of all partial subtrees

+ “filtering” with representative families
\(O(k2^k) \cdot n = O(k2^k n) \)

\(O(k2^k) \cdot n = O(k2^k n) \)
\[\Omega(n^{1/2}/\log n) \]
very standard communication complexity reduction
4.

Our Results:
Enumeration in sparse graphs
$O(d + \log n)$

$O(d^2 + \log n)$
Preliminaries:

Degeneracy

• The following are equivalent:
 • graph G has degeneracy d
 • graph G has acyclic orientation with out-degree d
Preliminaries:

Degeneracy

- The following are equivalent:
 - graph \(G \) has degeneracy \(d \)
 - graph \(G \) has acyclic orientation with out-degree \(d \)

- acyclic orientation with out-degree \(O(d) \) can be found in \(O(\log n) \) rounds [Barenboim & Elkin 2010]
Basic idea: all nodes broadcast their outgoing edges $(O(d))$ rounds
Basic idea: all nodes broadcast their outgoing edges ($O(d)$ rounds)
Basic idea: all nodes broadcast their outgoing edges ($O(d)$ rounds)
Basic idea: all nodes broadcast their outgoing edges \((O(d))\) rounds)
Basic idea: all nodes broadcast their outgoing edges \((O(d))\) rounds

cliques: the sink will see all edges
Basic idea: all nodes broadcast their outgoing edges \((O(d))\) rounds

cliques: the sink will see all edges
Basic idea: all nodes broadcast their outgoing edges ($O(d)$ rounds)

4-cycles: some node will see all edges (3 cases to consider)
Basic idea: all nodes broadcast their outgoing edges ($O(d)$ rounds)
Basic idea: all nodes broadcast their outgoing edges ($O(d)$ rounds)
Basic idea: all nodes broadcast their outgoing edges \((O(d))\) rounds
Basic idea: all nodes broadcast their outgoing edges ($O(d)$ rounds)
Basic idea: all nodes broadcast their outgoing edges $(O(d))$ rounds

4-cycles: some node will see all edges (3 cases to consider)
Basic idea: all nodes broadcast their outgoing edges ($O(d)$ rounds)

5-cycles: broadcast outgoing 2-paths ($O(d^2)$ rounds)
$\Omega(d/\log n)$

no degeneracy upper bound
5. Conclusions
Conclusions:

General upper/lower bounds?

• General question: given arbitrary H, what is the complexity of detecting H?
 • general upper bound $O(n)$?
 • connection to tree-width: trees 1, cycles 2, …?

• Special cases:
 • triangles: ???
 • even cycles: gap between $O(n)$ and $\Omega(n^{1/2})$
Conclusions:

General upper/lower bounds?

• Graphs requiring $\Omega(n^{2-\varepsilon})$ rounds for any $\varepsilon > 0$
 • diameter 3 [Fischer, Gonen & Oshman 2017]
 • tree-width 2 [our work]

$\Omega(n^{2-1/2})$ $\Omega(n^{2-1/3})$ $\Omega(n^{2-1/4})$ …
Conclusions:

General upper/lower bounds?

• Graphs requiring $\Omega(n^{2-\varepsilon})$ rounds for any $\varepsilon > 0$
 • diameter 3 [Fischer, Gonen & Oshman 2017]
 • tree-width 2 [our work]

• Corresponding upper bound?
 • lower bound $\Omega(n^2/polylog n)$ does not seem possible with standard techniques
 • conjecture: for any H, some $O(n^{2-\varepsilon})$ upper bound
Thanks! Questions?