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Fig. 1. We present the first full-body physically simulated AI player for VR games, demonstrated in simulated playtesting of Beat Saber maps.

We present Robo-Saber, the first physics-based character control system
capable of playing Beat Saber, a popular VR game that requires complex
and spatio-temporally precise full-body movements. Our technical solu-
tion combines 1) a custom kinematic generative model for the three-point
(3𝑝) movements of the VR headset and hand trackers and 2) a 3𝑝 tracking
controller for reconstructing the movements of the player’s body in a physi-
cally plausible manner. A GPU-accelerated game simulator is incorporated
in the inference loop to evaluate and select among multiple candidate 3𝑝
trajectories, improving generalization. By training our model on the large
BOXRR-23 dataset, our system is able to exhibit expert-level gameplay be-
havior and physically plausible movements that generalize to new game
maps. We demonstrate Robo-Saber’s utility for user modeling by building an
AI-augmented collaborative filtering model for predicting human players’
scores on novel Beat Saber maps for which no human score data is given.
Our results suggest that our framework could assist the designers of novel
VR game levels and enhance game curriculum design and personalization
for VR experiences beyond Beat Saber.
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1 Introduction
Simulating human perception and motor control is a common prob-
lem in computer animation and robotics that has recently found new
applications in computational user modeling, e.g., automatic testing
of gestural user interfaces and virtual reality (VR) games [Fischer
et al. 2024; Ikkala et al. 2022]. The key promise of user modeling
is that designers can employ the models instead of (or in addition
to) human users to get faster, cheaper, and/or better feedback about
their ideas and prototypes. Furthermore, if obtaining such feedback
can be automated, designers may also employ computational op-
timization and design techniques in new domains, the objective
functions defined in terms of data produced by the user models.
Until now, user modeling research has tackled problems with

limited or no embodiment, e.g., predicting the difficulty of mobile
games using an AI player that directly generates touchscreen in-
teraction events without simulating the human hand [Kristensen
et al. 2020; Roohi et al. 2021, 2020], or simulating touchscreen typing
using a simplified model of finger movements [Shi et al. 2025]. In the
rare systems featuring intelligent control of an actual physical or
biomechanical simulation model, the focus has been on simulating
only a single arm [Cheema et al. 2020; Fischer et al. 2024; Ikkala et al.
2022]. Thus, building a full-body physically simulated user model for
embodied interaction has remained an open challenge, holding back
developers of VR games, for instance.
Towards solving this challenge, we propose and evaluate Robo-

Saber, the first full-body, physically simulated player for a VR game
that requires complex and spatio-temporally precise full-body move-
ments. Our testbed VR game of choice is Beat Saber [Beat Games
2019], currently the most popular VR application to date [Wöbbek-
ing 2022]. Due to the popularity of Beat Saber, a large dataset com-
prising human gameplay samples is available: BOXRR-23 [Nair et al.
2023a], making the game a uniquely ideal candidate that allows
validating the user modeling results with ground truth human data.
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Fig. 2. Left: System overview. First, an autoregressive three-point (3𝑝) kinematic generative model generates candidate future trajectories for the HMD, LHC,
and RHC, conditioned on game state. The best 3𝑝 trajectory is then selected based on simulating the game forward. Finally, a physics-based 3𝑝 tracking
policy synthesizes full-body movements. Right: Our implementation of categorical codebook matching [Starke et al. 2024] features a transformer architecture
and a modified loss function based on Jensen-Shannon divergence.

Robo-Saber combines a high-level kinematic planner based on au-
toregressive motion generation and a low-level physics-based track-
ing controller, which altogether constitute a full-body, free-standing
humanoid control policy that observes game state information and
produces game-playing movements. We validate Robo-Saber’s out-
put movements by simulating the gameplay and comparing its per-
formance against that of real human players, showing that Robo-
Saber generates plausible and skilled game-playing movements.
Leveraging Robo-Saber for automated playtesting, we demonstrate
the first system forAI-augmented personalized score prediction for a
VR game, where a player’s score for brand-new/never-played maps
can be predicted without involving real human players.
We summarize our contributions as follows:

• The first full-body physics-based AI playtesting framework
for VR games.Our framework incorporates kinematic 3𝑝 motion
generation and full-body physics-based tracking. In so doing, we
produce full-body gameplay movements that empirically demon-
strate expert-level performance.

• Demonstration of in silico VR user modeling application:
personalized score prediction. We apply our framework to
enable AI-augmented user modeling, demonstrated in our per-
sonalized score prediction (PSP) model based on collaborative
filtering for Beat Saber (Sec. 6 and Fig. 6). The prediction perfor-
mance is further enhanced by our system’s output performance
diversity owing to physical constraints and emulated limits to
planning ability. Our success with PSP shows promise for down-
stream applications such as content curation and game curriculum
design.

• Improving generalization with game simulation in sam-
pling.Akin to the sampling-basedmodel predictive control (MPC)
framework (e.g., [Hämäläinen et al. 2014]), our Gumbel-Softmax
VAE system samples and selects among multiple candidate 3𝑝 tra-
jectory samples, enabled by our custom gameplay simulator that
leverages a vectorized collision detection algorithm running on
GPU (Sec. 4.2). This reward-based candidate trajectory is decou-
pled from the generative model training, enhancing the flexibility

of our framework. We demonstrate that a simple reward-based
selection greatly improves generalization (Sec. 5 and Fig. 4).

