Where is Physiological Noise Lurking in k-Space?

Toni Karvonen1,2, Arno Solin3, Ángel F. García-Fernández1, Filip Tronarp1, Simo Särkkä1, and Fa-Hsuan Lin4,5

1Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
2Aalto NeuroImaging, Aalto University, Espoo, Finland
3IndoorAtlas Ltd., Helsinki, Finland
4Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
5Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
Objectives

- Investigation of *k-space structure* of physiological noise in fMRI

 This is useful for:
 - *Knowledge of the k-space distribution is important in itself*
 - *Reduction in computational burden*

 Example. Little degradation if only spatial frequencies containing 90% of the total energy are used in reconstruction:
Data

- A **27-run** set of **resting state fMRI** data and associated anatomical images of one volunteer.
- 3 T Siemens Skyra scanner
- 32-channel head coil array
- EPI sequence parameters:
 - **TR:** 77 ms, **TE:** 21 ms, **FA:** 60°,
 - **FOV:** 224 mm, **matrix size:** 64 x 64,
 - **voxel size:** 3.5 x 3.5 x 6 mm

- **Two slices** per run:
 - About **30 seconds** in length
 - A fixed reference slice
 - Second slice, with the gap to the reference slice **advancing**

- **Reference cardiac and respiratory signals** were obtained **time-locked** to the fMRI data
DRIFTER

- DRIFTER is a model-based method for retrospective identification and removal of physiological noise in fMRI data
- Based on a stochastic resonator model and estimation with Kalman filters and smoothers
- Each voxel is handled independently
DRIFTER: Illustration
k-space amplitude maps

- Distribution of logarithmic *k*-space amplitude for slices 7 and 19
- Contour in the 3rd column: enclosure of frequencies containing 90% of total energy
Cardiac noise amplitude

Effect of using only a subset of spatial frequencies on cardiac noise map reconstruction
Respiratory noise amplitude

Effect of using only a subset of spatial frequencies on respiratory noise map reconstruction
Animated example: cardiac noise
Animated example: respiratory noise

100% 13

8192 / 8192

Respiratory noise amplitude
Conclusions

• We have presented how physiological noise is structured in k-space

• Noise is heavily concentrated to low spatial frequencies

• It is possible to use only a subset of spatial frequencies in the reconstruction and have little degradation in quality
Conclusions

The **DRIFTER toolbox** for **MATLAB** and **SPM** is available for download

http://becs.aalto.fi/en/research/bayes/drifter/