2 Related Work
Generative models for motion and VR. The availability of annotated
human motion data has enabled impressive progress in kinematic
motion generation approaches. Previously, conditional generative
techniques have been applied to solve controllable and interactive
motion synthesis (e.g., [Holden et al. 2017; Ling et al. 2020; Shi et al.
2024; Tevet et al. 2023; Zhang et al. 2018]). A key consumer of motion
generation techniques is virtual reality (VR), whose applications are
actively being researched and developed. For VR, motion generation
often incorporates three-point (3𝑝) pose data, as most consumer-
grade VR equipment allows tracking the movement of a headset and
two handheld controllers. Much of the prior work targets the task
of synthesizing full-body pose to be displayed in VR (e.g., [Barquero
et al. 2025; Du et al. 2023; Starke et al. 2024; Ye et al. 2022]), which can
learn 3𝑝-to-full-body correspondence from even non-VR-specific
datasets. However, as movements in VR games are responses to
specific tasks (e.g., swinging arms to combat an enemy), modeling
3𝑝 movements as intentional behaviors require conditioning on
game input. Towards this end, the BOXRR-23 dataset [Nair et al.
2023a] provides 3𝑝 trajectories for well-known VR games including
Beat Saber. In this work, we exploit the vast availability of Beat
Saber-specific 3𝑝 pose data from BOXRR-23 and an open-source
custom map database BeatSaver [2021], aligning game and pose
data to formulate a conditional generation task to produce full-body
movements from game states. To the best of our knowledge, our
work is the first attempt at this conditional generation problem.

Physics-based tracking controllers. Physics-based character anima-
tion has become a predominant paradigm for natural and plausible
motion synthesis. While difficult to learn from scratch, data-driven
methods such as imitation learning (e.g., [Peng et al. 2018, 2022,
2021]) have shown great promise in learning to control humanoids
from demonstrations. Using demonstration data also enables track-
ing controllers for sparse pose inputs (e.g., [Reda et al. 2022; Winkler
et al. 2022]), which can synthesize physically based movements from
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VR controller motion input. Recent advances have shifted focus to-
ward creating more generalist tracking policies (e.g., [Luo et al.
2023a,b]) for building simulated character controllers that can track
a variety of target poses. We build on Perpetual Humanoid Control
(PHC, Luo et al. [2023a]) which is trained in an adaptive curriculum
over the AMASS [Mahmood et al. 2019] dataset; namely, PHC’s 3𝑝
tracking module is used to track the generative model’s 3𝑝 motion
output with full-body actuations, such that the physically simulated
character performs a corresponding motion. As described in later
sections, we adopt PHC while fine-tuning the 3𝑝 tracking policy
with custom, Beat Saber-playing full-body motion capture data.

User modeling. Computational user models have gradually pro-
gressed from simple decision making such as puzzle games [Gud-
mundsson et al. 2018; Roohi et al. 2020] to embodied interactions
[Cheema et al. 2020; Ikkala et al. 2022; Jokinen et al. 2021] and
modeling the effects of fatigue [Cheema et al. 2020, 2023]. Recently,
Fischer et al. [2024] presented Sim2VR, a user model for VR interac-
tion tasks, albeit only focusing on modeling a single arm. We test
Robo-Saber in game score prediction, which is closely related to
difficulty prediction, a common user modeling task [Gudmundsson
et al. 2018; Kristensen et al. 2022; Poromaa 2017; Roohi et al. 2021,
2020]. Kristensen et al. [2022] demonstrated that personalized diffi-
culty prediction can be implemented using factorization machines
for a given game level and player, based on the performance of other
players on the level in question. We extend their approach, utilizing
AI players to allow score predictions for levels that no human player
has yet tested.

3 Preliminaries

3.1 Beat Saber: a VR Rhythm Game
In Beat Saber, the player swings hand-held virtual sabers to cut each
colored note with the correct hand and in the correct direction, while
avoiding bomb notes with the sabers and obstacles with the head.
Often referred to as an exergame, Beat Saber has been shown to
have health benefits similar to traditional physical exercise [Thai
2021], as well as measurable cognitive benefits [Grosprêtre et al.
2023]. Beat Saber has also been proposed as a form of neurological
music therapy for Parkinson’s disease [Ruhf 2020].
Beat Saber’s overwhelming popularity is partly owed to its cul-

ture of user-created content, comprising over 100, 000 custom maps
authored by online creators referred to asmappers [Nair et al. 2023b].
Mappers have creative freedom to choreograph interesting and com-
plex patterns that encourage a variety of movements from flowing
dance-like motions to rapid striking motions. While each map is
manually assigned an overall difficulty rating among Easy, Normal,
Hard, Expert, or Expert+, in practice, human play is required to
assess a map’s actual difficulty. This is particularly so for maps in-
tended for advanced players as these maps often creatively break
guidelines. Moreover, the experience of difficulty levels is often sub-
jective: a player might find a particular map easier or harder than
how an average player would experience it, based on their particular
gameplay history and playstyle. These pain points lead to difficulties
in curating the vast game content, despite Beat Saber being a skill-
intensive game that could be served better with recommendations
according to a more objective criterion. In this work, we propose the

use of a playtesting agent in conjunction with collaborative filtering
to perform personalized score prediction, showing promise towards
this direction.

3.2 Three-Point (3𝑝) Tracking
A typical consumer-grade VR controller comprises three-point (3𝑝)
pose input, i.e., three rigid body entities, each with 6 degrees of
freedom, corresponding to the head-mounted display (HMD), the
left-hand controller (LHC), and the right-hand controller (RHC).
More formally, a 3𝑝 motion segment of𝑇 frames is denoted as p𝑡 :𝑡+𝑇 ,
each p𝑡 consisting of pose features, i.e., position and orientation, for
each of HMD, LHC, and RHC.

Recent work involves the use of a reinforcement learning-based
goal-conditioned control policy treating 3𝑝 poses as reaching targets
(e.g., [Reda et al. 2023; Winkler et al. 2022]). For a physically simu-
lated humanoid agent, the goal-conditioned controller 𝜋 samples
actuations for its full body by taking a target 3𝑝 pose p𝑡 as its goal:

a𝑡 ∼ 𝜋 (· | s𝑡 , p𝑡 ) (1)

where a𝑡 is the action directing the agent’s movement and s𝑡 is the
agent’s state at timestep 𝑡 .

3.3 Conditional Autoregressive Motion Generation
Motion generation can be formulated as an autoregressive process,
whereby a learned model maps preceding poses to the distribution
of future poses, hence modeling valid pose transitions according
to the training data. In our case, at each timestep, our objective is
to generate a multiple timesteps’ worth of pose output, given the
information about game objects and the history of pose. Formally,
suppose we have ℎ frames for the input history: p𝑡−ℎ:𝑡 and𝑇 frames
for the output chunk: p𝑡 :𝑡+𝑇 . At timestep 𝑡 , the generative model
samples the chunk as

p̂𝑡 :𝑡+𝑇 ∼ 𝑝 (p𝑡 :𝑡+𝑇 | p𝑡−ℎ:𝑡 , x𝑡 ) (2)

where p̂𝑡 :𝑡+𝑇 denotes the sampled chunk and x𝑡 denotes the ob-
served game state at timestep 𝑡 . p̂𝑡 :𝑡+𝑇 can then be used to play
the game. In autoregressive generation, the last ℎ frames of the
generated output are taken as input for the next step’s generation.

4 Method
As illustrated in Fig. 2, we combine a kinematic motion generation
model and a physics-based 3𝑝 tracking controller to implement a
physically simulated character capable of playing Beat Saber with
full-body movements. The kinematic model receives game state fea-
tures as input, such as incoming colored notes, bombs, and obstacles,
and then generates a movement plan for the 3𝑝 body parts in an
autoregressive manner. Building on [Starke et al. 2024]’s use of a
Gumbel-Softmax VAE, the model allows for conditional generation
of multiple candidate 3𝑝 movement plans. The movement plans are
then evaluated via gameplay simulation, after which the plan pro-
ducing the highest score is selected. The selected output is given to
the physics-based controller, which actuates a full-bodied physically-
simulated humanoid character to follow the target kinematic plan.
The physics-based controller is constructed by fine-tuning the 3𝑝
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variant of PHC [Luo et al. 2023a] on a small custom dataset of full-
body Beat Saber gameplay we captured with an expert player, to
augment the 3𝑝 motion data available in BOXRR-23.

4.1 Categorical Codebook Matching
As illustrated on the right in Fig. 2, we tackle our conditional 3𝑝 mo-
tion generation process by producing a latent embedding sequence
based on the inputs, and then predicting the logits of the correspond-
ing categorical distribution as the target, as an implementation of
categorical codebook matching (CCM, Starke et al. [2024]).
More formally, the 3𝑝 movement chunk p𝑡 :𝑡+𝑇 of length 𝑇 is

mapped to the logits z3p𝑡 . The logits are reshaped into that of a joint
categorical distribution consisting of 𝐶 channels of 𝐷 categories.
With Gumbel-Softmax sampling, we produce from this distribution
one-hot sequences of length𝐶 , each row corresponding to an integer
in {1, 2, · · · , 𝐷}. With straight-through estimation (STE), the one-
hot samples retain their gradients through the reparameterized
Gumbel sampling procedure [Jang et al. 2017]. The resulting one-
hot samples are then decoded back to reconstruct the input 3𝑝
movement chunk p𝑡 :𝑡+𝑇 . Hence, the Gumbel-Softmax VAE’s auto-
encoding loss is simply the mean squared-error (MSE) loss between
the original and reconstructed input, i.e.:

LRecon =
1
𝑇

����p𝑡 :𝑡+𝑇 − p̂𝑡 :𝑡+𝑇
����2 (3)

To match the input control signal–the game observation in our case–
to the 3𝑝 movement chunks in data, we train a separate transformer
encoder block that maps the history of the character’s movements
and the current game observation to a separate categorical probabil-
ity distribution. Fig. 2 illustrates how the input sequences of notes,
bombs, obstacles, and 3𝑝 poses are embedded for the encoder, first
using multi-layer perceptrons (MLPs) and then adding domain and
positional encodings.

CodebookMatching via Jensen-ShannonDivergence Similar to [Starke
et al. 2024], we encourage the similarity of the two categorical dis-
tributions z3p𝑡 and zgame

𝑡 . During inference, this allows generating
3𝑝 output sequences conditioned on the game state by connecting
the 3𝑝 decoder D3p to the game state encoder Egame, i.e., omitting
the z3p𝑡 and sampling the D3p input using zgame

𝑡 .
While Starke et al. [2024] minimize L2-distances between the

𝐶 × 𝐷 one-hot samples coming from the two distributions, we in-
stead minimize the Jensen-Shannon divergence (JSD) between the
distributions. Although this alternative loss introduces a loss weight
hyperparameter to training, we note that this approach is more
grounded in principle for matching two categorical distributions.
While using the L2-distances can perform well empirically, we ob-
serve that using JSD results in a comparable performance; see Ap-
pendix C and Fig. 12 for quantitative comparisons. The JSD-based
matching loss is computed according to:

LMatch = 𝐷KL
(
z3p𝑡

����𝑃 ) + 𝐷KL
(
zgame
𝑡

����𝑃 ) (4)

where𝐷KL is Kullback-Leibler divergence between two distributions
and 𝑃 = 1

2

(
z3p𝑡 + zgame

𝑡

)
. Then, the final loss function is simply the

weighted sum of the two loss terms:

L = LRecon + 𝜆Match · LMatch (5)

We find 𝜆Match =1e-4 to be effective for our experiments.

Encoder details. The 3𝑝 pose input p ∈ R27 is represented by the con-
catenation of the global 𝑥𝑦𝑧-coordinate as well as the 6-dimensional
orientation [Zhou et al. 2019] of the three body parts (i.e., HMD, LHC,
and RHC). The features for each colored note c are simply the inte-
ger values corresponding to the position indices, note colors, and cut
direction (following the Beat Saber Modding Group–BSMG–format),
paired with the float-valued TTA in seconds, i.e., the difference
between the current timestamp and the absolute timestamp where
the note appears in the map. The absolute timestamp is computed
using the accompanying soundtrack’s tempo in beats per minute
and the note’s beat index. Each bomb b and obstacle o similarly rep-
resented by the position indices and its TTA following the BSMG
format. Each sequence can contain up to 𝑛 notes over the upcoming
𝑠 seconds of lookahead. The colored notes c1:𝑛𝑡 , the bombs b1:𝑛𝑡 , and
the obstacles o1:𝑛𝑡 , as well as the history of previous ℎ generated
poses p𝑡−ℎ:𝑡−1, are projected to the 𝑑-dimensional input space R𝑑
for the transformer to produce a latent sequence of 3𝑛 + ℎ vectors.
The note/obstacle sequences are sorted by their order of appearance
in game, and each vector receives a positional encoding based on
the number of seconds until the note/obstacle arrives at the origin
(time-to-arrival, or TTA). The pose history receives positional en-
coding based on its index. We use sinusoidal position encoding for
both. Additionally, to help separate notes, bombs, obstacles, and
history from one another, we add another layer of higher-frequency
sinusoidal encoding, which we refer to as domain encoding.
While the input latent sequence always has 3𝑛 + ℎ vectors, the

attention weights are activated only for the vectors corresponding to
the objects that appear within the model’s lookahead 𝑠 , i.e., the TTA
in seconds at which the object “appears” in the model’s purview.
In Sec. 6, the lookahead is manipulated to simulate players with
different motion planning and anticipation capabilities. Unused
vectors are masked with zero.

4.2 Candidate Trajectory Selection
A key benefit of the CVAE framework is the inference-time sam-
pling capability; for each conditional input, the user of the VAE
can sample from the corresponding latent distribution to produce
multiple viable candidate outputs. Moreover, having encoded long-
horizon movement plans, the candidate outputs can be evaluated in
a non-greedy, planning-like manner. For example. in [Starke et al.
2024], the candidate movement chunks corresponding to an input
signal were evaluated and then used in a receding horizon fashion;
only the first of the 𝑇 frames of final movement output was used
before autoregressively computing from the next input in sequence.
In our case, we leverage this by evaluating a large number of candi-
date 3𝑝 movement chunks by simulating the game forward for each
chunk. Given the predicted logits z3p𝑡 , we sample 𝑁traj candidate 3𝑝
trajectories:(

p̂𝑡 :𝑡+𝑇 𝑖
)
𝑖=1,2,· · · ,𝑁traj

∼ D
(
GumbelSoftmax

(
z3p𝑡

))
(6)
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The candidate trajectories are evaluated based on the input game
observation, which contain sufficient information for simulating the
game forward for 𝑇 frames. The highest-scoring trajectory p̂𝑡 :𝑡+𝑇 𝑖∗

is then chosen as the final output, where:

𝑖∗ = argmax
𝑖=1,2,· · · ,𝑁traj

Evaluate
(
p̂𝑡 :𝑡+𝑇 𝑖 , c1:𝑛𝑡 , b1:𝑛𝑡 , o1:𝑛𝑡

)
(7)

Unlike [Starke et al. 2024], we use the entire 𝑇 -frame prediction
without intermediate re-planning; we find the motion quality for
the 3𝑝 trajectories to be better overall for tracking when the output
chunks are coherent and continuous, albeit possibly suboptimal in
terms of gameplay.

TorchSaber: A simplified, GPU-accelerated Beat Saber simulator. As
the real game remains closed source and thus difficult to interface
with, the evaluation routine in Eq. 7 utilizes a custom simplified Beat
Saber gameplay simulator we call TorchSaber (TS). TS implements
vectorized collision detection and distance computation on PyTorch,
so that all vector operations leverage massively parallel GPU com-
pute. With TS, we can simulate and evaluate candidate trajectories,
guiding the 3𝑝 motion generation towards better gameplay and
more continuous output. Moreover, we utilize TS as a simplified
metric for user modeling experiments, as Robo-Saber’s performance
can be readily evaluated and compared to that of real human players.
As Beat Saber’s scoring criteria are intricate, we simply compute the
swing angle score for every “good cut”, i.e., collision events with cor-
rect directions and colors. The maximum score of 1 per colored note
is achieved if the correct saber’s orientations 24 frames previous
to and after the good cut are at least −100 degrees and 60 degrees,
respectively. We compute the average swing angle score and label
it the TS score to serve as a heuristic for gameplay performance
for user modeling experiments. For our validation set comprising 4
thousand samples, TS score evaluated on real player 3𝑝 movement
data exhibit a moderate Pearson correlation of 0.710 with respect to
the ground truth game score values.

Reward function. Based on TorchSaber’s simulation results, we as-
sign a reward value 𝑟𝑖 to each candidate output p̂𝑡 :𝑡+𝑇 𝑖 , as defined
below; Appendix B discusses the reward terms in more detail.

𝑟𝑖 = 𝑟TS − 𝜆Bomb · 𝑟Bomb + 𝜆Obstacle · 𝑟Obstacle (8)

• 𝑟TS ∈ [0, 1] is the TorchSaber score as defined above, calculated
for the generated poses and colored notes within range.

• 𝑟Bomb ∈ [0, 1] is the bomb collision penalty, computed as the ratio
between the numbers of bomb hits and appearing bombs.

• 𝑟Obstacle ∈ [0, 1] is the obstacle distance bonus, computed as the
minimum distance between any appearing obstacles’ 𝑦𝑧-bounds
and the head 𝑦𝑧-positions. When the head collides with an obsta-
cle, the value is set to 0.

• The 𝜆∗ values are weights corresponding to each term; see Table 1
for the values used in our experiments.

4.3 Tracking Controller
We build on a popular tracking controller for a physically simu-
lated humanoid from Perpetual Humanoid Control (PHC, Luo et al.
[2023a]). Built within Isaac Gym [Makoviychuk et al. 2021], PHC
produces full-body joint actuations that lead the robot’s head and

hands to be close in both position and rotation to the input 3𝑝 pose.
We first tested the 3𝑝 tracking variant of PHC [Luo et al. 2023a]
without modification. We found it to be unable to maintain the
character’s balance with Beat Saber-specific movements, and so we
fine-tuned the model on custom mocap sequences. An experienced
Beat Saber player performed 16 play sequences in total while wear-
ing an inertial mocap suit together with a VR headset and controllers,
covering Normal, Hard, Expert, and Expert+ difficulty levels. For
the PHC finetuning, we produced a 50-50 mixture of old training
data and new training data to prevent the pretrained controller from
forgetting its existing tracking abilities.
Taking full-body reference motions as training input, the 3𝑝

tracker is trained to jointly optimize the tracking and imitation
rewards: the former encourages the physically resulting 3𝑝 poses to
match those of the reference, while the latter encourages the agent
to produce full-body motions similar to those in the training data.
The fidelity of 3𝑝 tracking and the human-likeness of the movement
are at a tradeoff; as our system aims to produce valid gameplay
movements foremost, we use the default reward weights, which
prioritize the 3𝑝 tracking performance.

4.4 Data and Implementation Details
We use Beat Saber-specific 3𝑝 replay data from BOXRR-23 [Nair
et al. 2023a]. The 3𝑝 replay data is paired with the corresponding
map’s BSMG data [BSMG 2019] downloaded from the open-source
database BeatSaver [2021]. As a quality control measure, we remove
every data point that is missing BSMG entry or score record from
consideration. As Beat Saber features many mods and game modes,
which change the behavior of the game significantly, we simplify
our task by filtering out data points that have mods or non-standard
game modes. Additionally, corrupt data points are removed, after
which 3, 079, 180 replay sequences remain. We normalize all players’
3𝑝 𝑥𝑦𝑧-coordinates to match the height of the PHC character, which
is 1.5044𝑚 tall. The sabers are attached to the PHC character’s hands,
aligned with the direction of the fingers. We use transformer-based
architecture for the auto-encoder. Instead of processing the entire
𝑇 -frame chunks at once, we subsample the frames at a stride to
reduce from 60 frames per second (FPS) to 15, following conven-
tional practice in human motion generation. At inference time, the
keyframes are predicted and then expanded back to 60 FPS using
linear (and spherical) interpolation.

5 Experiment 1: Game Performance
Qualitative evaluation. As shown in the supplementary video, Robo-
Saber generates plausible behavior when deployed on new songs
not included in the training dataset. Figs. 7–9 show image sequences
demonstrating how Robo-Saber moves in response to the observed
colored notes, bombs, and obstacles. As our system leverages Gumbel-
Softmax VAE that encodes long-horizon motion sequences, a diverse
set of trajectories can be generated as a response to the same ob-
servation (Fig. 10). Notably, movements involving large full-body
motions emerge in situations that require drastic ducking and squat-
ting, but otherwise the physically simulated player displays efficient
side-swaying movements with the lower-body mainly balancing
upright, reflecting what a real expert player would do.
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Fig. 3. Comparison of Robo-Saber to human players on held-out maps.
The kinematic 3𝑝 trajectories score similar to humans, while the physical
trajectories score lower as expected. As explained in Sec. 6, the physical
limitations are actually beneficial for user modeling.

Quantitative evaluation. To evaluate Robo-Saboer’s playing capabil-
ity quantitatively, we use TS scores, normalized so that themaximum
score for each map is 1. For validation data, we hold out the top 300
most played maps, as well as maps that share a large pool of players
(100 total) among BOXRR-23, resulting in a validation set of 400
maps. We compare Robo-Saber’s performance with the real players
of these maps. For this, the default lookahead of 𝑠 = 2 seconds and
number of candidate trajectories of 𝑁traj = 64 are used. For difficult
or unorthodox gameplay sequences requiring unique movements,
the physics-based agent may accrue significant tracking error, some-
times to the extent that it falls to the ground irrecoverably. To ensure
that evaluation is not affected by such irrecoverable failures, we
implement a simulation reset when falling is detected.

Kinematic-only vs. physically based play. As illustrated in Fig. 3, our
kinematic 3𝑝 generator produces scores similar to or slightly below
the real human play sequences on the validation set, suggesting
that the model is capable of high performance gameplay. Here, one
should note that with BOXRR-23 data, we are comparing against
expert rather than average human performance. The human scores
are heavily skewed towards the higher end, due to a number of
factors: poor plays typically result in failing the level with no scores
reported, players generally select songs they are able to perform
well on, experienced players are more likely to install the extension
that submits scores online and makes them available to BOXRR-23,
and the recorded score for each player is their best reported score for
that map. Unlike human scores, Robo-Saber’s scores are zero-shot,
as the agent does not refine its gameplay on the validation maps.
As expected, Fig. 3 shows that introducing physical constraints

results in lower scores, as tracking with the full body would degrade
and alter any physically infeasible 3𝑝 movements. As discussed
in Sec. 6, this physically-based degredation provides highly useful
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Fig. 4. Scatterplot showing that candidate trajectory selection (𝑦-axis) im-
proves generalization compared to using deterministic, argmax (𝑥-axis)
selection for Gumbel-Softmax VAE. Each point compares the two methods
for inference for a same unseen map.

signals for user modeling. The gameplay performance is still overall
respectable, as shown in the supplementary video.

Candidate trajectory selection improves generalization. Selecting the
most likely trajectory at each step (i.e., using argmax actions) may
lead to suboptimal behaviors, as the model may not always pro-
duce correct logits at every timestep. Our system instead generates
𝑁traj samples and selects the best after evaluation, akin to black-
box model predictive control (MPC) frameworks, which leverage a
simulator for producing and pruning candidate motion plans before
committing to one. In Fig. 4, we observe that using rollouts with
candidate trajectory selection (𝑦-axis) reliably outperforms using
argmax rollouts (𝑥-axis), showing better generalization with sam-
pling and evaluation via gameplay simulation. This is consistent
with the findings of Starke et al. [2024] who also highlighted the
effect of inference-time candidate selection–their use case, however,
deals with the continuity of the generated full-body motion, while
ours optimizes gameplay performance.

6 Experiment 2: Personalized Score Prediction
Beat Saber suffers from poor difficulty labeling and the lack of per-
sonalized curation despite an overwhelming amount of content.
Towards this challenge, we demonstrate how automated playtesting
with Robo-Saber might help develop a recommender system by solv-
ing the personalized score prediction (PSP) problem, i.e., predicting a
given map’s score for a given human player.

Method. Following Kristensen et al. [2022], we employ factorization
machines (FMs, Rendle [2010]) for PSP. However, while Kristensen
et al. [2022] only used human player data, we augment the FM
training data with Robo-Saber scores. This allows personalized score
predictions for novel maps for which no human scores are available.

FMs learn embedding vectors for each player and map such that
the dot product of the player and map embeddings predicts the

6
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score for the player-map pair. Importantly, FM does not require ex-
actly human-like data from Robo-Saber–it only assumes that the
differences between Robo-Saber players at least partially model the
differences between human players. To ensure this, we utilize a di-
verse population of different Robo-Saber variants, created by varying
the following:

• Lookahead time: Being able to anticipate and plan movements
in advance is a key aspect of human motor performance. We
artificially manipulate this capability by limiting how far into
the future the model can perceive the upcoming objects. We use
lookahead times 2.0, 1.5, 1.0, and 0.5 seconds; see Fig. 11 for
visualizations of the diversity of trajectories resulting from this.
Note that we only train Robo-Saber once and manipulate the
lookahead time during inference.

• Physicality: For each lookahead time, we include a Robo-Saber
player both with and without the full-body physics simulation.
The full-body physics simulation is also done with 2 variations of
hand masses, as to emulate movement skill differences (heavier
hands make fast movements more difficult). For this, we multi-
ply PHC’s default hand mass by 20. We use the corresponding
trajectories of the hands and head of the full-body character for
computing TS scores.

Various FM variants and extensions have been proposed; we
utilize Deep Factorization Machines (DFMs, Guo et al. [2017]) from
PyTorch-FM, an open-source reference implementation. We use a
simple MLP architecture involving 2 hidden layers of 8 neurons, a
dropout rate of 0.50, and embedding size 16.

Data. We train the DFM with the validation set of 341 maps. We
only include the human scores for the subset of 100 maps with many
human players. For the remaining 241 maps, the DFM training only
utilizes the scores of the Robo-Saber variants, and all our results
are reported on these maps. Given the aforementioned skew in the
data, we employ quantile normalization [Amaratunga and Cabrera
2001; Bolstad et al. 2003] to transform the score distribution into
the standard normal, a technique often used in case of unevenly
distributed data [Stevens et al. 2002].

Results: Emulated Diversity Improves PSP. We evaluate the PSP suc-
cess in terms of mean squared error (MSE) across the 241 maps for
which the DFM training utilized only the Robo-Saber scores. Fig. 6
illustrates that adding each source of diversity improves the MSE. The
most diverse configuration, comprising a population of 4 kinematic
players and 8 physics-based players, each playing the maps with 5
random seeds to mitigate Robo-Saber’s inherent stochasticity, has a
drastically lower MSE than the baseline of using a single kinematic
player. This allows us to conclude that:

(1) Even our simple emulation of player diversity partially repre-
sents the individual differences of real players, and the DFM is
able to utilize this to improve the personalized predictions.

(2) Our physically-based full-body 3𝑝-tracking controller is ben-
eficial for user modeling, even though it could be considered
detrimental from the point of view of simply maximizing Robo-
Saber’s playing skill.
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Fig. 5. Scatterplot and correlation of predicted and ground truth quantile-
normalized TS scores, using the full DFM configuration. Pearson’s 𝑟 = 0.702.
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Fig. 6. The effect of behavior diversity among simulated player population
on the DFM score prediction error. The increased diversity of the population
including full-body physics simulation and its character parameter variation
provides better predictions. The bar heights and error caps denote error
means and standard errors of the means, respectively.

Fig. 5 visualizes the strong correlation (0.702) of the DFM predic-
tions and ground truth human player scores using the maximally
diverse configuration.

7 Conclusion
We have presented Robo-Saber, a fully embodied, physically sim-
ulated VR user model that exhibits realistic and skilled Beat Saber
gameplay behavior and can be applied to personalized prediction of
the scores of novel maps. Our results suggest that Beat Saber map
designers could use Robo-Saber at least for initial playtesting to
predict and visualize player movements and scores. Given suitable
3𝑝 example data and a modest amount of full-body motion cap-
ture examples, our approach should also generalize to VR scenarios
beyond Beat Saber, should appropriate data become available.
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Limitations and Future Work. In potential follow-up work, we pro-
pose to use quantities from physics simulation to improve the mod-
eling of player diversity and estimating variables beyond game score.
For instance, the cumulative fatigue modeling of Cheema et al. [2020,
2023] might be useful for VR exergames such as Beat Saber. A simu-
lation model with sufficiently realistic anatomy could be used for
evaluating the safety of evoked player movements. We are also in-
terested in modeling variations in body proportions, weight, and
strength, which our current physics-based controller cannot handle.

While Robo-Saber enables completely automated playtesting, its
performance is not calibrated to match the human player popula-
tion’s characteristics. However, this limitation is mitigated by the
artificial diversity of the agents we induce (e.g., with and without
physics) combined with the DFM-based approach.
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Fig. 7. Robo-Saber plays colored notes. The player is rewarded if either saber cuts a note of the same color in the specified direction. The dotted note (2nd
frame) can be hit from any direction.

Fig. 8. Robo-Saber avoids bomb notes. The player is penalized if either of the sabers collides with any of the bomb notes.

Fig. 9. Robo-Saber performs obstacle avoidance. The player is penalized if the head collides with the obstacle (red boxes).
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Fig. 10. For the same game input, Robo-Saber’s kinematic 3𝑝 generator samples viable 3𝑝 trajectory samples (shown as semi-transparent headset and sabers)
for the same game input, from which the most optimal one is selected.

Fig. 11. Robo-Saber is deployed with varying (top) lookahead seconds (2.0, 1.5, 1.0, 0.5) and (bottom) 5 random seeds. Variations in, e.g., saber positioning,
playing precision, and idling behaviors can be seen.
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A TorchSaber: Implementation Details
TorchSaber is based on a vectorized implementation of collision de-
tection and distance computation. As the name suggests, TorchSaber
utilizes PyTorch for GPU-accelerated tensor operations. We use the
slab method to detect the intersection between axis-aligned bound-
ing boxes (AABBs) and line segments. We first prepare regularly-
spaced keypoints along each saber. Given a gameplay sequence, for
each pair of two consecutive frames, we produce line segments by
connecting the earlier and later positions of saber keypoints.

In TorchSaber, notes, bombs, and obstacles are modeled as boxes.
For notes, we following Beat Saber’s collider specification as de-
scribed in SimSaber [Cull and Nair 2023]. The boxes for the obstacles
are scaled according to the duration, width, and height specified
in the map data. The sabers are modeled as a 1.2 meters-long line
segment. The objects are instantiated in a 3D scene, where each ob-
ject’s 𝑥-position (forward) is calculated according to its TTA. The 𝑦-
and 𝑧-position (up) of each object is calculated based on a 4× 3 grid.
The grid’s 𝑧-offset is computed based on the player’s height. We
find 1.05 − ℎ

2 to be an appropriate offset. We configure the 𝑥-offsets
of the objects such that they arrive slightly in front of the player. We
initially configured the width and height of the grid according to
SimSaber’s documentation. Then, we fine-tuned these dimensions,
as well as the objects’ 𝑥-offset, in the direction that maximizes the
replay scores of real players.

TorchSaber’s score calculation is based on the note-saber, bomb-
saber, and head-obstacle collision flags. For note-saber collisions,
cut directions, cut velocities, and color correctness are taken into
account to determine whether the cut was good. The cut direction
is declared good if the dot product between the normalized saber
tip velocity and the unit vector pointing to the note direction is
greater than 0. For the dotted notes, any cut is declared good. Each
good cut receives a score between 0 and 1, based on the “swing
score” (Appendix B), similar to Beat Saber’s game mechanics. For
the sake of simplicity and ease of implementation, we excluded
combo multipliers from consideration, which still retained a strong
positive correlation between TorchSaber’s scores and real Beat Saber
scores from BOXRR-23.

B Reward Function Details
Here, we define the reward terms that appear in Sec. 4.2. The
TorchSaber score 𝑟TS is as summarily described in Appendix A:
for each collision with correct color and direction, we compute the
“swing score” based on the 24 frames before and after the collision.

Given the 𝑛Notes colored notes that appear in c1:𝑛𝑡 , paired with
p𝑡 :𝑡+𝑇 , we compute the vector I1:𝑛Notes ∈ {0, 1}𝑛Notes , which is a
boolean mask indicating good collision for each colored note. These
masks take into account whether a good collision happens before
a bad one, as well as whether the note has been collided before in
any previous segments considered.
For each colored note 𝑖 ∈ 1, 2, · · · , 𝑛Nootes, the TS score is com-

puted as

𝑟 𝑖TS = I𝑖 · 𝑟 𝑖Swing (9)

where 𝑟 𝑖Swing is the swing score for note 𝑖:

𝑟 𝑖Swing = 0.5 · (𝑟 𝑖Pre + 𝑟
𝑖
Post). (10)

Given the frame 𝑡𝑖 where the good cut happens, the pre-cut score
𝑟 𝑖Pre and the post-cut score 𝑟 𝑖Post are defined as below:

𝑟 𝑖Pre = clip
(
max

𝜃𝑡𝑖−24:𝑡𝑖
100 , 0, 1

)
(11)

𝑟 𝑖Post = clip
(
max

𝜃𝑡𝑖 :𝑡𝑖+24
60 , 0, 1

)
(12)

where 𝜃𝑡𝑖−24:𝑡𝑖 and 𝜃𝑡 :𝑡𝑖+24 denote the angles between note 𝑖’s for-
ward vector and its corresponding saber, up to 24 frames before and
after, respectively. These angles are computed on the plane spanned
by the colored note’s direction and its forward vector. Then the final
TS score 𝑟TS is simply the mean across the colored notes, i.e.,

𝑟TS = mean
𝑖∈{1,2,· · · ,𝑛Notes }

𝑟 𝑖TS (13)

For candidate trajectory selection, we compute this score at each
generator query step for each candidate. For evaluating the full real
and synthetic trajectories, we treat the entire play sequence as a
segment to compute 𝑟TS.

The collision penalty 𝑟Bomb is computed as the ratio between the
number of cuts registered between each bomb note and any saber
and the number of bombs that appear.
Finally, the head-obstacle distance bonus 𝑟Obstacle is computed

as the mean perpendicular distance between the 𝑦𝑧-position of
the head and its nearest 𝑦𝑧-bound of the appearing obstacles. The
perpendicular distance is computed as the maximum dot product
between any normal of the obstacle and the head position in the
obstacle’s local coordinate system. If the head is determined to be
interior to an obstacle, 𝑟Obstacle is set to 0.

C Ablation Studies on the Kinematic 3𝑝 Generator
Fig. 12 shows learning curves quantifying the kinematic 3𝑝 genera-
tor’s performance with TorchSaber score with respect to 5 held-out
maps, evaluated for 5 times.

Effect of Jensen-Shannon divergence Loss. Contrary to [Starke et al.
2024]’s approach of computing matching losses based on the 𝐶 × 𝐷

one-hot sequence samples, we elect to use Jensen-Shannon diver-
gence as the measure of the discrepancy between z3p𝑡 and zgame

𝑡 . The
sample-sample mean squared error (MSE) approach can be viewed
as a special case of latent Hausdorff distance loss for assimilating
two distributions. However, we test that our Jensen-Shannon di-
vergence (JSD) approach can also be used as a viable alternative
grounded in probability. Fig. 12 shows that JSD performs similarly
to MSE given the same training budget.

Effect of scheduled sampling. Also deviating from the vanilla recipe
in [Starke et al. 2024], we follow MVAE [Ling et al. 2020], HuMoR
[Rempe et al. 2021], and A-MDM [Shi et al. 2024] to implement
a scheduled sampling strategy to ensure that the autoregressive
generative model can familiarize itself with possible modes of error.
As seen in Fig. 12, removing scheduled sampling degrades the

learning performance greatly, comporting to the results of many
other autoregressive motion generation experiments.
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Fig. 12. The effect of ablating major learning components of our system:
Jensen-Shannon divergence (JSD) and scheduled sampling (SS), as measured
by TorchSaber score for thousands of samples used in training. JSD and
MSE are essentially equivalent in empirical performance.
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Fig. 13. DFM prediction errors across a range of embedding sizes. We ob-
serve that embedding sizes beyond 8 hinders performance due to overfitting.
Markers indicate MSEs and error bars indicate standard errors.

Effect of DFM hyperparameters A key DFM hyperparameter is the
embedding dimensionality. Fig. 13 shows the personalized predic-
tion error as a function of the embedding dimensionality. With our
DFM data including all Robo-Saber variants, increasing the dimen-
sionality beyond 8 yields insignificant gains or even hindrance due
to overfitting.

D Table of Hyperparameters
See Table 1.
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Table 1. Hyperparameters and their values used for our experiments.

Symbol Description Value
𝑇 Number of frames per 3𝑝 motion chunk 16
𝑛 Length of latent sequence for each object type 40
𝑠 The default lookahead, in seconds, used in training 2.0
𝐶 The number of channels for categorical codebook matching 128
𝐷 The dimension of each channel for categorical codebook matching 8
ℎ Number of frames used as 3𝑝 history input 2
𝜆Match Jensen-Shannon divergence-based matching loss weight 1e-4
𝜆Bomb Reward weight for saber-bomb collision penalty 1
𝜆Obstacle Reward weight for head-obstacle distance penalty 1
- Interval for interpolating the 𝑇 frames 4
- Batch size for DFM training full batch
- Learning rate for DFM training 1e-3
- Optimizer for DFM training RAdam
- Number of BOXRR-23 samples in batch for kinematic 3𝑝 generator training 64
- Number of gameplay segments in batch for kinematic 3𝑝 generator training 512
- Learning rate for kinematic 3𝑝 generator training 5e-5
- Number of transformer encoder layers 4
- Number of attention heads 4
- Transformer activation function SiLU
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